HARYANA STATE POLLUTION CONTROL BOARD
C-11, SECTOR-6, PANCHKULA
Ph-0172-577870-73, Fax No. 2581201
E-Mail: hspcbseordination@gmail.com website: hspcb.org.in

Dated $98 / 09 / 2023$
To
The Director General, Information, Public Relations \& Cultural Affairs Department, Haryana, Chandigarh.

Subject: Submission of Draft EIA/EMP report of public hearing -"Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and $2,50,000$ MTPA of Stone (Road Metal \& Masonary Stone) Over an area of 4.80 ha located at Village Donkhera, Tehsil Nangal Chaudhary, District Mahendragarh, State Haryana.

Kindly refer to the subject noted above.
I have been directed to enclose herewith an advertisement regarding Public Hearing Notice to be held on 11.10.2023 at 11:00 AM at the site of the unit for the project of "Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonary Stone) Over an area of 4.80 ha located at Village Donkhera, Tehsil Nangal Chaudhary, District Mahendragarh" Haryana for publication in the following leading newspapers on DAVP rates:-

1. One major national daily newspaper.
2. One Regional Vernacular daily Newspaper in Hindi.

This advertisement should appear on or before 10.09.2023 in the above said two leading newspapers only and bills of above two newspapers on DAVP rates may be sent to this office at the earliest, the bill payment of above said notice will be made for two newspaper only.

DA/-Advertisement

Sr. Env. Engineer (HQ)
 For Member Secretary

Copy to :-

A copy of the above is forwarded to the following for information and necessary action:-

1. The Deputy Commissioner, Mahendragarh at Narnaul.
2. The Chairman, Zila Parishad, District Mahendragarh at Narnaul.
3. The Executive Officer, Municpal Council Narnaul for display on notice board
4. The Joint Director, District Industries Centre, District Mahendragarh at Narnaul.
5. The Regional Officer, Mahendragarh, Haryana State Pollution Control Board, SCO D-6 \& D-7, Suncity Commercial Complex, Sector-6, Block Rewari alongwith copy of EIA report \& Executive Summary and CD for sending the same to the concerned authorities mentioned above to place the same in their offices for consultation of the general public during office hours.
6. M/s Xandy Mines and Mineral, Khasra No. 109, Neem ka Thana Road, Village Dokhera, Distt. Mahendragarh - 123023.
7. The Sr. Env. Engineer (IT) HSPCB (HQ) for uploading the notice on the website of the Board.
DA/-Advertisement

> Sr. Env. Engineer (HQ)
> For Member Secretary

Copy to:-

A copy of the above is forwarded to the following for information please:-

1. The Additional Chief Secretary to Govt. Haryana, Environment Department, Chandigarh.
2. The Director General, Environment Department, Haryana, Bay No. 55-58, 2nd Floor, Paryatan Bhawan, Sector-2, Panchkula-134112
3. P.S. to Chairman/ P.A. to Member Secretary, HSPCB, Panchkula .

DA/-Advertisement

Digitally Signed by Sanjiv
Kumar
Sr. Env. Engineer (HQ)
Date: 08-09-2023 15:47:34
Reason: Approved

Notice for Public Hearing

It is for the information of concerned that M / s Xandy Mines and Mineral, Khasra No. 109, Neem ka Thana Road, Village Dokhera, Distt. Mahendragarh has proposed a project regarding Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonary Stone) Over an area of 4.80 ha located at Village Donkhera, Tehsil Nangal Chaudhary, District Mahendragarh, State Haryana, and going to conduct of Public Hearing for obtaining Environmental Clearance.

The project proponent mentioned above has applied to the Haryana State Pollution Control Board for conducting the Public Hearing for obtaining Environmental Clearance as per EIA notification dated 14th September, 2006 for the proposed project. Accordingly, the Public Hearing for the above said project has been fixed on 11.10.2023 at 11.00 AM at Village Donkhera, Tehsil Nangal Chaudhary, District Mahendragarh.

Copies of executive summary of the project report and EIA study report, submitted by the project proponent, are available in the Head Office of the Board and on the website of the Board i.e. https://hspcb.org.in/ as well as in the following offices, which can be perused during office hours, on any working day:-

1. Deputy Commissioner, Mahendragarh at Narnaul.
2. Chairman, Zila Parishad, District Mahendragarh at Narnaul.
3. Executive Engineer, Municipal Council, Narnaul.
4. Joint Director, District Industries Centre, District Mahendragarh at Narnaul.
5. Regional Officer, Mahendragarh, Haryana State Pollution Control Board, SCO D-6 \& D-7, Suncity Commercial Complex, Sector-6, A- Block, Rewari.

Notice is hereby given to all concerned to file suggestions, views, comments and objections, if any, on the above said proposed project, to the Chairman, Haryana State Pollution Control Board, C-11, Sector-6, Panchkula as well as Regional Officer, Mahendragarh, Haryana State Pollution Control Board, at SCO D-6 \& D-7, Suncity Commercial Complex, Sector-6, A- Block, Rewari i.e. within 30 days of the publication of this notice. Besides, a Public Hearing will also be held on the Date, Time \& Venue mentioned above at the proposed site of the project, which can be attended by any person including Environmental Groups, bonafide residents and others, located at the project site/sites of displacement/sites likely to be affected. Oral/Written suggestions, if any can also be made during the Public Hearing.

No TA/DA will be admissible for attending the Public Hearing.

XANDY MINES AND MINERALS

KHASRA NO. 109, NEEM KA THADA ROAD, VILLAGE DOKHERA, MAHENDERGERH - 123023

Date: 27.07.2023

To,
Haryana State Pollution Control Board (Head Office)
C-11, Sector-6, Panchkila, Haryana - 134109, Haryana
Phone No: 0172-2577872 \& 0172-2577873
Email: hspcbho@gmait.com; hspcb@hry,nic.in;

Sub.: Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity $3,25,000$ MTPA $(75,000 \mathrm{MTPA}$ of Dolomite and $2,50,000 \mathrm{MTPA}$ of Stone (Road Metal \& Masonary Stone)\} over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsit, Mahendragarh District State Haryana - Regarding Submission of Draft ElA (Ervironment Impact Assessment) Report for Conducting Public Hearing as per provision of ElA Notification 2006 (amended thereof)

Ref.: State Level Envirorment impact Assessment Authority, Haryana- ToR Letter vide File No. SEIAA/HR/2023/363 dated 04.07.2023.

Sir,

With reference to above mentioned subject, XANOY MINES \& MINERALS has proposed Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonary Stone) from Donkhera Dolomite Mine with production capacity $3,25,000$ MTPA (75,000 MTPA of Dolonite and $2,50,000$ MTPA of Stone (Road Metal \& Masonary Stone)) over an area of 4.80 ha located at Donkhera Vilage, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana. XANDY MINES \& MINERALS has appointed Parivesh Environmental Engineering Services, a NABET accredited consultant vide NABFT /EIA/2124/IA 0092(Rev.01), for conducting ElA study and obtaining Environmental Clearance as per EIA Notification, 2006 and its subsequent amendments.

As per EIA Notification 2006, our project requlres Public Hearing, for this purpose we are submitting the following documents with demand draft of INR 1,50,000 (DD NO.001038) on dated 27.07.2023

1) One Hard copy of Draft EIA/EMP Report.
2) One Hard copies of executive summary in Hindi and English.
3) One Soft copies of above documents in $C D$.
4) Demand Draft in name of Member Secretary, Haryana State Polistion Control Board, payable at Panchkula.

In view of the above, it is requested to please acknowledge the mentioned documents and process the project for Public Hearing on an early date.

Thanking You,

DRAFT EIA REPORT FOR MINING OF MINOR MINERALDOLOMITE \& STONE (ROAD METAL \& MASONRY STONE) FROM DONKHERA DOLOMITE MINE

VILLAGE DONKHERA, TEHSIL NANGAL CHAUDHARY \& DISTRICT MAHENDRAGARG AND STATE HARYANA. MAXIMUM PRODUCTION - 3,25,000 MTPA (DOLOMITE \& 2,50,000 MTLA OF ROAD METAL \& MASONRY STONE) MINE LEASE AREA - 4.80 HA. (GP LAND)

PROJECT PROPONENT
M/S XANDY MINES AND MINERALS

ENVIRONMENT CONSULTANT

PARIVESH ENVIRONMENTAL ENGINEERING SERVICES

Nabet Certificate No. - NABET /EIA/2124/IA 0092(Rev.01)
EIA NO. - PEES/EIA/23-24/024

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

TABLE OF CONTENT

1. Introduction 13
1.1. Project Brief 14
1.2. Nature of the Project 18
1.2.1. Need for the Project and Its importance to the Country and or Region 19
1.2.2. Demand-Supply Gap 19
1.2.3. Imports vs. Indigenous Production 19
1.2.4. Export Possibility 19
1.2.5. Domestic/Exports Markets 19
1.3. Location of the Project 20
1.4. Purpose of the Report 23
1.5. The Study 24
1.5.1. Scope of the Study 38
1.5.2. Methodology of the Study 39
1.6. Environment Clearance Process 39
1.7. Legislative \& Regulatory Framework 41
1.8. Report Structure 41
2. Project Description 43
2.1. General 43
2.2. Location of Project 43
2.3. Geology \& Reserves 45
2.3.1. Physiographic, Drainage and Climate 45
2.3.2. Hydrogeology 46
2.3.3. Regional Geology of the Area 46
2.3.4. Local Geology 46
2.3.5. Geological Sections 47
2.3.6. Details of Exploration 48
2.3.7. Reserves (Estimated in last approved mining plan) 49
2.3.8. Methods of Estimation of Reserves in Mining Scheme 49
2.3.9. Details of UNFC Classification 51
2.3.10. Grade and Use Mineral 52
PROPONENT M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Manendragarh District State Haryana proposed

2.3.11. Year-wise exploration proposed to be carried out during the ensuing 5 years period 53

\qquad

CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES NABFT /ElA/2124/IA 0092\{Rev.01)

PAGE. i:
2.13. Site Service 71
2.13.1. Manager's Office 71
2.13.2. Canteen-cum-rest Shelter 71
2.13.3. Store 72
2.13.4. First Aid Room 72
2.13.5. Magazine 72
2.13.6. Electricity Supply 72
2.13.7. Water Supply 72
2.14. Employment Potential 73
2.14.1. General Consideration 73
2.14.2. Manpower Requirement and Its Distribution 73
2.15. Conclusion 73
3. Description of Environment 74
3.1. Introduction 74
3.2. Study Area \& Period 75
3.3. Methodologies Adopted 76
3.3.1. Primary Data Collection Methodologies 76
3.3.2. Secondary Data Collection 77
3.4. Physical Environment 78
3.4.1. Seismic Status of Study Area 78
3.4.2. Land-Use Details 80
3.4.3. Soil Environment 84
3.5. Water Environment 88
3.5.1. Hydrogeology (Aquifer System) 88
3.5.2. Water Level Fluctuation in Study Area 91
3.5.3. Ground Water Quality 92
3.5.4. Surface Water Quality 95
3.6. Meteorological Condition 97
3.6.1. Meteorological Data as per IMD Gurugram (Haryana) 97
3.6.2. Onsite Micro-Meteorology (Hourly) 98
3.7. Air Environment 99
3.7.1. Monitoring Methodology, Parameters \& Locations 99
3.7.2. Air Quality of Study Area 101
PROPONENT M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)
DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \&Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA(75,000 MTPA of Dolomite and $2,50,000$ MTPA of Stone (Road Metal \& Masonry Stone)) overan area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, MahendragarhDistrict State Haryana proposed
3.8. Noise Environment 104
3.8.1. Ambient Noise Level Monitoring Stations 104
3.8.2. Frequency \& Parameters of Sampling 104
3.8.3. Ambient Noise Level Monitoring Locations 104
3.8.4. Method of Monitoring 105
3.8.5. Ambient Noise Level in Study Area 106
3.9. Biological Environment 107
3.9.1. Objective of Biological Study 107
3.9.2. Environmental Sensitivity of the Study Area 108
3.9.3. Forest Cover of the Region 110
3.9.4. Ecology of the Study Area 111
3.9.5. Terrestrial Ecology 112
3.9.6. Scheduled Species as per WPA, 1972 122
3.9.7. Aquatic Ecology 122
3.10. Socioeconomic Environment 124
3.10.1. Demography of Study Area 124
3.11. Conclusion 128
4. Anticipated Environmental Impacts \& Mitigation Measures 129
4.1. General 129
4.2. Impact Assessment 129
4.3. Identification of Impacts 130
4.4. Impacts on Land \& Soil 131
4.4.1. Landscape 131
4.4.2. Solid Waste Generation 132
4.4.3. Soil and Land-use Pattern of the Mine Lease Area 132
4.5. Impact on Water Quality 132
4.5.1. Impact on Surface Water Bodies 132
4.5.2. Impact on Ground Water 133
4.5.3. Acid Mine Drainage 133
4.5.4. Water Consumption and Wastewater Generation 133
4.5.5. Water Quality Management 134
4.6. Impact on Ambient Air Quality 135
4.6.1. Identified Anticipated Impact on Ambient Air Quality 135
PROPONENTM/S XANDY MINES AND MINERALSCONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and $2,50,000$ MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
4.6.2. Impact Assessment on Air Quality due to Operation 136
4.6.3. ISCST3 Dispersion Model 137
4.6.4. Model Options used for Computation 137
4.6.5. Emission of Fugitive Dust (PM_{10}) 137
4.6.6. Summary of Caiculated Emission Rate 138
4.6.7. Mixing Height 138
4.6.8. Meteorological Data 139
4.6.9. Presentation of Results 139
4.6.10. Air Pollution Management- 141
4.6.11. Overall Impact due to the Mine 141
4.6.12. Mitigation Measures for Air Quality 142
4.6.13. Biological Method for Dust Control 142
4.7. Impact on Road due to Traffic Movement 142
4.7.1. Traffic Projection after Implementation of Mining Project 142
4.7.2. Traffic Management and Mitigation Measures 145
4.8. Impact on Noise Level 145
4.8.1. Vibration Level due to Blasting 146
4.8.2. Health Effect of Noise 146
4.8.3. Noise Pollution and Control Measures 146
4.8.4. Precaution during Drilling \& Blasting 146
4.9. Biological Environment 147
4.10. Impact on Socio-Economic Environment 148
4.11.1. Positive Impact 148
4.11.2. Negative Impact 148
4.11.3. Occupational Health \& Safety 149
4.11. Mine Closure 150
4.12. Conclusion 150
5. Analysis of Alternatives (Technology \& Site) 151
5.1. Introduction 151
5.2. Alternative of Mines 151
5.3. Alternative for Technology and Other Parameters 151
5.3.1. Energy Consiervation 151
5.3.2. Awareness Programme 152
PROPONENT M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES NABFT /EIA/2124/IA 0092(Rev.01)
5.3.3. Environmental Attributes Management \& Mitigation Measures 152
6. Environment Monitoring Plan 153
6.1. Introduction 153
6.2. Environmental Management Cell 153
6.2.1. Hierarchy 154
6.2.2. Responsibilities for Environmental Management Cell 154
6.3. Environmental Monitoring and Reporting Procedure 154
6.3.1. Monitoring Schedule 156
6.3.2. Reporting Schedule during Operation of Mine- 156
6.3.3. Budget Allocation for Monitoring 156
6.4. Conclusion 156
7. Additional Studies 157
7.1. General 157
7.2. Public Hearing \& Consultation 157
7.3. Hazard Identification and Risk Assessment Methodology 158
7.3.1. Hazard Identification and Risk Assessment Methodology 158
7.3.2. Vibration 159
7.3.3. Mitigation Measures and Disaster Management Plan 159
7.3.4. Storage and Use of Explosive Materials 160
7.3.5. Hazard Analysis 162
7.4. Disaster Management Plan 163
7.4.1. Disaster Management Plan: Structure 163
7.4.2. Policy 163
7.4.3. Planning 163
7.4.4. Setting-up of Emergency Infrastructure 166
7.4.5. Fire Fighting 167
7.4.6. Natural Disasters 167
7.4.7. Occupational Health Hazards 168
7.5. Summary 169
8. Project Benefits 170
8.1. Introduction 170
8.2. Physical Benefits 170
8.3. Social Benefits 170
PROPONENT M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
8.3.1. Corporate Environmental Responsibility (CER) 171
8.4. Ecological Benefits 172
8.5. Summary 172
9. Environmental Cost Benefit Analysis 173
10. Environment Management Plan 174
10.1. Introduction 174
10.2. Land Use Environment 174
10.3. Air Environment Management 175
10.3.1. Control of Gaseous Pollution 175
10.3.2. Control of Dust Pollution 175
10.4. Noise Level Environment and Vibration 177
10.4.1. Noise Abatement and Control 177
10.4.2. Vibration Abatement 177
10.5. Water Management 178
10.6. Solid Waste Management 178
10.7. Green Belt Development 179
10.7.1. Types of Trees 180
10.7.2. Post Plantation Care 180
10.8. Socio-economic Assurance 180
10.8.1. Corporate Responsibilities for Environment Protection 181
10.8.2. Litigations against the Project Proponent 181
10.8.3. Occupational Health and Safety 181
10.9. Environment Management \& Protection Plan 182
10.10. Rehabilitation and Resettlement (R\&R) 183
10.11. Summary 183
11. Summary \& Conclusion 184
11.1. General 184
11.2. Description of Project 188
11.3. Description of Baseline Environment 189
11.4. Anticipated Environmental Impact and Mitigation Measures- 190
11.5. Analysis of Alternative 190
11.6. Environmental Monitoring Program 191
11.7. Additional Studies 191
PROPONENT M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES NABFT /EIA/2124/IA 0092(Rev.01)
DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and $2,50,000$ MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh
District State Haryana proposed
11.8. Project Benefit 191
11.9. Environment Management Plan 191
11.10. Conclusion 192
12. Disclosure of Consultant 193
12.1. Organizational Profile 193
12,2. Consultancy Services 193
12.3. Disclosure of Consultants Engaged 193
12.4. Declaration by the Head of the Accredited Consultant Organization 197
LIST OF TABLES
Table 1-1: Approvals / Permissions from Concerned Authorities 14
Table 1-2: Salient Features of Mine 15
Table 1-3: $\quad 500 \mathrm{~m}$ Cluster Details of Proposed Mine 18
Table 1-4: Pointwise Compliance of Terms of Reference 24
Table 1-5: Environmental Attributes and Frequency of Monitoring 38
Table 1-6: Key Environmental Legislation 41
Table 2-1: Mining Lease Area 43
Table 2-2: Chemical Characteristics of Dolomite 47
Table 2-3: Details of Combined Reserves of Dolomite \& Associated Minerals. 49
Table 2-4: Section-wise Reserve Estimation of Stone 50
Table 2-5: Section-wise Reserve Estimation of Dolomite 50
Table 2-6: Mineral Reserves as per UNFC 51
Table 2-7: First Fiver-year production proposals (in MT) 52
Table 2-8: Details of Drilling and Blasting 53
Table 2-9: Present Land-use of the Mine Lease Area 54
Table 2-10: Details of Pit Design Parameters 54
Table 2-11: Second Five Year Production Details (in MT) 58
Table 2-12: Details of Ultimate Size of the Pit 63
Table 2-13: Land-use of Mine Lease at End of Mine Plan 63
Table 2-14: Details of Equipment with Fuel Consumption for Proposed Plan Period 64
Table 2-15: Details of Blasting Parameters 64
Table 2-16: Water Demand for Proposed Mine Lease 72
Table 2-17: Manpower Requirement for Proposed Mine Lease 73
Table 3-1: Baseline Monitoring for the Environmental Parameters 77
Table 3-2: Detailed of Secondary Data Collection 77
Table 3-3: Land-use Classification of the Study Area. 80
Table 3-4; ' Land-use Classification of the Project Site 83
Table 3-5: Soil Sampling Locations 85
Table 3-6: Soil Classification Standards as per ICAR 86
Table 3-7: Soil Quality Results 87
Table 3-8: Ground Water Level Fiuctuation in Area 91
Table 3-9: Ground Water Sampling Location 92
Table 3-10: Ground Water Results 93
Table 3-11: Surface Water Sampling Location 95
Table 3-12: CPCB Water Quality Criteria 95
Table 3-13: Surface Water Results 95
Table 3-14: Meteorological Table as per IMD, Gurugram (1981-2010) 97
Table 3-15: On-site Micro Meteorological Data 99
Table 3-16: Ambient Air Monitoring Locations 100
Table 3-17: Ambient Air Quality Results 103
Table 3-18: Mineralogical Composition of PM10 103
Table 3-19: Ambient Noise Monitoring Locations 104
Table 3-20: Ambient Noise Level (CPCB Standards) 106
Table 3-21: Ambient Noise Quality Result 106
Table 3-22: Mode of Data Collection and Parameters 107
Table 3-23: Environmental Settling of Study Area (15km Buffer) 108
Table 3-24: Forest Cover of the Project Affected Area 110
Table 3-25: Floral of the Study Area 113
Table 3-26: Floral Checklist of Buffer Zone 114
Table 3-27: Plants of Medicinal Importance \& Other Allied Uses 116
Table 3-28: Crops in Study Area 119
Table 3-29: Faunal Checklist of Buffer Zone 120
Table 3-30: Faunal Species of Buffer Zone 120
Table 3-31: Checklists of Macrophytes in Aquatic Habitats 122
Table 3-32: List of Phytoplankton from Study Area 123
Table 3-33: List of Zooplanktons from Study Area 123
Table 3-34: List of Fish Species from Study Area 123
Table 3-35: Demographic Structure of the Study Area 125
Table 3-36: Population Distribution of the Study Area 125
Table 3-37: Literacy Rate of the Study Area. 126
Table 3-38: Occupational Structure of the Study Area 126
Table 3-39: Education and Medical Facilities of the Study Area 126
Table 3-40: Drinking Water Facilities in the Study Area 126
Table 3-41: Land Use Classification in the Study Area 127
Table 3-42: Public Facilities Available in the Study Area 128
Table 4-1: Types of Impact due to Mining Activity 129
Table 4-2: Impact Identification Matrix 130
Table 4-3: Water Consumption and Management 133
Table 4-4: Predominant Source of Air Pollution 135
Table 4-5: Identified Impacts of Air Pollutions on Human, Animals and Plants. 136
PROPONENT M/S XANDY MINES AND MINERALSCONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORTEnvironment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \&Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA(75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) overan area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh
District State Haryana proposed
Table 4-6: Emission Rate Estimation 138
Table 4-7: Hourly Mixing Height for Pre-monsoon Season 138
Table 4-8: Hourly Mixing Height for Pre-monsoon Season 139
Table 4-9: Emission Rate Estimation 139
Table 4-10: Details of Average Annual Daily Traffic (AADT) and PCUs 143
Table 4-11: Detail of PCUs Factor as per IRC 144
Table 4-12: V/C Ratio and Level of Service (LOS) as per IRC 144
Table 4-13: Existing Traffic Scenario \& Level of Service (LOS) 144
Table 4-14: Traffic Scenario with Operation of Mine \& Level of Service (LOS) 145
Table 4-15: Work-related Health Hazards 149
Table 6-1: Environmental Management Plan, Activities \& Implementation 153
Table 6-2: Monitoring Methodologies and Parameters 155
Table 6-3: Monitoring Schedule 156
Table 7-1: Hazards Faced in Mining Operations. 160
Table 7-2: Hazards Ranked by Risk Level 161
Table 7-3: Cause Analysis for Level 1 and Level 2 Hazards 162
Table 7-4: Medical Examination Schedule 169
Table 8-1: Project Benefits in Respect to Different Aspects 170
Table 8-2: Corporate Environment Responsibillty Budget (Previous Plan Period) 171
Table 8-3: Corporate Environment Responsibility Budget (Proposed Plan Period))171
Table 10-1: Air Pollution, Management \& Monitoring 175
Table 10-2: Water Pollution \& Management 178
Table 10-3: Plantation Details 179
Table 10-4: Post Plantation Care 180
Table 10-5: Environment Cost Analysis (Previous Mine Plan) 182
Table 10-6: Environment Cost Analysis (Proposed Plan Period) 182
Table 11-1: Approvals / Permissions from Concerned Authorities 184
Table 11-2: Salient Features of Mine 185
Table 11-3: Second Five Year Production Details (in MT) 189
Table 11-4: Baseline Status 189
Table 12-1: EIA Co-ordinator Details 194
Table 12-2: List of Functional Experts 194
LIST OF FIGURES
Figure 1.1: Location Map of Proposed Project 20
Figure 1.2: Co-Ordinates Map with 500 m Buffer from Proposed Site 21
Figure 1.3: Base Map with 2 km Buffer Showing Site Features 22
Figure 1.4: Google Map with 10 km Buffer from Proposed Site 23
Figure 1.5: Schematic Diagram for Environmental Clearances Process 39
Figure 2.1: Khasra Map of Proposed Mine 43
Figure 2.2: Key Plan of the Proposed Mine 45
Figure 2.3: Surface Geological Plan 47
PROPONENT CONSULTANT
M/S XANDY MINES AND MINERALS
PARIVESH ENVIRONMENTAL ENGINEERING SERVICES NABFT /EIA/2124/IA 0092(Rev.01)DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORTEnvironment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \&Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA(75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) overan area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh
District State Haryana proposed
Figure 2.4: Year-wise Working Plan55
Figure 2.5: Progressive Mine Closure Plan for Second Plan Period 58
Figure 2.6: Conceptual Mine Plan 62
Figure 3.1: Study Area Map (10 km Buffer) of Proposed Site 75
Figure 3.2: Earthquake Hazard Map of Haryana 78
Figure 3.3: Pia-gram of Land-Use Map of Study Area (10 km Buffer) 81
Figure 3.4: Land-Use Map of Study Area (10 km Buffer) 81
Figure 3.5: FCC Imagery of Study Area (10 km Buffer) 83
Figure 3.6: Land-Use Map of Project Site 84
Figure 3.7: Soil Sampling Locations 85
Figure 3.8: Hydrogeology Map of Mahendragarh District 89
Figure 3.9: PremMonsoon (May 2012) \& Post-Monsoon (November 2012) Water Level 90
Figure 3.10: Water Level Fluctuation of Pre-monsoon and Post-monsoon 91
Figure 3.11: Water Sampling Locations 92
Figure 3.12: Average Rainfall (30 Years) 98
Figure 3.13: Wind Pattern as per IMD Gurugram \& Onsite 99
Figure 3.14: Ambient Air Monitoring Locations 100
Figure 3.15: Ambient Noise Level Locatlons 104
Figure 3.16: Environment Sensitivity Map (15 km Buffer) of Proposed Site 109
Figure 3.17: Eco-regions of Haryana 111
Figure 3.18: Floral Species observed in Study Area 113
Figure 3.19: Plant Families Observed in Study Area 113
Figure 3.20: No. of Fauna Species recorded from Study Area 120
Figure 3.21: Population \& Gender Ration of Study Area 124
Figure 3.22: Population \& Gender Ration of Study Area 125
Figure 4.1: Water Balance Diagram 134
Figure 4.2: Predicted Ground Level Concentration of PM 140
Figure 4.3: Predicted Ground Level Concentration of PM on Base Map 140
Figure 4.4: Traffic Survey Sampling Location 143
Figure 6.1: Hierarchy of Environmental Management Cell 154
Figure 10.1: Process Flow Chart of Environmental Management 174

LIST OF ANNEXURES

Annex 1.1	Letter of Intent (LOI)
Annex 1.2	Approved Mining Plan
Annex 1.3	Cluster Letter
Annex 1.4	Forest NOC
Annex 1.5	Previous EC Letter
Annex 1.6	Copy of CTE
Annex 1.7	Copy of ${ }_{4}$ CTO
Annex 1.8	EC Compliance Report

PROPONENT
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metai \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

Annex 1.9	Lab Report as per Previous EC	
Annex 1.10	Panchayat NOC	
Annex 1.11	Approved DSR Report	
Annex 1.12	Copy of Standard TOR	
Annex 3.1	On Site (Hourly) Micro-Meteorology Data	
Annex 3.2	Air Monitoring Data \& Monitoring Photographs	
Annex 3.3	Conservation Plan for Biodiversity	
Annex 12.1	QCI NABET Certificate (Environment Consultant)	
Annex 12.2	MoEF\&CC Certificate (Laboratory)	
Annex 1	Khasra \& Jamabandi details	
Annex 2	CA Certificate for project cost	
Annex 3	Previous EMP and CSR	
Annex 4	Tehsil NOC	
Annex 5	Affidavit by Proponent	
Annex 6	Undertaking of Consultant Engagement	
Annex 7	Affidavit for No Mining Activity	

CHAPTER 1 INTRODUCTION

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and $2,50,000$ MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed

1. Introduction

Environmental Impact Assessment (EIA) is a procedure used to examine the environmental consequences or impacts, both beneficial and adverse, of a proposed development and to ensure that these effects are considered in project design stage and suggest mitigation measures are proposed to minimize the adverse impacts caused to the project activity,
Sh. Satveer Singh S/o Sh. Bani Singh village Kalwari, P.O. Dongra Ahir, Tehsil \& District Mahendragarh has been granted mining lease of Bartyes and Dolomite by State Government of Haryana over an area of 24.30 ha of land in village Donkhera, District Mahendragarh w.e.f. 29.08.2001 for a period of 20 years. Now this lease has been transferred to M / s Xaridy Mine and Minerals, GH 18A, Celebrity Homes, Palam Vihar, Gurgaon. As per the information received from the Department of Mines \& Geology and the State Forest Department part of only one Khasra no. namely 109 min is free from the forest/Aravali plantation. The applicant has selected this Khasra numbers 109 min comprising an area of 4.80 ba which is free from restrictions. Rest of the Khasra nos. 103, 108 and 109 min comprising 19.50 ha are which was said to be in Aravali/plantation has been surrendered to the department of Mines \& Geology, Haryana.
While working for dolomite in the lease area it was noticed that this area contains good quality Road Metal \& Masonry Stone. Therefore, applicant approached the State Government to grant the associated Minor Minerals over the lease hold area of Major Minerals in village Donikhera under Rule 10 of Haryana Minor Mineral Concession Rules 2012. Director Mines \& Geology, Haryana vide letter No. GLG/HY/E-2612/3912 dated 28.08 .2014 accorded the sanction for grant the mining lease of associated minor minerals for the period Co-Terminus with Major Minerals.
A revised mining plan along with progressive mine closure plan for Dolomite along with associated minor mineral Road Metal and masonry stone was approved vide Memo No. GLG/HY/E-2612/0767 dated 20.12 .2015 by DMG Haryana. Since The environment clearance was obtained under category B2 (Area <5 Ha) vide letter No. SEIAA/HR/2016/465 dated 27.06.2016.
The Central Government made amendment in the Mines and Minerals (D\&R) Amendment Act, 1957 vide Ordinance dated 15.01 .2015 which became an Act on 27.03 .2015 , has provided that the period of lease for minerals other than coal, lignite, and atomic minerals on and from the date of commencement of Mines and Minerals (D\&R) Amendment Act, 2015, shall be 50 years. So, in this case also now the lease period shall be 50 years i.e., 29.08.2001 to 28.08.2051. Therefore, mining leases granted before the commencement of the Mines and Minerals (Development and Regulation) Amendment Ordinance, 2015 shall be deemed to have been granted for a period of fifty years in village Donkhera, District Mahendragarh, State-Haryana, for extraction of Quart, Dolomite, and Quartize (Road Metal \& Masonry Stone).
The leasehoider got prepared a revised mining plan and progressive mine closure plan for both Major and Minor Minerals over an area of 4.80 ha which is required under Rule 22(4), and 22A(1), (2) of MC Rules 1960 and 23(B) \& F of MCDR 1988 along with Haryana State Minor Mineral Concession Rules 2012. Therefor a revised mining plan along with progressive mine closure plan for Dolomite along with associated minor mineral Road Metal and masonry stone was prepared and approved vide Memo No. Glg/Hy/E-2612/0767 dated 20.12.2015 by DMG Haryana. On the

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
basis of revised mining plan, proponent approached the Authority for environment clearance which was duly accorded vide letter No.SEIAA/HR/2016/465 dated 27.06.2016.
Since the 5 years of first mining plan \& progressive mine closure plan ends on 26.06.2021. Therefore, a mining scheme is required to be prepared and got approved from DMG, Haryana as per the sub-rule 8 of rule 70 of Haryana Minor Mineral Concession, Stocking, Transportation of Minerals \& Prevention of Illegal Mining Rules, 2012. Applicant has assigned the Preparation of Mining Scheme to DC Yadav (RQP).
The applicant is involved in the Mining business for last many years. The applicant can invest necessary funds for the scientific and systematic development of mines including land rejuvenation and progressive reclamation programme and other measures necessary to protect the quality of the environment and human health etc.

1.1. Project Brief

The project is mining of minor mineral (Dolomite and Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity $3,25,000$ MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha (Gram Panchayat) located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana

It is further informed by lessee that they have got a mining contract for stone in Donkhera village which happens to be in immediate vicinity of the existing dolomite and stone mine. The management of these both mines has decided to work the common 7.5 m buffer one on each side of leases. Therefore, in view of the common consent of both the mines, they are planning to obtain the permission to mine the common lease boundary of $7.5 \mathrm{~m}+7.5 \mathrm{~m}=15.0 \mathrm{~m}$ of both the leases from the Directorate of mine safety. The same is very necessary and safer to amalgamate the common boundary of the both the leases. TO make the mine safe from the safety point of view, it is necessary to work the common lease boundary systematically with due permission from Competent Authority.

Table 1-1: Approvals / Permissions from Concerned Authorities

Item	Permission / Approval Detalls	Annex No.
LOI	The Letter of Intent has been Issued to $\overline{M / s}$ Xandy Mine and Minerals, R/o GH-18, Celebrity Homes, Palam Vihar, Gurgaon by Director Mines \& Geology, State of Haryana Govt., Chandigarh vide memo no. Gig/ HY/ E2612/ 3912; Panchkula Dated 28-08-2014 for Mining of Miner Mineral (Dolomite and Stone) in Donkhera village over an area of 4.80 hectares in Nangal Chaudhary Tehsil of District Mahendragarh, Haryana for a period of 51 years.	Annex 1.1
Approved Mining Plan	As per sub-rule 8 of rule 70 of Haryana Minor Mineral Concession, Stocking, Transportation of Minerals \& Presentation of Illegal Mining Rule, 2012, the mining plan was approved vide memo no. DMG/ HY/ MP/ DONEKHEDA/ Dolomite/2022/ 2736-2739 Panchkula Dated 19.05.2023.	Annex 1.2
Cluster Letter	Department of Mines and Geology, Narnaul confirms one more mine (M/s Stone Field) is available within 500 m , fadius from lease for form cluster vide letter Memo No./ 1794 dated 01.06.2023.	Annex 1.3

PROPONENT
 consultant

M/S XANDY MINES AND MINERALS
PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed

Item	Permission / Approval Details	Annex No.
Forest NOC	The lease area land is owned by gram panchayat as no forest land involved in lease area. The NOC has been issued from forest department of Mahendragarh vide no. 6397 Dated: 20/03/2014. The copy of same is enclosed.	Annex 1.4
Previous EC Letter	As this is an old case which has been got the environment clearance from SEIAA, Haryana under category B2 vide no. SEIAA/HR/2016/465 dated 27.06.2016. The same has been enclosed.	Annex 1.5
CTE	As per EC condition, the consent of establish (CTE) was issued on 06.05.2014 vide no. HSPCB/Consent/2811914MACTE1039375 which is enclosed.	Annex 1.6
CTO	As per EC condition, the consent of operate (CTO) was issued on 14.09.2022 vide no. HSPCB/Consent/313100422MACTO26737457 which is valid upto 30.09 .2024 . The same is enclosed.	Annex 1.7
EC Compliance	As EC condition, the compliance report was submitted to concerned department timely which is enclosed.	Annex 1.8
Lab Report	As per EC condition, the lab report was submitted to concerned department with EC compliance report timely. The same is enclosed.	Annex 1.9
Panchayat NOC	The NOC from Dokhera Gram Panchayat has been obtained vide dated 29.06.2023 for the mining oprations which is enclosed.	Annex 1.10
Approved DSR Report	District Survey Report (DSR) was approved by Department of Mines \& Geology, Narnaul on 26.06 .2023 which is enclosed.	Annex 1.11
Water Supply	Water will be supplied via hired private water tankers for dust suppression, plantation, and domestic use.	-
Electricity Supply	Electrical supply is available in all nearby villages. The permission will be taken from concerned department for the electricity use.	=

Source: Approved Mining Plan

S. No.	Parameters	Description
1.	Name of the project	Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine by M/s Xandy Mines and Mineral.
2.	Nature \& category of Mine	Non-Coal Mining Category 'B' of Activity $\mathbf{1}(\mathrm{a})$
3.	Project Proponent	M/s Xandy Mines and Mineral
4.	Khasra No.	109 Min
5.	Total Lease area	4.80 Ha (Gram Panchayat Land)
6 。	Location of the project	Village- Donkhera, Tehsil- Nangal Chaudhary, DistrictMahendragarh, Haryana
7.	Toposheet No.	G43E1 - Project Site G43D13, G43D14, G43E1 \& G43E2 - Study Area.
8.	Maximum Production Capaclty	3,25,000 MTPA (75,000 MTPA of Dolomite and 2,25,000 MTPA of Stone (Road Metal \& Masonry Stone))
9.	Geological Mineral Reserve	77,93,482 MT ($30,53,472$ MT of Stone \& 47,40,010 MT of Colomite)

PROPONENT CONSULTANT

M/S XANDY MINES AND MINERALS
PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

S. No.	Parameters	Description			
10.	Mineable Reserve	$\begin{aligned} & 24,11,900 \mathrm{MT} \\ & (18,28,340 \mathrm{MT} \end{aligned}$	Stone \& 5,83,5	560 MT of D	lomite)
	Geographical co-ordinates	Point	Longitude	- Latitude	
		1	$27^{\circ} 50^{\prime} 17.70^{\prime \prime} \mathrm{N}$		2'44.10"E
		2	$27^{\circ} 50^{\prime} 21.10^{\prime \prime} \mathrm{N}$		2'47.00"E
		3	$27^{\circ} 50^{\prime 24.30 " N}$		$2^{\prime} 46.50^{\prime \prime} \mathrm{E}$
		4	$27^{\circ} 50^{\prime} 26.20^{\prime \prime} \mathrm{N}$		2'48.90"E
		5	$27^{\circ} 50^{\prime} 25.40^{\prime \prime} \mathrm{N}$		2'48.90"E
		6	$27^{\circ} 50^{\prime} 26.10^{\prime \prime} \mathrm{N}$		2'51.50"E
		7	$27^{\circ} 50^{\prime} 28.70^{\prime \prime} \mathrm{N}$		2'51.50"E
		8	$27^{\circ} 50^{\prime} 29.80^{\prime \prime} \mathrm{N}$		2'53.00"E
		9	$27^{\circ} 50^{\prime} 31.20^{\prime \prime} \mathrm{N}$		$2^{\prime} 52.30^{\prime \prime} \mathrm{E}$
		10	$27^{\circ} 50^{\prime} 31.70^{\prime \prime} \mathrm{N}$		2'53.40"E
		11	$27^{\circ} 50^{\prime} 30.90^{\prime \prime} \mathrm{N}$		2'54.60'E
		12	$27^{\circ} 50 \cdot 31.70^{\prime \prime} \mathrm{N}$		2'55.50"E
		13	$27^{\circ} 50^{\prime} 34.30^{\prime \prime} \mathrm{N}$		2'56.70"E
		14	$27^{\circ} 50^{\prime} 34.30^{\prime \prime} \mathrm{N}$	76°	$2^{\prime} 57.20^{\prime \prime} \mathrm{E}$
		15	$27^{\circ} 50^{\prime} 31.70^{\prime \prime} \mathrm{N}$		$2^{\prime} 55.90^{\prime \prime} \mathrm{E}$
		16	$27^{\circ} 50^{\circ} 24.90^{\prime \prime} \mathrm{N}$	-760	2'53.50"E
		17	$27^{\circ} 50^{\prime} 16.50^{\prime \prime} \mathrm{N}$		$76^{\circ} 2^{\prime \prime} 46.60^{\prime \prime} \mathrm{E}$
11.	Name of Rivers/ Nallahs/ Tanks/ Spring/ Lakes etc	Description		Distance	Direction
		Sota Nadi		13.5	SE
		Kasaunti Nadi		2.4	ESE
				8.7	NE
		Dostpur Minor		3.8	NE
		Dantal Minor		7.5	ENE
		Shahbazpur Distributary		5.1	NNE
		Raipur Canal		7.6	SSW
		Nolpur Distributary		10.4	ENE
12.	Name of Reserve Forest(s), Wildlife Sanctuary/ National parks etc.	Baneti PF		3.5	SE
		PF		7.4	SE
		PF		9.2	SE
		Hasampur PF		8.7	S
		Gadrata PF		13.5	SSW
		PF		7.4	SW
		Patan PF		7.5	SW
		Kharjo PF		1.5	SW
		Kharjo PF		4.9	WSW
		Bhopiya PF		5.3	SSE
		Balupur PF		3.6	SSW
		Balupur PF		3.8	SSW
		Dokan PF		9.3	WNW
		PF		7.6	* NW
		RF		13.2	N

PROPONENT CONSULTANT

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and $2,50,000$ MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

S. No.	Parameters	Description
		RF 12.9 NNE
13.	Topography of ML area	The general slope of the land of southern most part of the district Mahendragarh is from south to north. The Krishnawati River which passes through the district originates from the hillocks of Sikar district df Rajasthan. This is a seasonal river which remain dry except during rainy days. Physiographically the district consists of flatnand level plain interrupted from place to place by clusters of sand dunes, isolated hillocks, and rocky ridges. A few isolated rocky ridges elevated sharply from the plain occur in the southernmost portion of the district. The lease area is consisting of hilly terrain. The highest point in the lease area is recorded to be 375 mRL in east side lease boundary and the lowest point recorded is 312 mRL bottom pit level. The lease area does not have any water body. There are dry nalas in which water flows during rains for a short duration, otherwise they remain dry for the rest of the months. The rainwater from these nalas drains either into local johars or in agriculture fields.
14.	Mining Method \& Technology	Proposed Method of Mining: The lease area is being worked since June 2016 i.e., after jetting the environmental clearance from designed authority. Further, it is proposed to continue systematic and scientific mining for excavation of Dolomite and road metal and masonry stone/building stone during the next plan pertiod of Mining Scheme. It was proposed in the last mining plan to take benches of $10 \times 10 \mathrm{~m}$ are proposed to be made. During all these years only dolomite production was made, and no building stone was reported to mined. At present fully mechanized method of mining of Dolomite by deploying heavy Earth moving machines and deep hole drilling and blasting by forming benches of $10 \times 10 \mathrm{~m}$ from top downward. Now it proposed to mine $3,25,000$ MT ($2,50,000 \mathrm{MT}$ of Stone $+75,000 \mathrm{MT}$ of Dolomite) per annum or $1083 \mathrm{MT} /$ day. The production targets for Dolomite as proposed the approved mining plan were followed. Necessary permission for mechanized mining under MMR 1961 from competent authority has already obtained. The same will continue in the next five-year plan also. The formation of benches shall be continued up to the ultimate pit limit after the drilling and blasting of the bench. The boulders shall be sized with the help of rock breaker, excavated, and loaded in the trucks/dumpers by hydraulic excavators. The mining operations witl continue as were done during the last five years.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

S. No.	Parameters	Description		
		It is proposed to be adopted mechanized opencast mining method for exploitation of the mineral. Drilling and blasting shail be required to dislodge the mineral. The mining method involves breaking the rocks with explosives, loading the material with excavators and haulage with dumpers.		
15.	Ultimate depth of Mining	92.0 m BGL		
16.	Ground water level	The ultimate depth of the mining will be 92.0 m at the end of plan period. The general water table around the lease area is at $80-100 \mathrm{~m}$ BGL.		
17.	GWT intersection	Mining will be done above ground water level. So, ground water table will not be intersected.		
18.	Drainage pattern/ water courses	The areal is mainly sloping west, north, and south direction. Mining shall be mainly below the general ground level with only one side of the pit having slope along hill and other side will remain open. Such situation does not warrant any water accumulation as natural drainage will be available from the other open side of the pit. However, as the mine progresses and mining continue below the general ground level as envisaged during lease period, the mining area will become a depression, which may warrant accumulation of water during rainy season. A scheme is proposed to prevent the accumulation of such water.		
19.	Water requirement \& source	The source of water is private water tankers. The breakup of water requirement is as follows:		
		S. No.	Description	Demand
		1	Drinking \& domestic	1.0
		2	Green Belt/Plantation	4.1
		3	Dust Suppression	5.3
			Total	10.3 KLD
20.	Cost of project	The capital cost for the project will be Rs. 10.85 Crores including proposed lease area and machinery will be hired on contract bases.		

Source: Approved Mining Plan
Table 1-3: $\quad 500 \mathrm{~m}$ Cluster Details of Proposed Mine

S. No.	Mine Detalls	Area (ha.)
1	M/s Xandy Mines and Minerals	4.80
2	M/s Stone Field	7.46
Total		

Source: - Mining Officer, Office of Mines \& geology Department, Narnaul vide Memo No. 1794 on 01.06.2023

1.2. Nature of the Project

Since The environment clearance was obtained under category B2 (Area $<5 \mathrm{Ha}$) vide letter No. SEIAA/HR/2016/465 dated 27.06 .2016 on the basis of approved mine plan. The EC as well as

```
PROPONENT
M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)
```

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and $2,50,000$ MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
mine plan were expired. Since the 5 years of first mining plan \& progressive mine closure plan ends on 26.06.2021. Therefore, a mining scheme is required to be prepared and got approved from DMG, Haryana as per the sub-rule 8 of rule 70 of Haryana Minor Mineral Concession, Stocking, Transportation of Minerals \& Prevention of Illegal Mining Rules, 2012 which was approved by concern department vide memo no. DMG/ HY/ MP/ DONEKHEDA/ Dolomite/2022/ 2736-2739 Panchkula Dated 19.05.2023.
The Ministry of Environment, Forest, and Climate Change (MoEF\&CC), Govt. of India through its notification of $14^{\text {th }}$ September 2006 and its subsequent amendment under the Environment (Protection) Act, 1986 classifies the projects under Cat. B1 due to cluster as per Anhex 1.3. This is a project of minor mineral.

1.2.1. Need for the Project and Its importance to the Country and or Region

The Dolomite is double carbonating of calcium and magnesium (Ca Mg) CO3 containing 54.25%, CaCO 3 and $45.65 \% \mathrm{MgCo3}$. The hardness varies between 3.5 to 4 and specific gravity 2.8 to 2.9 . Colour Gray, white, medium fine grained. Dolomite is mainly used for manufacturing of refractory and as a flux in iron and steel industry, also used for high magnesia lime and used as soil conditioner to neutralise the acidic soils. Dolomite can be used in manufacturing of papers, glass work, as a chemicals and fertilizers. Also used for making animal feed for animal.
Building stone available in the area are useful as road metal and masonry stone. This stone is having very good strength. The raw/lumps stone of the area is crushed in the hearby stone crushers. This material is finally used as road metal and for RCC material in building industry. State Government is also benefitted by the mining through royalty.

1.2.2. Demand-Supply Gap

Dolomite and Stone are an essential constituent for infrastructural development projects like road, dams, bridges, and building. It has high demand in region due to increase in industrial and other infrastructural activities.

1.2.3. Imports vs. Indigenous Production

In the current Dolomite and stone quarry business scenario, import and export is not envisaged. The dolomite and stone are most consumed in the nearby construction projects.

1.2.4. Export Possibility

Not applicable as the production will be consumed within local area as well as nearby industry.

1.2.5. Domestic/Exports Markets

Domestic demand is one of the chief reasons for the rapid growth of Dolomite and Stone business in India. Thus; domestic market for stone as building materials is well established and Dolomite as influx in iron \& steel industry and used for high magnesia lime and used as soil conditioner to neutralise the acidic solis.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

1.3. Location of the Project

The mine lease area is located at village Donkhera, Nangal Chaudhary Tehsil \& District Mahendragarh of State Haryana. The lease area is approachable from Dhotera Nizampur Road SH-37B Roads. Nearest railway station is Dabla which is 11.2 km in NW direction from the mine lease area. The lease falls under Survey of India Toposheet no. G43E1. Mahendragarh is about 47.0 kms in NNE direction of the lease area.

Figure 1.1: Location Map of Proposed Project

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
Figure 1.2: Co-Ordinates Map with 500 m Buffer from Proposed Site

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and $2,50,000$ MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
Figure 1.3: Base Map with $\mathbf{2 k m}$ Buffer Showing Site Features

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed

Figure 1.4: Google Map with 10 km Buffer from Proposed Site

1.4. Purpose of the Report

The purpose of the assessment is to ensure that decision makers consider the environmental irmpacts when deciding whether or not to proceed with a project. The International Association for Impact Assessment (IAIA) defines an environmental impact assessment as "the process of identifying, predicting, evaluating and mitigating the biophysical, social, and other relevant effects of development proposais prior to major decisions being taken and commitrnents made". EIA are unique in that they do not require adherence to a predetermined environmental outcome, but rather they require decision makers to account for environmental values in their decisions and to

```
PROPONENT M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
justify those decisions considering detailed environmental studies and public comments on the potential environmental impacts.
The Environmental Impact Assessment has been prepared to assess the current environmental scenario of the area and then based on the activities of the mining proposed, to carry out Environment Management Plan (EMP). This plan will identify and address the impacts, where these are adverse in nature, and thereafter design mitigative measures to manage such impacts in a manner as to conserve environment and ecology of the area. The EMP has been prepared with a view to ultimately ensure that the adverse impacts are minimized if these cannot be prevented altogether.

\subsection*{1.5. The Study}

This is the individual project as clarified in cluster mining certificate. In this context, Form-I and LOI along with approved Mining Plan has been submitted to Haryana State Environmental Impact Assessment Authority (Haryana SEIAA) on date 01.07 .2023 (online) and a request for issue of "Terms of Reference" (ToR). The standard ToR was issued by State Level Environment Impact Assessment Authority, Haryana vide File No. SEIAA/HR/2023/363 on dated 04.07.2023 which is enclosed as Annex 1.12. We have collected data for one season (pre-monsoon) i.e., from March to May 2023. The point-wise compliance of the standard ToR with additional points is given in Table 1.4.

Table 1-4: Pointwise Compliance of Terms of Reference
\begin{tabular}{|c|c|}
\hline Terms of Reference Issued by SEIAA, Haryana & Compliance \\
\hline 1) Year-wise production details since 1994 should be given, clearly stating the highest production achieved in any one year prior to 1994. It may also be categorically informed whether there had been any increase in production after the EIA Notification 1994 came into force, w.r.t. the highest production achieved prior to 1994. & Not applicable as this mine lease was got environment clearance under category B2 on 27.06.2016. The same is enclosed as Annex 1.5. \\
\hline 2) A copy of the document in support of the fact that the Proponent is the rightful lessee of the mine should be given. & The Letter of Intent has been issued to \(\mathrm{M} / \mathrm{s}\) Xandy Mine and Minerals, R/o GH-18, Celebrity Homes, Palam Vihar, Gurgaon by Director Mines \& Geology, State of Haryana Govt \({ }^{\text {, }}\) Chandigarh vide memo no. Glg/ HY/ E-2612/ 3912, Panchkula Dated 28-08-2014 for Mining of Miner Mineral (Dolomite and Stone) in Donkhera village over an area of 4.80 hectares in Nangal Chaudhary Tehsil of District Mahendragarh, Haryana for a period of 51 years. Enclosed as Annex 1.1. \\
\hline 3) All documents including approved mine plan, EIA and Public Hearing should be compatible with one another in terms of the mine lease area, production levels, waste generation and its management, mining & All documents including approved mine plan, EIA are compatible with one another in terms of the mine lease area, production levels, waste generation and its management, mining technology etc. and \\
\hline
\end{tabular}

PROPONENT M/S XANDY MINES AND MTNERALS
CONSULTANT PARIVESH ENVIRONBENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|l|}
\hline \begin{tabular}{l} 
Terms of Reference Issued by SEIAA, \\
Haryana
\end{tabular} \\
\begin{tabular}{l} 
technology etc. and should be in the name \\
of the lessee.
\end{tabular} \\
\hline 4) All corner coordinates of the mine lease \\
area, superimposed on a High-Resolution \\
Imagery/ toposheet, topographic sheet, \\
geomorphology, and geology of the area \\
should be provided. Such an Imagery of the \\
proposed area should clearly show the land \\
use and other ecological features of the \\
study area (core and buffer zone).
\end{tabular}
5) Information should be provided in Survey of India Toposheet in 1:50,000 scale indicating geological map of the area, geomorphology of landforms of the area, existing minerals and mining history of the area, important water bodies, streams and rivers and soil characteristics.
6) Details about the land proposed for mining activities should be given with information as to whether mining conforms to the land use policy of the State; land diversion for mining should have approval from State land use board or the concerned authority.
7) It should be clearly stated whether the proponent Company has a well laid down Environment Policy approved by its Board of Directors? If so, it may be spelt out in the EIA Report with description of the prescribed operating process/procedures to bring into focus any infringement/deviation/ violation of the environmental or forest norms/ conditions? The hierarchical system or administrative order of the Company to deal with the environmental issues and for ensuring compliance with the EC conditions may also be given. The system of reporting of non-compliances / violations of environmental norms to the Board of Directors of the Company and/or shareholders or stakeholders at large, may also be detailed in the EIA Report.

\section*{Compliance}
should be in the name of the \(M / s\) Xandy Mines and Minerals. This is the draft report which will be submitted to PCB for public hearing.
All the maps are superimposed on toposheet no.- H43X8 of SOI for project site and toposheet no.- G43D13, G43D14, G43E1 \& G43E2 of SOI for study area of 10 km . Coordinates of lease area are given in Table 1.2 and marked in figure 1.2. Other maps as land use were also prepared and given in report.
All the maps are prepared in SOI toposheet in \(1: 50,000\) scale indicating the feature of site and surrounding. Study area map is enclosed as figure 4.1 and digitized land-use of study area is given in figure 3.3 of chapter 3.

This is the mineral of Dolomite and Road Metal \& Masonry Stone mine project from Donkhera Dolomite Mine with production capacity \(3,25,000\) MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of \$tone (Road Metal \& Masonry Stone)) over an area of 4.80 ha (gram panchayat land) located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed. No diversion is proposed.
The Safety, Health and Environmental (SHE) policy has been developed which will be accessible to all at site and to other stakeholders. The following key principles will be demonstrated:
\(\checkmark\) Integrate sound environmental management practices in all our activities by forming an Environmental Management Cell.
\(\checkmark\) Progressively adopt cleaner and energy efficient technologies.
\(\checkmark\) Conduct our operations in an environmentally responsible manner to comply with applicable legal and other requirements related to its environmental aspects and strive to go beyond.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|}
\hline Terms of Reference Issued by SEIAA, \\
Haryana
\end{tabular}
9) The study area will comprise of 10 km zone around the mine lease from lease periphery and the data contained in the EIA such as waste generation etc. should be for the life of the mine / lease period.

\section*{Compliance}
\(\checkmark\) Biodiversity in and around our working areas and mines will be repeated and progressively enhanced for the benefit of nature.
\(\checkmark\) Strive for continual improvement in our environmental performance by setting challenging targets, measuring progress, taking corrective action, and communicating environmental information to all concerned.
\(\checkmark\) Enhance environmental awareness amongst employees working for and on behalf of us and the general populace around working areas and mines.
\(\checkmark\) Encourage our business associates to adopt similar approach for environmental protection.
Apart from this, EMC has been framed in hierarchical system to ensuring the implementation and adaptions of norms and EC conditions. Figure 6.1 is showing the hierarchy of environmental management cell.
At present fully mechanized method of mining of Dolomite by deploying heavy Earth moving machines and deep hole drilling and blasting by forming benches of \(10 \times 10 \mathrm{~m}\) from top downward. Now it proposed to mine \(3,25,000\) MT ( \(2,50,000\) MT of Stone \(+75,000\) MT of Dolomite) per annum or \(1083 \mathrm{MT} /\) day. The production targets for Dolomite as proposed the approved mining plan were followed.
The detailed study has been done and incorporated in chapter 7 of report.
The study area will comprise of 10 km zone around the mine lease from lease periphery. The maps have been given in chapter 1 \& 4 marking study area and features. There was only a little quantity of soil was generated during the plan period which was used for reclamation/plantation purpose.
In addition to it, entire mineral produced was saleable. Therefore, no overburden/waste was stacked during the plan period. No waste will be generated from process except municipal waste.

PROPONENT CONSULTANT

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|c|}
\hline Terms of Reference Issued by SEIAA, Haryana & Compliance \\
\hline 10)Land use of the study rea delineating forest area, agricultural land, grazing land, wildife sanctuary, national park, migratory routes of fauna, water bodies, human settlements and other ecological features should be indicated. Land use plan of the mine lease area should be prepared to encompass preoperational, operational and post operational phases and submitted. Impact, if any, of change of land use should be given. & \begin{tabular}{l}
FCC imagery (Digital data) was used for interpretation for the relevant land use classes. On screen visual interpretation coupled with supervised image classification techniques are used to prepare the land use classification. \\
\(\checkmark\) Digitization of the study area ( 10 km radius from the plant site) from the Survey of India Toposheet maps. \\
\(\checkmark\) In the present study the Landsat satellite image with Toposheet no. G43D13, G43D14, G43E1 \& G43E2 have been procured and interpreted using the ERDAS imaging software adopting the necessary interpretation techniques. \\
\(\checkmark\) Satellite data interpretation and vectorization of the resulting units. \\
\(\checkmark\) Field checking and ground truth validation. \\
\(\checkmark\) Composition of final LU/LC map. \\
Study area is mainly covering iagricultural land ( \(44.7 \%\) ) by following open scrub area (35.5\%) \& forest land (12.1\%) of the total study area. For study area land+use details, refer section 3.3 .2 of report and project site land-use at different stage is given in Table 2.13 of report.
\end{tabular} \\
\hline 11)Details of the land for any Over Burden Dumps outside the mine lease, such as extent of land area, distance from mine lease, its land use, R\&R issues, if any, should be given. & No overburden or dump will be on project site. Entire mineral produced was saleable. Therefore, no overburden/waste was stacked during the plan period. \\
\hline 12)A Certificate from the Competent Authority in the State Forest Department should be provided, confirming the involvement of forest land, if any, in the project area. In the event of any contrary claim by the Project Proponent regarding the status of forests, the site may be inspected by the State Forest Department along with the Regional Office of the Ministry to ascertain the status of forests, based on which, the Certificate in this regard as mentioned above be issued. In all such cases, it would be desirable for & The lease area land is owned by gram panchayat as no forest land involved in lease area. The NOC has been issued from forest department of Mahendragarh vide no. 6397 Dated: 20/03/2014. The copy of same is enclosed. No forest land is involved in project site. NOCs are enclosed as Annex 1.4. \\
\hline
\end{tabular}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|c|}
\hline Terms of Reference Issued by SEIAA, Haryana & Compliance \\
\hline \multicolumn{2}{|l|}{Department to assist the Expert Appraisal Committees.} \\
\hline 13) Status of forestry clearance for the brokenup area and virgin forestland involved in the Project including deposition of net present value (NPV) and compensatory afforestation (CA) should be indicated. A copy of the forestry clearance should also be furnished. & Not applicable as no forest land involved. NOCs enclosed as Annex 1.4. \\
\hline 14) Implementation status of recognition of forest rights under the Scheduled Tribes and other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006 should be indicated. & Not applicable. \\
\hline 15) The vegetation in the RF / PF areas in the study area, with necessary details, should be given. & No applicable as There is no wildlife sanctuary, elephant corridor, tiger reserve or any sensitive receptor within study area ( 10 km ) from lease area. Please refer, Table 3.23 and Figure 3.16. \\
\hline 16) A study shall be got done to ascertain the impact of the Mining Project on wildlife of the study area and details furnished. Impact of the project on the wildlife in the surrounding and any other protected area and accordingly, detailed mitigative measures required, should be worked out with cost implications, and submitted. & \begin{tabular}{l}
Ecology assessment was earried in and around the lease area to study the wildlife of the area. 86 plant species were recorded with 35 tree species, 11 shrub species, 25 herb species and 15 species of grasses and climbers. All these species belong to 37 families in which Fabaceae stands with highest number of species i.e., 13 followed by Poaceae i.e., 11 species. Other families were found with 1 to 4 species under them. 60 fauna species were recorded with 12 mammal species, 29 avifauna species, 8 reptile species, 5 amphibian species and 6 species of butterfly. \\
Detailed are given in section 3.9 of chapter 3.
\end{tabular} \\
\hline 17)Location of National Parks, Sanctuaries, Biosphere Reserves, Wildlife Corridors, Ramsar site Tiger/ Elephant Reserves/ (existing as well as proposed), if any, within 10 km of the mine lease should be clearly indicated, supported by a location map duly authenticated by Chief Wildlife Warden. Necessary clearance, as may be applicable to such projects due to proximity of the ecologically sensitive areas as mentioned above, should be obtained from the Standing Committee of National Board of Wildlife and copy furnished. & There is no wildife sanctuary, elephant corridor, tiger reserve or any sensitive receptor within study area ( 10 km ) from lease area. Please refer, Table 3.23 and Figure 3.16. The NOC has been issued from forest department of Mahendragarh vide no. 6397 Dated: 20/03/2014. The copy of same is enclosed. No forest land is involved in project site. NOCs are enclosed as Annex 1.4. \\
\hline
\end{tabular}

PROPONENT M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|l|}
\hline \begin{tabular}{c} 
Terms of Reference Issued by SEIAA, \\
Haryana
\end{tabular} \\
\hline 18)A detailed biological study of the study area \\
[core zone and buffer zone ( 10 km radius of \\
the periphery of the mine lease)] shall be \\
carried out. Details of fiora and fauna, \\
endangered, endemic and RET Species duly \\
authenticated, separately for core and buffer \\
zone should be furnished based on such \\
primary field survey, clearly indicating the \\
Schedule of the fauna present. In case of \\
any scheduled- I fauna found in the study \\
area, the necessary plan along with \\
budgetary provisions for their conservation \\
should be prepared in consultation with \\
State Forest and Wildlife Department and \\
details furnished. Necessary allocation of \\
funds for implementing the same should be \\
made as part of the project cost.
\end{tabular}
19)Proximity to Areas declared as 'Critically Polluted' or the Project areas likely to come under the 'Aravali Range', (attracting court restrictions for mining operations), should also be indicated and where so required, clearance certifications from the prescribed Authorities, such as the SPCB or State Mining Dept. Should be secured and furnished to the effect that the proposed mining activities could be considered.
20)Similarly, for coastal Projects, A CRZ map duly authenticated by one of the authorized agencies demarcating LTL. HTL, CRZ area, location of the mine lease w.r.t CRZ, coastal features such as mangroves, if any, should be furnished. (Note: The Mining Projects falling under CRZ would also need to obtain approval of the concerned Coastal Zone Management Authority).
21)R\&R Plan/ compensation detalls for the Project Affected People (PAP) should be furnished. While preparing the R\&R Plan, the relevant State/National Rehabilitation \& Resettlement Policy should be kept in view. In respect of SCs /STs and other weaker sections of the society in the study area, a need-based sample survey, familywise, should be undertaken to assess their requirements, and action programmes prepared and submitted accordingly,

Ecology assessment was carried in and around the lease area to study the wildlife of the area. 86 plant species were recorded with 35 tree species, 11 shrub species, 25 herb species and 15 species of grasses and climbers. All these species belong to 37 families in which Fabaceae stands with highest number of species i.e., 13 followed by Poaceae i.e., 11 species. Other families were found with 1 to 4 species under them. 60 fauna species were recorded with 12 mammal species, 29 avifauna species, 8 reptile species, 5 amphibian species and 6 species of butterfly.
Detailed are given in section 3.9 of chapter 3.

Not applicable as project is not part of any declared critically polluted area.

Not applicable.

The project site is free from any habitat, the lease issued in name of proponent and the site is part of gram panchayat land, So, there is no Project Affected Perspn (PAP) by the proposed mining activities. Hence, there is no need of R\&R Plan. Please refer Annex 1.1.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|l|}
\hline \begin{tabular}{c} 
Terms of Reference Issued by SEIAA, \\
Haryana
\end{tabular} \\
\hline integrating the sectoral programmes of line \\
departments of the State Government. It \\
may be clearly brought out whether the \\
village(s) located in the mine lease area will \\
be shifted or not. The issues relating to \\
shifting of village(s) including their R\&R and \\
socio-economic aspects should be discussed \\
in the Report. \\
\hline 22)
\end{tabular}
22) One season (non-monsoon) [i.e., MarchMay (Summer Season); October-December (post monsoon season); DecemberFebruary (winter season)] primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Site-specific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given.

Baseline data as collected in core as well as buffer zone of 10 km from the project boundary during pre-monsoon season (March to May 2023) in accordance with the guidelines for preparation of EIA.
\(\checkmark\) A meteorological station was collected hourly for wind speed, wind direction, dry and wet bulb temperature, relative humidity, and general weather conditions were recorded throughout the study period in an automated data logger.
\(\checkmark\) To assess the Ambient Air Quality (AAQ), samples of ambient air were collected by installation of Respirable Dust Sampler and Fine Particulate Sampler at different locations from the study area during study period and analysed for primary air pollutants to work out the existing status of air quality.
\(\checkmark\) Groundwater samples were collected during the study period from the existing hand-pumps and bore wells, while surface water was collected from nearest pond, rivers, and lakes. The samples were analysed for parameters necessary to determine water quality (based on IS: 10500: 2012, IS 3025 and APHA \(23^{\text {rd }}\) Edition, 2017 for ground water, water quality criteria classified by \(C P C B\) for surface water) and those which are relevant from the point of view of environmental impact of the proposed site.
\(\checkmark\) Soil samples were collected and analysed for relevant physical and chemical characteristics to assess the impact of the proposed plant on soll.

PROPONENT
CONSULTANT

District State Haryana proposed


DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Terms of Reference Issued by SEIAA \\
Haryana
\end{tabular} & \multicolumn{1}{c|}{ Compliance } \\
\hline
\end{tabular}

\footnotetext{
PROPONENT
CONSULTANT
}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|c|}
\hline Terms of Reference Issued by SEIAA, Haryana & mpliance \\
\hline 31)A time bound Progressive Greenbelt Development Plan shall be prepared in a tabular form (indicating the linear and quantitative coverage, plant species and time frame) and submitted, keeping in mind, the same will have to be executed up front on commencement of the Project. Phase-wise plan of plantation and compensatory afforestation should be charted clearly indicating the area to be covered under plantation and the species to be planted. The details of plantation already done should be given. The plant species selected for green belt should have greater ecological value and should be of good utility value to the local population with emphasis on local and native species and the species which are tolerant to pollution. & As this is a mining project having 4.80 ha quarry lease area. About 1.584 ha area will be used for greenbelt. Plantation will be done in first two years for 2047 trees/ year (Within lease area- 1980 Plants \& Haul Road, Approach Road - 67 Plants) \& its maintenance will be done in next 3 years. Remaining trees will be planted in nearby villages road or schools and others. The gap plants also will be ensured to complete the numbers of total plants. Neem, Peepal, Ber, Shisham, Sirish, Babool, Gulmohar and other local fruity plants plants will be planted along the haul roads, along the riverbanks, schools, public building, and other social forestry programme. For details, refer to section 10.7 of chapter 10. \\
\hline 32) Impact on local transport infrastructure due to the Project should be indicated. Projected increase in truck traffic as a result of the Project in the present road network (including those outside the Project area) should be worked out, indicating whether it is capable of handling the incremental load. Arrangement for improving the infrastructure, if contemplated (including action to be taken by other agencies such as State Government) should be covered. Project Proponent shall conduct Impact of Transportation study as per Indian Road Congress Guidelines. & During proposed mining, there will be an increase in traffic flow as one location was identified for traffic survey location was on Nangal Chaudhary road. Total \(261 \mathrm{PCU} /\) day will increase in the existing traffic due to this mining activity. After commencement of the project, the projected traffic represents conditions of free flow (LOS Category " \(A\) ") and represents conditions of free flow (LOS Category "A") in 2030 also which is convenience at the location. From the above table, it can be concluded that the incremental load on the carrying capacity of the concerned road is not likely to have any adverse effect or impact. \\
\hline 33) Details of the onsite shelter and facilities to be provided to the mine workers should be included in the EIA Report. & There is not any provision of adequate infrastructure and other facilities will be provided to mine workers within the mine lease area. Only temporary sheiter will be provided to the workers. \\
\hline 34)Conceptual post mining land use and Reclamation and Restoration of mined out areas (with plans and with adequate number of sections) should be given in the EIA report. & There was only a little quantity of soil was generated during the plan period which was used for reclamation/plantation purpose. In addition to it, entire mineral produced was saleable. Therefore, no overburden/waste was stacked during the plan period. No rejects generated during the plan period. Further about \(2 \%\) mineral production will come under the category of \\
\hline
\end{tabular}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite MIne with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

rejects as there are thin, soft layers of calc schist within the bed rock which are not fit as road metal/crushed material. Please refer Figure 2.6 \& Table 2.13 of chapter 2.
Open cast method involves dust generation by excavation, loading and transportation of mineral. At site, during excavation and loading activity, dust is main pollutant which affects the health of workers whereas environmental and climatic conditions also generate the health problems. Occupational health hazard has been identified and risk matrix was developed. For details, refer to section 7.3 .5 \& Table 7.3 of chapter 7.
Following health related hazards were identified in open cast mining operations to the workers:
a. Light: The workers may be exposed to the risk of poor illumination or excessive brightness. The effects are eye strain, headache, eye pain and lachrymation, congestion around the cornea and eye fatigue. In the present case, the mining activity is done during daytime only.
b. Heat and Humidity: The most common physical hazard is heat. The direct effects of heat exposure are burns, heat exhaustion, heat stroke and heat cramps; the indirect effects are decreased efficiency, increased fatigue, and enhanced accident rates. Heat and humidity are encountered in hot and humid condition when temperatures and air temperatures increase in summer up to 46.10 C or above in the riverbed mining area.
c. Eye Irritation: - During the high windy days in summer the dust could be the problems for eyes like itching and watering of eyes.
d. Respiratory Problems: Large amounts of dust in the air can be a health hazard, exacerbating respiratory disorders such as asthma and irritating the lungs and bronchial passages.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|c|}
\hline Terms of Reference Issued by SEIAA, Haryana & Compliance \\
\hline & e. Noise Induced Hearing Loss: Machinery is the main source of noise pollution at the mine site. Occupational health hazard has been identified and risk matrix was developed. For details, refer to section 7.3.7 of chapter 7. \\
\hline 37) Measures of socio-economic significance and influence to the local community proposed to be provided by the Project Proponent should be indicated. As far as possible, quantitative dimensions may be given with time frames for implementation. & \begin{tabular}{l}
The broad activities proposed under ESR initiative along with financial implications and year wise allocation of funds is shown in Table 8.2 \& 8.3 of chapter 8. The salient features of the programme are as follows: \\
\(\checkmark\) Social welfare programs like provision of medical facilities educational facilities, water supply for the employees as well as for nearby villagers will be taken. \\
\(\checkmark\) A well laid plan for employment of the local people has been prepared by giving priority to local people. \\
Supplementing Govt. efforts in health monitoring camps, social welfare, and various awareness programs among the rural population. \\
\(\checkmark\) Assisting social plantation program. \\
\(\checkmark\) Adoption of villages for general development. \\
\(\checkmark\) Supply of water to village nearby villages. \\
\(\checkmark\) Development of facilities within villages like roads, etc.
\end{tabular} \\
\hline 38) Detailed environmental management plan (EMP) to mitigate the environmental impacts which, should inter-alia include the impacts of change of land use, loss of agricultural and grazing land, if any, occupational health impacts besides other impacts specific to the proposed Project. & The environmental management must be integrated into the process of mine planning so that ecological balance of the area is maintained, and adverse effects are minimized. An Environmental Management Plan (EMP) is a site-specific plan developed to ensure that the project is implemented in an environmentally sustainable manner. An effective EMP ensures the application of best practice environment management to a project. For details, refer to chapter 10 of report. \\
\hline 39)Public Hearing points raised and commitment of the Project Proponent on the same along with time bound Action Plan with budgetary provisions to implement the same & This is the draft EIA report. As per the conditions of the ToR and the EIA Notification 2006 and its amendment, a Public Hearing will be conducted by Haryana \\
\hline
\end{tabular}

PROPONENT
CONSULTANT

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|c|}
\hline Terms of Reference Issued by SEIAA, Haryana & Compliance \\
\hline should be provided and also incorporated in the final EIA/EMP Report of the Project. & State Pollution Control Board at Mine Site as per the provisions of EIA Notification, S.O. 1533 dated 14.09.2006 and its amendment for Environmental Clearance of Mine Lease. \\
\hline 40) Details of litigation pending against the project, if any, with direction /order passed by any Court of Law against the Project should be given. & No litigation identified. \\
\hline 41) The cost of the Project (capital cost and recurring cost) as well as the cost towards implementation of EMP should be clearly spelt out. & The detailed activity-wise has been calculated which are INR 14.0 Lakhs as a Capital Cost and INR 4.80 Lakhs per annum as a Recurring cost, respectively. For details, refer to section 10.9 of report. \\
\hline 42)A Disaster management Plan shall be prepared and included in the EIA/EMP Report. & \begin{tabular}{l}
The DMP has been prepared based on the Risk Assessment and related findings covered in the report. \\
The objectives of DMP are to describe the company's emergency preparedness, organization, the resource availability, and response actions applicable to deal with various types of situations that can occur at mines in the shortest possible time. For details, refer to section 7.4 of report.
\end{tabular} \\
\hline 43)Benefits of the Project if the Project is implemented should be spelt out. The benefits of the Project shall clearly indicate environmental, social, economic \({ }_{r}\) employment potential, etc. & The execution of the project brings overall improvement in the locality, neighbourhood, and the State by bringing up to industry, roads, infrastructure sectors and employment generation at local level. Hence it will be helpful for the economic growth and support to enhance quality of life through employment. For details, refer to chapter 8 of report. \\
\hline 44)Besides the above, the below mentioned general points are also to be followed: & - \\
\hline a) All documents to be properly referenced with index and continuous page numbering. & Complied. \\
\hline b) Where data are presented in the Report especially in Tables, the period in which the data were collected, and the sources should be indicated. & Complied. \\
\hline c) Project Proponent shall enclose all the analysis/ testing reports of water, air, soil, noise etc. using the MoEF\&CC/ NABL accredited laboratories. All the original analysis/ testing reports should & Complied, Annexure 3.2 \\
\hline
\end{tabular}

PROPONENT CONSULTANT

M/S XANDY MINES AND MINERALS
PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
 an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Terms of Reference Issued by SEIAA, \\
Haryana
\end{tabular} & Compliance \\
\hline \begin{tabular}{l} 
dumps, if any, clearly showing the land \\
features of the adjoining area.
\end{tabular} & \\
\hline
\end{tabular}

Source: Terms of Reference issued by SEIAA, Haryana

\subsection*{1.5.1. Scope of the Study}

The Scope and objective of the study includes following issues:
> Understanding the basic project activities and make a detailed review of policy and regulations.
\(>\) To study and analysis, the anticipated impacts of the proposed project on overall baseline environmental and socioeconomic conditions in its surrounding study area.
\(>\) To identify environmental sensitive features within the study area and places of architectural and cultural importance, if any, and its safeguarding.
\(>\) To recommend project specific appropriate preventive and mitigative measures to minimize pollution, environmental and social disturbances during entire life-cycle period of the project.
\(>\) To adopt suitable environmental action plans and management systems, to implement and monitor the appropriate mitigative measures.
Field studies for the project were conducted for the pre-monsoon season (March to May 2023) to determine the existing conditions of various environmental attributes as outlined in Table 1.4.

Table 1-5: Environmental Attributes and Frequency of Monitoring
\begin{tabular}{|c|c|c|c|}
\hline S. No. & Attributes & Parameters & Frequency \\
\hline 1 & Ambient Air Quality & \[
\begin{gathered}
\mathrm{PM}_{10}, \mathrm{PM}_{2.5,} \mathrm{SO}_{2}, \mathrm{NO}_{\times} \& \\
\mathrm{CO} \\
\hline
\end{gathered}
\] & Twice a week for one season as per CPCB guidelines at 7 locations. \\
\hline 2 & Meteorology & Wind speed and direction, temperature, relative humidity \& rainfall. & Near to project site at one location for one season continue hourly recording as per norms. \\
\hline 3 & Water quality & Physical, Chemical and Bacteriological parameters & Once in a season (Surface Water at 4 \& Ground Water 5 Locations) \\
\hline 4 & Ecology & Existing terrestrial and aquatic flora and fauna within 10 km radius circle. & Primary Inventorization and Secondary data was collected from the forest department. \\
\hline 5 & Noise levels & Noise levels in dB(A) & Once in a season (24 hours) at 7 locations. \\
\hline 6 & Soil
Characteristics & Physico-chemical soil quality & Once during study period at 05 locations. \\
\hline 7 & Land use & Land use classification for different categories & Based on Toposheets (SOI) and Satellite imagery. \\
\hline 8 & Socioeconomic Pattern & Demographic and Working Status & Based on Census of India, 2011 and primary consultation. \\
\hline 9 & Hydrology & Drainage Pattem and nature of streams & Based on data collected from secondary sources like Survey of India \\
\hline
\end{tabular}

PROPONENT
CONSULTANT

M/S XÁNDY MINES AND MINERALS
PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|c|c|c|}
\hline S. No. & Attributes & Parameters & Frequency \\
\hline & & & \begin{tabular}{c} 
Maps, Hydrology Atlas of India, CGWB \\
etc.
\end{tabular} \\
\hline 10 & Risk & \begin{tabular}{c} 
Identification of areas \\
assessment \\
and Disaster \\
Management
\end{tabular} & \begin{tabular}{c} 
(he disaster can occur \\
by fires and release of \\
toxic substances
\end{tabular}
\end{tabular} \begin{tabular}{c}
\begin{tabular}{c} 
Site specific Hazard Identification and \\
Risk assessment was done initially (As \\
and when there is change in stored \\
quantity of hazardous materials or \\
process at site).
\end{tabular} \\
\hline
\end{tabular}

Source: Guidelines of Central Pollution Control Board, New Delhi

\subsection*{1.5.2. Methodology of the Study}

The Environment Impact Assessment study was carried out as given in TOR which includes Identification, assessment, Quantitative Evaluation and Prediction of possible impacts. To minimize impact due to the proposed project on various environmental components, an impact identification matrix has been prepared, while the assessment of impacts has been based on mathematical models and/or scientific knowledge and judgment.
\(>\) Existing environmental status of the environment components was assessed. Identification and quantification of significant impacts of the proposed project on these environment components was carried out. The work carried is briefly reported below and has been elaborated in subsequent chapters.
\(>\) Predominant wind direction expected during the period of baseline monitoring in the study area as recorded by India Meteorological Department.
> Topography and location of surface water bodies like ponds, canals, and rivers.
\(>\) Location of villages/towns/sensitive areas.
\(>\) Identified pollution pocket, if any, within the study area.
\(>\) Accessibility, power availability and security of monitoring equipment.
\(>\) Areas which represent baseline conditions; and
\(>\) Collection, collation, and analysis of baseline data for various environmental attributes.

\subsection*{1.6. Environment Clearance Process}

Environmental clearance of any new project or expansion of existing projects is now done as per the notification of the Ministry of Environment and Forest \& Climate Change (MoEF\&CC), Govt. of India dated \(14^{\text {th }}\) September 2006 and subsequently amended. This notification requires prior environmental clearance of all projects from competent central govt. or state govt, authorities, as may be the case. The projects are further classified into Category ' A ' or Category ' B ' projects based on spatial extent of potential impacts on human health, natural and man-made resources. Category ' \(A\) ' projects require prior clearance by the MoEF\&CC, Govt. of India while the Category ' B ' projects must get clearance from the State Level Environment Impact Assessment Authority (SEIAA), constituted by the Central Government for this purpose. The environment clearance procedure for new projects requires maximum of four stages all of which may not be applicable to all the projects. The process of environmental clearance for the proposed project is shown in the schematic diagram below given as Figure 1.5.
* Figure 1.5: Schematic Diagram for Environmental Clearances Process

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed


These four stages are as follows:
Stage 1- Screening: It refers to the definite assignment of environmental category to projects or activities. In case of Category 'B' projects scrutiny of application at State level to categorize project in 'B1' or 'B2' is done. The 'B2' projects do not require EIA Reports.
Stage 2 - Scoping: It refers to the process where EAC or SEAC determines detailed and comprehensive TOR for the EIA report and can also include site visits by the committee if required. But this process excludes construction projects such as township/ commercial complex / housing complex, etc.

Stage 3w Public Consultation: It refers to the process by which the concerns and views of local people and other stakeholders are ascertained and taken into consideration regarding the project. The Public Consultation takes part in two steps: Public Hearing and written responses.
Stage 4- Appraisal: This refers to detailed scrutiny of the application and EIA report to make categorical recommendations to the regulatory authority.

\subsection*{1.7. Legislative \& Regulatory Framework}

The environmental regulations, legislation as and policy guidelines and control that may impact the project are the responsibility of a variety of Government agencies. The principal environmental regulatory agency in India is the Ministry of Environment and Forest \& Climate Change (MOEF\&CC), Delhi. MOEF\&CC formulates environmental policies and accords environmental clearance for different projects. The relevant standards, which are of significance to the proposed project, are discussed in the section below.

Table 1-6: Key Environmental Legislation
\begin{tabular}{|c|c|c|}
\hline Rules / Act & Scope and Objectives & Applicable Agencies \\
\hline Water (Prevention and Control of Pollution) Act 1974 and Amendment Act, 2014. & To provide for prevention \& control of water poliution and enhancing water quality & Central and State Pollution Control Boards \\
\hline The Air (Prevention and Control of Pollution) Act, 1981 & To provide for the prevention and control of air pollution. & CPCB \& SPCB \\
\hline \begin{tabular}{lll}
\hline \begin{tabular}{l} 
Forest \\
Forest \\
Fonservation Act \\
2003
\end{tabular} & (Conservation) & Rules, \\
\hline
\end{tabular} & To halt rapid deforestation \& resulting environment degradation. & GoI. \\
\hline Environment Protection Act
1986, Amendments 1993. & To provide for the protection and improvement of environment. & Gol, MoEF\&CC. \\
\hline Noise Pollution (Regulation and control) (Amendment) Rules, 2010 & To control \& take measures for abatement of noise and ensure that level does not cross standard. & GoI, Nodal Agencies of MoEF\&CC \& State Govt. \\
\hline Hazardous and Other Wastes (Management\& Transboundary Movement) Amendment Rules, 2019 & To the adequate handling of hazardous materials or wastes. & Central Government, Nodal Agencies MoEF\&CC, CPCB \\
\hline Solid Waste Management Rules
2016 & To regulate the management and handling of the municipal or domestic solid wastes & CPCB, SPCB, State Govt. and Municipal Authority \\
\hline
\end{tabular}

\subsection*{1.8. Report Structure}

The overall contents of the EIA report have been prepared as per the generic structure (Appendix III) of EIA Notification issued by Ministry of Environment \& Forests and Climate Change (MOEF\&CC), Govt. of India on \(14^{\text {th }}\) September 2006 and subsequent amendments. The report consists of eleven chapters. The content of the chapters is briefly described in this section.
Chapter-1 Introduction: This chapter contains the general information on the mining of minerals, major sources of environmental impacts in respect of mining projects and details of environmental clearance process.
Chapter-2 Project Description: In this chapter the proponent should also furnish detalled description of the proposed project, such as the type of the project, need for the project, project location, layout, project activities during construction and operational phases, capacity of the project, project operation i.e., land availability, utilities (power and water supply) and infrastructure facilities such as roads, railways, housing, and other requirements. If the project

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera village, Nangai Chaudhary Tehsil, Mahendragarh District State Haryana proposed
site is near a sensitive area, it is to be mentioned clearly why an alternative site could not be considered. The project implementation schedule estimated cost of development as well as operation etc. should be also included.
Chapter-3 Description of the Environment: This chapter should cover baseline data in the project area and study area.
Chapter-4 Anticipated Environmental Impacts Assessment \& Mitigation Measures: This chapter describes the anticipated impacts on the environment and mitigation measures. The method of assessment of impacts including studies carried out, modelling techniques adopted to assess the impacts where pertinent should be elaborated in this chapter. It should give the details of the impacts on the baseline parameters, both during the construction and operational phases and suggests the mitigation measures to be implemented by the proponent.
Chapter-5 Analysis of Alternatives (Technology \& Site): This chapter gives details of various alternatives both in respect of location of site and technologies to be deployed in case the initial scoping exercise considers such a need.
Chapter-6 Environment Monitoring Program: This chapter should cover the planned environmental monitoring program. It should also include the technical aspects of monitoring the effectiveness of mitigation measures.
Chapter-7 Additional Studies: This chapter should cover the details of the additional studies required in addition to those specified in the ToR and which are necessary to cater to more specific issues applicable to the project.
Chapter-8 Project Benefits: This chapter should cover the benefits accruing to the locality, neighbourhood, region, and nation. It should bring out details of benefits by way of improvements in the physical infrastructure, social infrastructure, employment potential and other tangible benefits.
Chapter-9 Environmental Cost Benefit Analysis: This chapter should cover on Environmental Cost Benefit Analysis of the project.
Chapter-10 Environmental Management Plan: This chapter should comprehensively present the Environmental Management Plan (EMP), which includes the administrative and technical setup, summary matrix of EMP, the cost involved to implement the EMP, both during the construction and operational phase and provisions made towards the same in the cost estimates of project construction and operation. This chapter should also describe the proposed postmonitoring scheme as well as inter-organizational arrangements for effective implementation of the mitigation measures.
Chapter-11 Summary \& Conclusion: This chapter gives the summary of the full EIA report condensed to ten A-4 size pages at the maximum. It should provide the overall justification for implementation of the project and should explain how the adverse effects have been mitigated.
Chapter-12 Disclosure of the Consultant: This chapter should include the names of the consultants engaged with their brief resume and nature of consultancy rendered.

CHAPTER 2 PROJECT DESCRIPTION

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed

\section*{2. Project Description}

\subsection*{2.1. General}

As per notification of Ministry of Environment and Forest (MOEF\&CC), New Delhi all projects below than<100 ha falls in category " B " as in this case the lease area is 4.80 ha, so this is also falls in " \(\mathrm{B}^{\prime \prime}\) category. There are no interlinked projects involved with the present project.
The Dolomite is double carbonating of calcium and magnesium ( Ca Mg ) CO 3 containing \(54.25 \%\), CaCO 3 and \(45.65 \% \mathrm{MgCo3}\). The hardness varies between 3.5 to 4 and specific gravity 2.8 to 2.9 . Colour Gray, white, medium fine grained. Dolomite is mainly used for manufacturing of refractory and as a flux in iron and steel industry, also used for high magnesia lime and used as soil conditioner to neutralise the acidic soils. Dolomite can be used in manufacturing of papers, glass work, as a chemicals and fertilizers. Also used for making animal feed for animal.
Building stone available in the area are useful as road metal and masonry stone. This stone is having very good strength. The raw/lumps stone of the area is crushed in the nearby stone crushers. This material is finally used as road metal and for RCC material in building industry. State Government is also benefitted by the mining through royalty.

\subsection*{2.2. Location of Project}

This is the minor mineral of Dolomite and stone (Road Metal \& Masonry Stone) mine project from Donkhera Dolomite Mine of minor mineral with \(3,25,000\) MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) production over an area of 4.80 ha (Gram Panchayat) which is located at Donkhera Village, Nangal Chaudhary Tehsil \& Mahendragarh District and Haryana State.

Table 2-1: Mining Lease Area
\begin{tabular}{|c|l|c|c|c|c|}
\hline State & Tehsil & Village & Khasra no. & Area & Ownership \\
\hline Haryana & \begin{tabular}{l} 
Nangal \\
Chaudhary
\end{tabular} & Donkhera & 109 min & 4.80 (Ha) & Gram Panchayat \\
\hline
\end{tabular}

Source: - Approved Mining Plan
Figure 2.1: Khasra Map of Proposed Mine

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed


The proposed project is covered in toposheet by Survey of India (SOI) Department. Details are "given below:
\(\checkmark\) The proposed project is covered in toposheet no.- G43E1 of SOI.
\(\checkmark\) Study area is falling within toposheet no.- G43D13, G43D14, G43E1 \& G43E2 of SOI.
Figure 2.2: Key Plan of the Proposed Mine


\subsection*{2.3. Geology \& Reserves}

\subsection*{2.3.1. Physiographic, Drainage and Climate}

The general slope of the land of southern most part of the districted Mahendragarh is from south to north. The Krishnawati River which passing through the district is originated from the hillocks of Sikar district of Rajasthan. This is a seasonal river which remains dry except during rainy days. Physiographically the district consists of flat and level plain interrupted from place to place by clusters of sand dunes, isolated hillocks and rocky ridges. A few isolated rocky ridges elevated sharply from the plain occur in the southern mostly portion of the district.
The lease area is consists of Hilly terrain. The highest point in the lease area is recorded to be 375 mRL in east side near lease boundary and the lowest point recorded is 312 mRL bottom pit level.
The lease area doest not have any water body. There are dry nalas in which water flows during rains for a short duration, otherwise they remain dry for the rest of the months. The rainwater from these nalas drains either into local Johars or in agriculture fields.

\footnotetext{
PROPONENT M/S XANDY MINES AND MINERALS
consultant parivesh environmental engineering services NABFT /EIA/2124/IA 0092(Rev.01)
}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

\subsection*{2.3.2. Hydrogeology}

The geological formation met within the district are phyllites, mica schist and quartzite of Delhi system. Ground water occurs in alluvium and Aeolian sands and under lying jointed and fractured hard rock formations also from the aquifers, in alluvium, sands, silt, and hard bed rock. In-shallow aquifers zones, ground water occurs under water table conditions where as in the deeper zones, confine/semi-confined condition exist, had rocks comprising of Aravalli group of rocks, Malani suite of volvanics and Alwar Quartzite's of Delhi system are water bearing but have yet not been explored thoughly. The depth of water table varies from 80 to 100 m in the distridt. The water table is deeper in the south part of the district whereas it is shallow in the north of the district. However, the water table is reported more than 100 mtrs in rocky terrain of southern part of Nangal Chaudhary tehsil.

\subsection*{2.3.3. Regional Geology of the Area}

Regionary the area belongs to the Alwar Series of Delhi Group. The regional stratigraphic sequence in Mahendragarh district is as follows:
\begin{tabular}{|l|l|l|l|}
\hline & \begin{tabular}{l} 
Ajabgarh \\
series
\end{tabular} & \begin{tabular}{l} 
Biotite-schist, phylites, quartzite and impure biotic \\
limestones and calciphyres.
\end{tabular} \\
\hline Delhi system & Alwar series & \begin{tabular}{l} 
Quartzites, askose, conglomerates and mica-schists with \\
bedded lavas.
\end{tabular} \\
\hline & Rial series & Rialo limestone and Rialo marble, quartzit & \\
\hline
\end{tabular}

Source: - Approved Mining Plan
Out of the above sequence of formations, Dolomite \& quartzite belongs to Alwar series of Delhi system are exposed in the area under reference.

\subsection*{2.3.4. Local Geology}

The area was surveyed geologically. A geological plan and sections are prepared as shown in below figure. The description of different formation found in the area have been as under:
Soil
Quartzite (Road Metal \& Masonry stone)

\section*{Dolomite}

The foot hill of quartzite and the nallahs are covered by blown soil. The thickness varies from a few centimetres to about 2 m in the lease area.

\section*{Quartzite (Road Metal \& Masonry stone)}

It is light gray to white in colour metamorphosed hard and fine grained in nature. The extreme western part all along lease boundary comprise of quartzites. The average length is 800 m and average width is 50 m . The strike of quartzite's formation varies from \(\mathrm{N} 25^{\circ}-30^{\circ} \mathrm{E}\) to \(525^{\circ}-30^{\circ}\) \(w \operatorname{dip} 85^{\circ}\) to \(89^{\circ}\) due west. The quartzite in the area is highly jointed and can be used as a very good building material. However, at present there is no mining of quartzites.
Low grade Dolomite with thin quartzite intercalations is out cropped all along the eastern edge of the lease boundary. The average length 800 mtrs , and average width is 40 mtrs . The general strike of the formation is \(\mathrm{N} 25^{\circ}-30^{\circ} \mathrm{E}\) to \(\mathrm{S} 25^{\circ}-30^{\circ} \mathrm{W}\) dip \(85^{\circ}\) to \(89^{\circ}\) due west.
Structure

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
The lease area is consists of Hilly terrain. The highest point int the lease area is recorded 375 mRL in east side and the lowest point recorded is 312 mRL bottom pit level.
The general strike of quartzite \& dolomite is \(\mathrm{N} 25^{\circ}-30^{\circ} \mathrm{E}\) to \(\mathrm{S} 25^{\circ}-30^{\circ} \mathrm{W}\) with dips \(85^{\circ}\) to \(89^{\circ}\) due west.

Table 2-2: Chemical Characteristics of Dolomite
\begin{tabular}{|c|c|c|}
\hline S. No. & Chemical Characteristics & Percentage Composition \\
\hline 1 & \(\mathrm{SiO}_{2}\) & 2.60 \\
\hline 2 & \(-\mathrm{Al}_{2} \mathrm{O}_{3}\) & 0.50 \\
\hline 3 & \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & 0.20 \\
\hline 4 & CaO & 29.63 \\
\hline 5 & MgO & 21.00 \\
\hline 6 & LOI & 43.40 \\
\hline
\end{tabular}

Source: - Approved Mining Plan

\subsection*{2.3.5. Geological Sections}

5 nos of geological Cross section (A-A' to \(E E^{\prime}\) ) have been drawn across the lease area as shown in below figure.

Figure 2.3: Surface Geological Plan

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed


\subsection*{2.3.6. Details of Exploration}

The area is prominently marked by outcrops of dolomite as well as quartzite as seen in working pits. Moreover, the area has undergone dolomite mining in the past; therefore, no fresh exploration to prove the geological reserves was required as a number of pits of dolomite mining have prominently exposed the formation.
Detailed surface geological mapping was carried out in order to evolve an overall picture in respect of reserves and grade of Building stone. Mapping on 1:1000 scales was done for the entire proposed area comprising of 4.8 ha . Geological cross section on \(1: 1000\) scales are drawn to ascertain the nature of the deposit. No further exploration to prove the reserves of dolomite as
well as Quartzite 9Road Metal \& masonry Stone) is needed as booth the minerals are very well exposed and continued in the working pits to ascertain the reserves further downwards.

\subsection*{2.3.7. Reserves (Estimated in last approved mining plan)}

Method of estimation of reserves:
For estimating the reserve of dolomite, it well as associated Minor Minerals the following parameters were considered are as follows:
1. The reserves are calculated on the basis of established width, thickness and strike length/influence of the mineralized formation in the area where good pits are available such area in put under proved category.
2. The entire reserves of dolomite are put under proved category up to 20 m below valley level. Next 10 m are considered as probable and further 10 m as possible.
3. The bulk density of dolomite \& RM and MS is considered 2.5.
4. The section wise reserves for dolomite and road metal \& masonry stone are summarized here below table.

Tabie 2-3: Details of Combined Reserves of Dolomite \& Associated Minerais
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Section \\
Line
\end{tabular} & \begin{tabular}{c} 
Cross \\
sectional area \\
\(\mathbf{m}^{2}\)
\end{tabular} & \begin{tabular}{c} 
Influence \\
length (m)
\end{tabular} & \begin{tabular}{c} 
Bulk \\
Density
\end{tabular} & \begin{tabular}{c} 
Proved \\
MT
\end{tabular} & \begin{tabular}{c} 
Probable \\
MT
\end{tabular} & \begin{tabular}{c} 
Possible \\
MT
\end{tabular} \\
\hline \(\mathrm{AA}^{\prime}\) & \begin{tabular}{c}
4090 \\
2740
\end{tabular} & \(\mathbf{1 1 5}\) & 2.5 & 1175875 & 787750 & 787750 \\
& 2740 & 115 & & & & \\
\hline \(\mathrm{BB}^{\prime}\) & 3250 & 115 & & & & \\
& 1900 & 115 & 2.5 & 934375 & 546250 & 546250 \\
& 1900 & 115 & & & & \\
\hline & & & & 2110250 & 1334000 & 1334000 \\
\hline
\end{tabular}

Source: - Approved Mining Plan

\subsection*{2.3.8. Methods of Estimation of Reserves in Mining Scheme}

Calculation/estimation of updated geological reserves based on the fresh geological mapping. 5 nos of geological cross-section are drawn, and section wise reserves are calculated. For estimating the reserve of dolomite as well as associated Minor Minerals the following parameters are considered are as follows:
i. The reserves are calculated on the basis of established width, thickness and strike length/Influence of the mineralized formation in the area where good pits are available such area in put under proved category. The entire reserves of dolomite and stone up to and above 315 mRL are put under proved category. Next 30 m i.e., between 315 and 285 mRL are considered as probable and further 20 m i.e., between 285 mRL and 270 mRL are considered as possible.
ii. The bulk density of dolomite \& RM and MS is considered 2.5.
iii. The section wise reserves for dolomite and road metal \& masonry stone are summarized here below: - (CA = Cross Section Area, BD \(=\) Bulk Density \()\)

\footnotetext{
PROPONENT M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)
}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed

Table 2-4: Section-wise Reserve Estimation of Stone


Source: - Approved Mining Plan
Table 2-5: Section-wise Reserve Estimation of Dolomite


PROPONENT
CONSULTANT

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
Total Geological Reserves of stone and dolomite \(=3053472+4740010=7793482\) MT
About \(60 \%\) of the total reserves of dolomite which is about 2844006 MT is of very poor grade due to intercalations of quartzite \& is considered as stone. Rest \(40 \%\) dolomite which comes out 1896004 MT will be of good grade.
Total Blocked reserves of stone in 7.5 m area \(=752600 \mathrm{MT}\); Dolomite blocked in making safe benches \(=2461610\) MT ( \(60 \%\) building stone/poor grade i.e., 1476966 MT and about \(40 \%\) good grade about 984644 MT. Stone blocked in making safe benches \(=1347872\) MT.
Total blocked Dolomite \(=3281110\) MT; Total Stone blocked \(=2100472\) MT
Mineable balance reserves of Dolomite \(=583560\) MT ( \(40 \%\) of 1458900 MT )
Mineable reserves of stone \(=953000+875340 \mathrm{MT}\) (low grade dolomite) \(=1828340 \mathrm{MT}\)
Total Mineable Mineral \(=583560+1828340=2411900 \mathrm{MT}\)
Life of the mine \(=@ 325000 \mathrm{MT} /\) year \(=7.5\) years or say 8 years.
Table 2-6: Mineral Reserves as per UNFC
\begin{tabular}{|c|c|c|c|c|c|}
\hline Resources & Geological MT & 7.5 m barrier MT & Other barrier MT (End benches) & Infrastructure barrier MT & Mineable MT \\
\hline 111 & 2417457 & \multirow{3}{*}{1572100} & \multirow{3}{*}{3809482} & Nil & \multirow{3}{*}{2411900} \\
\hline 121 & 3575300 & & & Nil & \\
\hline 122 & 1800725 & & & Nil & \\
\hline 211 & 1572100 & NiI & Nil & Nil & Nil \\
\hline 221 & 3809482 & Nil & Nii & Nil & Nil \\
\hline 222 & Nil & Nil & Nil & Nil & Nil \\
\hline 331 & Nil & Nil & Nil & Nil & Nil \\
\hline 332 & NiI & NiI & Nil & NiI & Ni \\
\hline 333 & Nil & NiI & Nil & Nil & Ni \\
\hline 334 & Nil & NiI & Nil & Nil & Nil \\
\hline
\end{tabular}

Source: - Approved Mining Plan

\subsection*{2.3.9. Details of UNFC Classification}

UNFC is a three-digit code-based system. The economic viability axis is representing the first digit, the feasibility axis the second digit and the geological axis the third digit. Each digit provided Codes 1, 2 and 3 in decreasing order. The highest category of resources under UNFC system has code (111) and for lowest category the code is (334).
Code (111): This code is provided for the economically mineable part of the measured mineral resources (provided category reserves).
Code (121): This code is provided for the economically mineable part of the indicated mineral resources (probable category reserves).
Code (211): The part of the measured mineral resources (proved category), which as per feasibility study has not found economically mineable. The reserve blocked in 7.5 m buffer zone and 45 m from permanent structure.

Code (222): The part of the indicated mineral resources (probable category) which as per feasibility study has not been found economically mineable. The reserves blocked 7.5 m buffer zone and 45 m from permanent structure.
Code (333): Tonnage, Grade, and mineral contents are to be estimated with low leyel of confidence and resources are also inferred from geological reserves.
Depletion of reserves since the operation of mine, in last 5 years is as under:

PROPONENT
CONSULTANT

M/S XANDY MINES AND MINERALS
PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)

Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|c|c|}
\hline \multicolumn{1}{|c|}{ Table 2-7: } & First Fiver-year production proposals (in MT) & \\
\hline Year & Total Production during year in MT & \\
\hline First Year & \(\mathbf{1 2 5 9 0 6}\) & \\
\hline Second Year & 607 & \\
\hline Third Year & 92153 & \\
\hline Fourth Year & 45650 & \\
\hline Fifth Year & & 801 \\
\hline Total & & 265117 \\
\hline
\end{tabular}

\subsection*{2.3.10. Grade and Use Mineral}

Grade of dolomite is of average quality and the chemical composition of Dolomite is as follows: A typical Dolomite contains \(\mathrm{CaO} 29.6 \%, \mathrm{MgO} 21 \%\), \(\mathrm{LOI} 44 \%, \mathrm{SiO}_{2} 3.7 \%, \mathrm{Al}_{2} \mathrm{O}_{3}\) and \(\mathrm{Fe}_{2} \mathrm{O}_{3} 1.4 \%\). RM \& MS/Building stone available in the area are useful as road metal and masonry stone. This stone is having very good strength. The raw/lumps stone of the area is crushed ith the nearby stone crushers. This material is finally used as road metal and for RCC material in building industry.
Use of Dolomite: Dolomite is double carbonating of calcium and magnesium (CaMg) Co3 containing \(54.25 \% \mathrm{CaCo3}\) and \(45.56 \% \mathrm{MgCo3}\).
A typical Dolomite contains \(\mathrm{CaO} 29.6 \%\), \(\mathrm{MgO} 21 \%\), \(\mathrm{LOI} 44 \%, \mathrm{SiO}_{2} 3.7 \%, \mathrm{Al}_{2} \mathrm{O}_{3}\) and \(\mid \mathrm{Fe}_{2} \mathrm{O}_{3} 1.4 \%\) The hardness varies between 3.5 to 4 and specific gravity 2.8 to 2.9 . Color gray white, medium fine grained.
Specification of Dolomite
\begin{tabular}{rl} 
Refractory & \(\mathrm{SiO}_{2} 3 \%\) Maximum \\
& \(\mathrm{MgO} 20 \%\) Maximum \\
& \(\mathrm{CaO}+\mathrm{Fe}_{2} \mathrm{O}_{3}\) and \(\mathrm{MgO} \mathrm{20} \mathrm{\%}\) \\
Glass Industry & \(<0.2 \% \mathrm{Fe}_{2} \mathrm{O}_{3}\) and \(\mathrm{MgO} \mathrm{20} \mathrm{\%}\) \\
As a flux in steel & \(\left(\mathrm{Ca}+\mathrm{MgO}^{2}+90 \%\right.\) \\
Feero Alloys & \(\left(\mathrm{Sio}_{2}+\mathrm{Al}_{2} \mathrm{O}_{3}\right)<5 \%\)
\end{tabular}

Dolomite is mainly used for manufacturing of refractories and as a flux in iron and steel industry, also used for high magnesia lime and used as soil conditioner to neutralise the acidic soils. Dolomite can be used in manufacturing of papers, galss work, as a chemicals and fertilizers. Also used for making animal feed for animal.
Most of the dolomite produced in district Mahendragarh is crushed and grinded by the local industries and sent to various industries. Also, dolomite being white coloured, it can be used for making for mosaic tiles and flooring. The present dolomite deposit meets out the \$pecifications for various industries and can be used accordingly.

\section*{Grade and use of \& MS Miner Minerals}

RM \& MS/Building stone available in the area are useful as road material and masonry stone. This stone is having very good strength. The raw/lumps stone of the area is crushed in the nearby stone crushers. This material is finally used as road metal and for RC material in building industry.

\subsection*{2.3.11. Year-wise exploration proposed to be carried out during the ensuing 5 years period}

No further exploration is required as the mineral is very well exposed laterally as well as depth wise. No deviation of mineral is noticed. Reserves are sufficient to cater to the need of the proponent. Therefore, no further exploration is needed/proposed.

\subsection*{2.4. Mining}

The lease area is being worked since June 2016 i.e., after getting the environmental clearance from designated authority. Further, it is proposed to continue systematic and scientific mining for excavation of dolomite and road metal and masonry stone/building stone during the next plan period of mining scheme. It was proposed in the last mining plan to make benches of \(6 \mathrm{~m} \times 6 \mathrm{~m}\) but keeping in view the type of formation and boom height of Machines benches of \(10 \times 10 \mathrm{~m}\) are proposed to be made. During all these years only dolomite production was made, and no building stone was reported to mined.
At present fully mechanized method of mining of Dolomite by deploying heavy earth moving machines and deep hole drilling and blasting by forming benches of \(10 \mathrm{~m} \times 10 \mathrm{~m}\) from top downward. Now it proposed to mine 325000 MT ( 250000 MT of Stone +75000 MT of Dolomite) per annum or \(1083 \mathrm{MT} /\) day. The production targets for Dolomite as proposed the approved mining plan were followed. Necessary permission for mechanized mining under MMR 1961 from competent Authority has already obtained. The same will continue in the next five-year plan also. The formation of benches shall be continued up to the ultimate pit limit after the drilling and blasting of the bench. The boulders shall be sized with the help of rock breaker, excavated, and loaded in the trucks/dumpers by hydraulic excavators. The mining operations will continue as were done during the last five years. It will comprise of following activities for excavation of mineral as were proposed in the approved mining plan detailed as under:
a) Drilling of "Down-the-Hole" holes as per specified pattern.
b) Blasting of holes - Primary Blasting \& Secondary Blasting
c) Loading of blasted material by deploying hydraulic excavators
d) Transportation of material to Crusher

Drilling and blasting operations required to blast/dislodge the host rock as well as stone will be undertaken with the help of 110 mm dia crawler mounted drill machine with following drilling and blasting pattern in below table.

Table 2-8: Details of Drilling and Blasting
\begin{tabular}{|c|l|l|}
\hline S. No. & \multicolumn{1}{|c|}{ Particulars } & \multicolumn{1}{|c|}{ Dimensions with unit } \\
\hline 1 & Bench Height and width & \(10 \mathrm{~m} \times 10 \mathrm{~m}\) \\
\hline 2 & Worklng Bench Width & \(15-20 \mathrm{~m}\) \\
\hline 3 & Overall Ultimate pit slope & \(49^{0}\) \\
\hline 4 & Bench Alignment and bench slope & Parallel to each other; \(80^{\circ}\) \\
\hline 5 & Face length & All along the strike Jength \\
\hline 6 & \begin{tabular}{l} 
Depth of pit \\
(Below General Ground)
\end{tabular} & 100 m at the end of \(5^{\text {th }}\) year \\
\hline 7 & Blast hole diameter & \(100-110 \mathrm{~mm}\) \\
\hline 8 & Inclination of blast hole & Vertical \\
\hline
\end{tabular}

\section*{PROPONENT CONSULTANT}

M/S XANDY MINES AND MINERALS
PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)
PAGE. 53

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|l|l|l|}
\hline S. No. & \multicolumn{1}{|c|}{ Particulars } & \multicolumn{1}{c|}{ Dimensions with unit } \\
\hline 9 & Width of Haul Road & 12 m & \\
\hline 10 & Gradient of haul Road & 1 in 16 & \\
\hline Source: - Approved Mining Plan & \\
\hline
\end{tabular}

Out experts (mining Engineer, Geologist and Surveyor) visited the Donkhera Dolomite Stone Mine lease area during March 2022. A fresh survey was undertaken by deploying total station to assess the working mine bench levels for preparation of the mining scheme and plans/maps for the next years.
The highest level in the lease area is 375 mRL near east lease boundary and the lowest is 312 mRL at the end of plan period in the working area.
It is proposed to continue the mechanized opencast mining method for exploitation of the mineral. Systematic \& scientific mining shall be undertaken by drilling down the holes, conducting blasting with the use of high explosives loading the material with excavators and transportation with dumpers.

Table 2-9: Present Land-use of the Mine Lease Area
\begin{tabular}{|l|l|l|l|}
\hline S. No. & \multicolumn{1}{|c|}{ Details } & Area in ha \\
\hline 1 & Pits & 3.88 & \\
\hline 2 & Road & 0.00 & \\
\hline 3 & Infrastructure & 0.00 & \\
\hline 4 & Dump & 0.00 & \\
\hline 5 & Plantation & 0.00 & \\
\hline 6 & Reclamation plantation & 0.00 & \\
\hline 7 & Unused & 0.92 & \\
\hline & \(\mathbf{4 . 8 0}\) & \\
\hline
\end{tabular}

Source: - Approved Mining Plan

\subsection*{2.4.1. Pit Design Parameters}

In view of the geological formation of the deposit and available mineral reserves and development of pit/mine it is proposed to continue the mine by mechanized open cast method lusing shovel and dumper combination. The planned production is proposed \(3,25,000 \mathrm{MT} /\) year by the following mentioned parameters so that not only the production is achieved but mine also takes a proper/regular shape and size.
It is proposed to work the mine by Hydraulic Shovel and 25 tones dumpers with following mine design parameters.

Table 2-10: Details of Pit Design Parameters
\begin{tabular}{|c|l|l|l|}
\hline S. No. & \multicolumn{1}{|c|}{ Particulars } & \multicolumn{1}{|c|}{ Dimensions with unit } \\
\hline 1 & Bench Height and width & \(10 \mathrm{~m} \times 10 \mathrm{~m}\) & \\
\hline 2 & Working Bench Width & \(15-20 \mathrm{~m}\) & \(49^{\circ}\) \\
\hline 3 & Overall Ultimate pit slope & Parallel to each other; \(80^{\circ}\) & \\
\hline 4 & Bench Alignment and bench slope & All along the strike length & \\
\hline 5 & Face length & 80 m at the end of \(5^{\text {th }}\) year \\
\hline 6 & \begin{tabular}{l} 
Depth of pit \\
(Below General Ground)
\end{tabular} & \(100-110 \mathrm{~mm}\) & \\
\hline 7 & Blast hole diámeter & Vertical & \\
\hline 8 & Inclination of blast hole & & \\
\hline
\end{tabular}

PROPONENT
consultant

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|l|l|}
\hline S. No. & \multicolumn{1}{|c|}{ Particulars } & \multicolumn{1}{c|}{ Dimensions with unit } \\
\hline 9 & Width of Haul Road & 12 m \\
\hline 10 & Gradient of haul Road & 1 in 16 \\
\hline
\end{tabular}

The rate of production is proposed \(3,25,000 \mathrm{MT} /\) year (max) by the following mentioned parameters.
1) Ultimate Pit Slope
II) Bench height and width
III) Face length
IV) Bench Alignment
V) Direction of face advance
VI) Depth of pit

\subsection*{2.4.2. Ultimate Pit Depth \& Slope}

Dolomite \& Stone (Quartzite rock) is hard and compact. Once the pit reaches the ultimate limit which is proposed 220 mRL , it is necessary that it does not start collapsing due to weathering and other effects. This can be achieved by planning ultimate pit slope at maximum of 50 degree to avoid collapse of the pit sides. There is no overburden except a thin soil cover. Entire mineral product will be useful.

\subsection*{2.4.3. Bench Height and Width}

Since the Dolomite \& quartzite is hard and compact, the same parameters are considered for making benches. In view of mechanized method of mining to be adopted, the bench height is proposed 10.0 m and bench width 10 m with intermediate safety berm of 15 m . Formation of benches in this manner will result in an overall safe slope of \(49^{\circ}\) or less in the ultimate pit position.

\subsection*{2.4.4: Face Length}

The following parameters have been followed to arrive at th face length to facilitate the required production of \(3,25,000 \mathrm{MT}\) mineral.
The optimum face length available along the strike length is sufficient to cater to the optimum production required. The face length has been attained during the working of last five years.

\subsection*{2.4.5. Bench Alignment}

The benches are gradually aligned to give a reguiar shape. In general, the benches will advance in all directions parallel to each other. Since geological formation in the area is of simple nature, there will not be difficulty in maintaining the proposed bench alignment.

\subsection*{2.4.6. Depth of Pit}

Mining is permissible up to the level 2 meter above the ground water table of the area. The general ground water table is reported to be at the depth 260 mRL .
The reserves up to 80 m below the valley level are proposed to be worked. The surface level reserves will not be depleted during the next plan period. The working will continue/start at 360 mRL and will reach up to 280 mRL at the end of \(5^{\text {th }}\) year as detailed in the year wise plans.

Figure 2.4: Year-wise Working Plan

\footnotetext{
PROPONENT M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERYICES
NABFT /EIA/2124/1A 0092(Rev.01)
}

PAGE. 55

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed


First year Working Plan


Third year Working Plan


Second year Working Plan


Fourth year Working Plan


Fifth year Working Plan

\subsection*{2.5. Development during the Next Five Years}

The construction of garland parapet, wire fencing etc., shall be provided year wise and will be shifted along with the development of pit. A mineral, soil and dump stack yard ( 0.40 ha ) area is ear marked. Soil stack yard is aiready developed to stack the soil generated during the mining and shall be used for plantation purpose.
For making stacking yard, ground is almost level. A boundary will around soil stack yard shall be made. The position of fencing, drain, toe wall, dump yard size and soil stack yard size, plantation etc. are shown in above figure 2.4 for next 5 years.
Working is occupied at the end of \(5^{\text {th }}\) year is about 4.18 ha.
Approach road from mine to mineral stack yard, soil stack yard and dump and site services has already been completed in previous plan period.

\subsection*{2.5.1. Year-wise Production \& Development for the Next Five Years}

It is proposed to work the mine from top downward. Some of the benches are proposed to align them properly so that the pit takes a proper shape in all directions. The positions of benches and the production from individual benches year-wise is shown in Figure 2.4.

\footnotetext{
PROPONENT CONSULTANT
}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed

The year-wise production details are given in below table.
Table 2-11: Second Five Year Production Details (in MT)
\begin{tabular}{|c|c|c|c|c|}
\hline Year & Bench level mRL & \begin{tabular}{c} 
Production \\
of Dolomite
\end{tabular} & \begin{tabular}{c} 
Production of Stone \\
(Road Metal \& \\
Masonry Stone)
\end{tabular} & \begin{tabular}{c} 
Protal \\
Protion in \\
MT
\end{tabular} \\
\hline \(6^{\text {th }}\) Year & \(352,333,310,300,290\) & 75000 & 250000 & 325000 \\
\hline \(7^{\text {th }}\) Year & \(310,300,290\) & 75000 & 250000 & 325000 \\
\hline \(8^{\text {th }}\) Year & \(310,300,290,280\) & 75000 & 250000 & 325000 \\
\hline \(9^{\text {th }}\) Year & \(310,300,290,280 \& 270\) & 75000 & 250000 & 325000 \\
\hline \(10^{\text {th }}\) Year & \(310,300,290,280,270 \& 260\) & 75000 & 250000 & 325000 \\
\hline
\end{tabular}

Sources = Approved Mining Plan
During the mining scheme period i.e., five years, the benches will be advanced as shown in figure 2.4 \& Figure 2.5 is showing the achieve the target production.

Figure 2.5: Progressive Mine Closure Plan for Second Plan Period


PROPONENT M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)
PAGE. 58

The proposed rate of production of \(3,25,000 \mathrm{MT} /\) year could not be achieved due to reasons beyond the control of lessee. It is proposed to continue mining as detailed above during next five years of mining scheme.

\subsection*{2.5.2. Proposed Method of Mining and Precautions during Mining}

The operations were designed to be carried out by mechanized open cast mining method. The entire mining operations proposed were mechanized. Apart of mining, the loading and transportation up to stack yard were proposed in the original mining plan. The same will be continued mechanically. It is proposed to load in the trucks/dumpers directly to the destinations and mineral is not usually put up in this stack yard to avoid the double handling. The same practice will continue during the next plan period also. In the present operation the bench height shall be 10 m . Each bench will advance one by one. While carrying out the mining operations in accordance with the above provision the overall pit slope shall be maintained the \(49^{\circ}\) the mineral bearing rocks being hard and compact.
As per MMR 1961, following precautions shall be undertaken during operations of HEMM, shovel/excavator: -
1. Excavators will be provided with efficient warning devices, front \& rear lights and efficient brakes.
2. Excavator will be under the charge of a competent person authorized in writing by the manager designated as operator.
3. No person other than the operator or his helper if any will ride on the excavator or even enter the excavator's cabin.
4. No person will be permitted to ride in the bucket of a Shovel/excavator.
5. No inflammable material will be stored in the excavator housing or cab.
6. Shovel/excavator dippers will be lowered to the ground during greasing operation.
7. When a Shovel/excavator is to be moved from one point to another its boom shall be kept in strict alignment with direction of travel while the bucket/dipper shall be held \(m\) above the ground.
8. No Shovel/excavator will be operated in the position where any part of the machines, suspended loads or lines are brought closer than 3 m to the exposed high voltage line.
9. Every movement of a Shovel/excavator shall be preceded by warning signals.
10. When not in use, the Shovel/excavator will be moved to and stood on stable ground, the bucket shall be kept resting on stable ground and will never be left hanging.
11. The Shovel/excavator will be so spaced that there will be no danger of accident from flying \& falling objects.
12. Safety appliances, booms will be examined thoroughly once in a year.
13. Emergency switches, safety limit switches will be examined and tested once in four months.
14. All brakes will be tested for their operation worthiness once in a week.
15. The following signboards will be carried will be carried in and around the machine: -
a. "Warning - do not enter the working range of the machine.

\footnotetext{
PROPONENT M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES NABFT /EIA/2124/IA 0092(Rev.01)
}
b. Lubricating prohibited while the machine in Running Condition".

Duties of Shovel/excavator operation: - At the commencement of every shift the operator will personally inspect and test the machine, paying special attention to the following details: -
i. The brakes and every warning device are in working order.
ii. Lights are in working order.
iii. The operator will neither take out the machine for work no will he work the machine unless he is satisfied that it is mechanically shown and in efficlent working order.
iv. The operator will maintain a record of every inspection made in a bond paged book, kept for the purpose and shall sign every entry made there in.
v. The operator will keep the cab window clean so as to ensure clear vision at all times.
vi. The operator will not operate the machine when persons are in such proximity as to be endangered.
vii. Before leaving the machine, the operator will lower the bucket to the ground,
viii. The operator will not leave his machine during the shift. Whenever, he finishes his work, he will hand over the machine to his relief or lock the excavator's cab.
ix. The operator will not allow any unauthorized person to ride on the machine.

Dumper: -
1. Every dumper will be provided with efficient brakes.
2. Efficient audible warning devices will be provided with the dumpers.
3. The dumper, if required to work after daylight hours, efficient headlights and taillights will be used.
4. Every dumper will be under the charge of a competent person, authorized in writing by the manager.
5. No person, other than the driver or his helper, if any, will ride on a dumper.
6. No person will be permitted to ride in the running board of a dumper.
7. The loaded dumpers will not be reversed on gradients.
8. Sufficient stop blocks will be provided at every tipping point, and these will be used on every occasion when material is dumped.
9. Standard traffic rules shall be adopted and followed during movement of all dumpers. They shall be prominently displayed at relevant places in the opencast workings and haulm roads.
10. When not in use, every dumper will be moved to and stood on proper parking places.
11. No person will be permitted to work on a chassis of a dumper, with the body in rest position, until after the dumper body has been securely blocked in position.
12. The mechanical wised mechanism will not be depended upon to whole the body of a dumper in a rest position.
13. No unauthorized person will be permitted to enter or remain in any turning points.
14. While inflating types, suitable protective cages shall be used.
15. Tyres will never be inflated by sitting either in the front or on the top of the same.
16. While the vehicle is being loaded/unloaded on gradient, the same will be secured stationary by the parking brake, and other means suitably designed stopper block, which could be placed below the tyres.

\section*{PROPONENT}

M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)
17. At least one in every two weeks the brakes of every dumper will be tested as below: -
a. Service Brake test: - The brake will be tested on a specified gradient and speed when the vehicle is fully loaded. The vehicle should stop within the specified distance when the brake is applied.
b. Parking brake test: - The parking brake shall be capable to hold the vehicle when it is fully loaded and placed at the maximum gradient. Maximum gradient of the roadway which is permitted only for a period of at least 10 minutes.
c. A record of such test will be maintained in a bound paged book and will be signed by the competent person carrying out the test. These records will be countered signed by the engineer and manager.
d. All vehicles shall be tested and examined once at least in every 6 months.
e. A notice shall be displayed outside every vehicle that "No Unauthorized Travelling allowed".
Duties of Dumper operators: - At the commencement of every shift, the operator shall personally inspect and test the machine, payment special attention to the following details: -
I. Tyres pressure, brakers, horn, and the Lights are in working order.
II. The driver will neither take out the machine for work nor will he work the machine unless he is satisfied that it is mechanically shown and in efficient working order.
III. The driver will maintained a record of every inspection made in a bound paged book, kept for the purpose and shall sign every entry made there in.
IV. The driver will keep the cab window clean so to ensure clear vision at all times.
V. Driver will ensure that the gear is in neutral position before stopping the engine. He will park the vehicle: -
a. In reverse gear, on level roads and down gradients.
b. In low gear, on up gradients.
VI. The driver will negotiate downhill gradients in low gear, so that minimum of braking is required.
VII. The driver will not drive too fast, avoid distractions, and drive defensively.
VIII. Before crossing a road/railway line he will reduce his speed looking both directions along the road or railway line and will proceed across the road or line only if it is safe to do so.
IX. The driver will not operate the dumper in reverse unless he has a clear view of the area behind the vehicle.
X. The driver will see that: -
a. The vehicle is not overloaded.
b. The material is not loaded in a dumper so as to project horizontally beyond the sides of its body.
XI. The driver will not allow any unauthorized person to ride on the vehicle.
XII. When there is a poor visibility, the speed of a vehicle will be restricted in a manner that the braking distance is maintained shorter the distance of visibility.
XIII. The driver will not leave his machine during the shift. When he finishes his work, he will - hand over the machine to his reliever or lock the excavators cab.

PROPONENT M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)
PAGE. 61

Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

\subsection*{2.6. Conceptual Mine Plan}

The conceptual mining plan has been prepared up to the mining lease period/or as soon as mineral is depleted is about 7.5 years. It is proposed to work the deposit by slicing of the top surface level till the end of next ( 7 years) to exploit the mineral to its fullest extent. Accordingly, the proposed planned production is kept/proposed \(3,25,000 \mathrm{MT} /\) annum (maximum). At the end of mining the excavated area will be used as water reservoir and plantation will be carried out in the in the statutory barrier area.

\subsection*{2.6.1. Ultimate Pit Limits}

It is proposed to work the deposit from the top to bottom of the top surface level. Accordingly, the ultimate pit limit has been drawn up to the 280 mRL .

Figure 2.6: Conceptual Mine Plan


\subsection*{2.6.2. Ultimate Size of the Pit}

Proposed ultimate pit angle is \(49^{\circ}\) as the rock is hard \& compact enough to make the slope stable. Excavated part will be developed as water reservoir \({ }_{f}\) which will recharge the ground water table. Excavator part will be fenced and secured to stop the inadvertent entry. Accumulated rainwater will also be useful to supply the drinking water to the nearby residents \& for agricultural purposes.

Table 2-12: Details of Ultimate Size of the Pit
\begin{tabular}{|c|c|c|c|}
\hline S. No. & Avg. Length (in m) & Avg. Width (in m) & Max. Depth (in m) \\
\hline 1 & 515 & 80 & 130 m from ground level \\
\hline
\end{tabular}

Source: - Approved Mining Plan
The detailed mining plan was prepared with a project life of 7 years. The mining is conceived as one long open mine pit. The opencast mining method has been considered feasible for exploitation of the deposit.
The aspect of geotechnical behaviour of quarry rocks have also been taken into consideration to ascertain the suitable mine pit slopes. The major rock of the quarry is quartzite with clay intercalations and could be classified in the category of harder rock strata. The conceptualized mine pits are based on appropriate overall slope angle broadly confirming to prevailing norms of mine safety department for harder rock strata. The broad details are as follows -
- Overall Slope - 40 degree
- Bench height \(\mathbf{- 1 0} \mathbf{~ m}\)
- Bench Width - Operating width \(15-20 \mathrm{~m}\) which will finally reduce to 10 m
- Individual Bench Slope - 80 degree

Land use at the start and at the end of mining will be as under:
Table 2-13: Land-use of Mine Lease at End of Mine Plan
\begin{tabular}{|c|l|c|c|c|}
\hline \begin{tabular}{c} 
S. \\
No.
\end{tabular} & \multicolumn{1}{|c|}{ Particulars } & \begin{tabular}{c} 
Present land use \\
area in (ha)
\end{tabular} & \begin{tabular}{c} 
At the end of \\
plan (ha)
\end{tabular} & Conceptual stage \\
\hline 1 & Area excavated due to mining & 3.88 & 4.18 & 0.00 \\
\hline 2 & Dump of ore/OB/waste & 0.00 & 0.00 & 0.00 \\
\hline 3 & \begin{tabular}{l} 
Infrastructure: Roads, \\
buildings, electrlc line etc
\end{tabular} & 0.03 & 0.03 & 0.00 \\
\hline 4 & Backfilled area & 0.00 & 0.00 & 0.00 \\
\hline 5 & Area under plantation & 0.59 & 0.59 & 0.59 \\
\hline 6 & Reclamation plantation & 0.00 & 0.00 & 1.41 \\
\hline 7 & Water body & 0.00 & 0.00 & 2.80 \\
\hline 8 & Undisturbed & 0.30 & 0.00 & 0.00 \\
\hline & Total & \(\mathbf{4 . 8 0}\) & \(\mathbf{4 . 8 0}\) & \(\mathbf{4 . 8 0}\) \\
\hline
\end{tabular}

Source: - Approved Mining Plan

\subsection*{2.6.3. Drilling}

It is proposed to use drill machines of \(100 \mathrm{~mm}-110 \mathrm{~mm}\) dia. As per the production target of about 1083 MT/day.
a) Tonnage of mineral excavated per hole \(=9 \mathrm{~m} \times 4 \mathrm{~m} \times 5 \mathrm{~m} \times 2.5=450 \mathrm{~T}\)
b) No. of holes required per day \(=1083 \mathrm{~T} / 450 \mathrm{~T}=2.40\) or say 3 nos
c) Total meter age of drilling/day \(=3\) holes \(\times 9.5 \mathrm{~m}=28.5 \mathrm{~m}\)
d) Capacity of each drill machine \(=10 \mathrm{~m}\) per hour or 80 m per shift or 160 m day

\footnotetext{
PROPONENT M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)
}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
e) Hence no of drill machines \(=\) Drilling required per day/capacity of drilling per day \(=28.5\) m . Therefore at least 1 drill machines of higher drilling rate with available of \(75 \%\) of time as well and \(80 \%\) utilisation hours will be required.
Considering 1083 MT per day proposed to deploy 1 hydraulic shovel in conjunction with 10 no. of 25 T dumpers. In addition, i back hole's hydraulic excavator shall be used as rock breaker. Thus, the total population of equipment required will be given in below table.

Table 2-14: Details of Equipment with Fuel Consumption for Proposed Plan Period
\begin{tabular}{|c|c|c|c|c|c|}
\hline S. No. & Equipment & Size & Nos. & Total Fuel Consum & n (ln Itr.) \\
\hline 1. & Diesel hydraulic shovel & 3.5 cum & 1 & 200 & \\
\hline 2. & Rear dumpers & 25 T & 10 & 200 & \\
\hline 3. & Drill with compressor & 110 mm & 1 & 180 & \\
\hline 4. & Water sprinkler & 10 KL & 1 & 65 & \\
\hline 5. & Maintenance van & - & 1 & 30 & \\
\hline 6. & Tractor & 50 hp & 1 & 25 & \\
\hline \multicolumn{3}{|c|}{Total} & & 700 & \\
\hline
\end{tabular}

Source:- Approved Mining Plan
The mining is undergoing with mechanized methods of mining and the same will be continued during the next 5 years. No other changes proposed for drilling and blasting.

\subsection*{2.7. Blasting}

\subsection*{2.7.1. Blasting Parameters}

For mining of building stone drilling and blasting is required. The job of drilling and blasting is of continues nature. Considering the time frame of mining and total requirement of material, the daily mineral production works out to be \(12,000 \mathrm{MT}\) ( \(4,000 \mathrm{cum}\) ). The above target will be utilized to frame the pattern and size of blast. The blasting parameters are described in below table.

Table 2-15: Details of Blasting Parameters
\begin{tabular}{|c|l|c|c|}
\hline S. No. & \multicolumn{1}{|c|}{ Item } & Values \\
\hline \(\mathbf{1 .}\) & Bench Height (m) & 10 m \\
\hline 2. & Hole depth (m) (including sub-grade drilling) & 9.0 m \\
\hline 3. & Burden (m) & 4.0 \\
\hline 4. & Spacing (m) & 5.0 & \\
\hline 5. & Volume (m³) & \(4 \times 5 \times 9=180 \mathrm{~m}^{3}\) \\
\hline 6. & Tonnage yield (t) & \(180 \times 2.5=450.5\) & T \\
\hline 7. & Power Factor (assumed) & \(6 \mathrm{t} / \mathrm{kg}\) of explosive \\
\hline 8. & Charge per hole (kg) & \(450 / 6=75 \mathrm{Kg}\) & \\
\hline 9. & Total quantity of rock to be Broken per day (ton) & 1083 TPD & \\
\hline 10. & Explosive required for blasting per day & \(1083 / 6=180 \mathrm{~kg}\) \\
\hline 11. & Blasting Frequency (Everyday) & 1 \\
\hline 12. & Explosive required per blast per day & 180 kg & \\
\hline 13. & No. of holes per day & 1083 T (production \(/ \mathrm{day}) / 450\) & T (Tonnage \\
\hline & & per hole) \(=2.40 \mathrm{holes}\) \\
\hline 14. & No. of holes per blast & 3 & \\
\hline 15. & Explosive required per month & 4500 kg & \\
\hline
\end{tabular}

PROPONENT CONSULTANT

M/\$ XANDY MINES AND MINERALS
PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed

\section*{Source: - Approved Mining Plan}

\subsection*{2.7.2 Type of Explosives}

Emulsion - Primer charge ( \(20 \%\) of charge per hole) ANFO - column charge \(80 \%\) of charge per hole Initiation System and Minimum charge per hole Delay - milliseconds delay detonators
Drilling pattern - staggered
Firing pattern - V pattern

\subsection*{2.7.3. Secondary Blasting}

Large sized fragments should be reduced to acceptable size by drilling shallow holes (0.75-1.2 \(\mathrm{m})\). The pattern will be as follows:
Depth of hole
Diameter of holes
0.75-1.2m
Diameter of explosive
38 mm
Quantity of explosive
25 mm
Firing pattern

65 gms
Instantaneous

Secondary blasting is proposed as stand by but it will be minimized by deploying hydraulic rock breaker for breaking large size stone/boulders.

\subsection*{2.7.4. Storage of Explosive}

The applicant has a tie up with an explosive supplier maintaining an explosive magazine with licence to purchase, sell and use. This agency brings explosives (sell) as per requirement and use in the project premises. This system will avoid construction of explosive magazine in mine premises. The same arrangement is proposed to be continued.

\section*{Regulation 160, Blaster -}
1. The preparation of charges and the charging and stemming of holes shall be carried out by or under the personal supervision of a competent person, in these regulations referred to as a 'blaster'. The blaster shall fire the shots himself.
2. No person shall be appointed to be a blaster unless he is the holder of 'Manager's, Foreman's Mate's or Blaster's certificate.
3. The manager shall fix, from time to time, the maximum number of shots that a blaster may fire in any one shift; and such number shall not unless the Regional Inspector by an order in writing and subject to such conditions as he may specify therein otherwise permits, exceed 80 in case they are fired electrically or by means of an igniter cord and 50 in other cases, and shall be based upon -
a. The time normally require to prepare and fire a shot in accordance with the provisions of these regulations;
b. The time required for that blaster to move between places where shots are fired;
c. The assistances, if any, available to him in the performance of his said duties; and
d. Any other duties assigned to him, whether statutory or otherwise:

\footnotetext{
PROPONENT
CONSULTANT
M/S XANDY MINES AND MINERALS
PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)
}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed

Provided that the Director General of Mine Safety may, by an order in writing and subject to such conditions as he may specify, permit the manager to fix the maximum number of shots to be fired by a blaster differently from the limits specified in this sub-regulation.
4. The number detonators issued to, and in the possession of, a blaster during his shift shall not exceed the maximum number of shots that he is permitted to fire under sub-regulation (5).

\section*{Regulation: 161, Shot firing tools -}
1. Every blaster on duty shall be provided with-
a. Suitable electric lamp or torch;
b. A tool, made entirely of wood, suitable for charging and stemming shot holes;
c. A scraper made of brass or wood suitable for cleaning out shot holes;
d. Where fuses are used, a knife for cutting off fuses an, unless, machine capped fuses are provided, also a pair of suitable crimpers for crimping detonators; and
e. Where detonators are used, a pricker made of wood or a non-ferrous metal for priming cartridges.
2. No tool or appliance other than that provided as above shall be used by a blaster.

Regulation: 162, dritling, charging, stemming, and firing of shot holes -
1. No drill shall be used for boring a shot hole unless at allows a clearance of at least 0.3 cm over the diameter of the cartridge or explosive which it is intended to use.
2. No shot hole shall be charged before it is thoroughly cleaned.
3. Before any shot hole is charged, the direction of the hole shall, where practicable, be distinctly marked on the roof or other convenient place.
4. No detonator shall insert into a priming cartridge until immediately before it is to be use. Detonators once inserted into a priming cartridge shall not be taken out.
5. Unless otherwise permitted by the Chief Inspector by an order in writing and subject to such conditions as he may specify therein, the charge in any shot hole shall consist of one or more complete cartridges of the same diameter and the same type of explosive.
6. The blaster shall, to the best of his judgement, ensure that no charge in a shot hole is over-charged of under-charged, having regard to the task to be performed.
7. No shot hole shall be fired by a fuse less than 1.2 m in length.
8. Every shot hole shall be stemmed with sufficient an suitable non-inflammable stemming so as to prevent the shot from blowing out. Only sand loosely filled in, or soft clay lightly pressed home, or a compact but not hard mixture of sand and clay or water shall be used as stemming.
9. In charging or stemming a shot hole, no metallic tool, scraper, or rod shall be used; and no explosive shall be forcible pressed into a hole of insufficient size.
10. No shot shall be fired except in a properly drilled, charged and stemmed shot hole.
11. All surplus explosives shall be removed from the vicinity of a shot hole before a light is brought near it for the purpose of lighting the fuse.
12. As far as practicable, a shot shall be fired by the same blaster who charged it.
13. In any min in which"explosives other than gunpowder are used, every shot shall, if so required by the Regional Inspector, be fired electrically.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
14. No more than 10 holes shall be fired in one round unless they are fired electrically or by means of an igniter cord.
15. No shot hole shall be charged except those which are to be fired in that round; and all shot holes which have been charged shall be fired in one round.
16. Where a large number of shots has to be fired, a shot firing shall, as far as practicable, be carried out between shifts.
17. No person shall remove any stemming otherwise than by means of water or an approved device, or pull out any detonator lead or remove any explosive from any charged shot hole.
Regulation: 163, Electric Shot firing - where shots are fired electrically, the following provisions shall have effect, namely: -
A. No shot shall be fired except by means of a suitable shot firing apparatus; and the number of shots fired at any one time by the apparatus shall not exceed the number for which it is designed.
B. Every electrical shot firing apparatus shall be so constructed and used that -
a. It can only be operated by a removable handle or plug. This handle or plug shall not be places in position unit a shot is about to be fired and shall be removed as soon as a shot has-been fired; and
b. The firing circuit is made a broken either automatically or by means of a pushbutton switch.
C. No apparatus shall be used which is defective; and every apparatus shall \(m\) once at least in every three months, be cleaned a thoroughly overhauled by a competent person.
a. No current from a signalling, lighting or power circuit shall be used for firing shots.
b. The blaster shall retain the key of the firing apparatus in his possession throughout his shift;
c. Use a well-insulated cable of sufficient length to permit him to take proper shelter, and in no case, shall this cable be less than 20 m in length;
d. Before coupling the cable to the firing apparatus, couple up the cable himself to the detonator leads;
e. Take care to prevent the cable from coming into contact with any power or lighting cable or other electrical apparatus;
f. Take adequate precautions to protect electrical conductors and apparatus from injury;
g. Himself couple the cable to the firing apparatus; and before doing so, see that all person in the vicinity have taken proper shelter as provided under regulation 164; and
h. After firing the shots and before entering the place of firing, disconnect the cable from the firing apparatus.
D. Where more than one shot is to be fired at the same time: -
a. Care shall be taken that all connections are properly made;
- b. All shots if fired belowground shall be connected in series;

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Viliage, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
c. The circuit shall be tested either for electrical resistance or for continuity before connecting it to the firing apparatus. Such a test shall be made with an apparatus specifically designed for the purpose and after the provisions of regulation 164 have been compiled with; and
d. The cable to the shot-firing apparatus shall be connected last.

\subsection*{2.8. Mine Drainage}

\subsection*{2.8.1. Drainage Around and Within Mine}

The lease area is mainly sloping west, north, and south direction. Mining shall be mainly below the general ground level with only one side of the pit having slope along hill and other side will remain open. Such situation does not warrant any water accumulation as natural drainage will be available from the other open side of the pit.
However, as the mine progresses and mining continue below the general ground level as envisaged during later part of lease period, the mining area will become a depression, which may warrant accumulation of water during rainy season. A scheme is proposed to prevent the accumulation of such water.
1) Garland drainage as shown in the mine plan shall be made all round the pit to prevent the entry of surface/rainwater inside the pits.
2) All the benches will be provided with mild inward slope to keep the benches in drained condition. Provision of sumps is provided as shown figure 2.4. The lowest bench shall be slightly sloped towards the sump so that the entire drain water goes to the sump.
3) The working faces be gradually drained from the upper most bench to the lowest bench and then ultimately to the sump.
4) Similarly in the ultimate pit position, large sump will be provided at the pit bottom to accumulate drained water as well as direct rainwater.
5) A few bore wells ( 4 nos) are proposed to be drilled up to 150 m deep and 10 inched diameters are proposed to be drilled in the bottom most levels of the pit to facilitate the faster recharging of water table during the monsoon period when the water is accumulated in the mine. The locations of bore wells are shown in the progressive mine closure plan as figure 2.5. Necessary filters will be provided to stop the chocking of the bore wells. Specialized designs will be erected around the bores to stop the clogging due to silt and clay material into the bore well.

\subsection*{2.8.2. Dewatering}

Since the depth of mining proposed is below the valley level and water table is about 100 m below the general ground surface, there will be no chance of encountering the ground water table during the mining operations. Hence normal-pumping operations will be required during the monsoon season only. The water accumulates within the pits will be due to direct rainfall over the pit and seepage from adjoining areas, if any. No dewatering will be done except in extreme conditions. Water accumulated if any in the pit will be allowed to recharge the water table through recharging wells. Further if need arises for dewatering in the mine, it will, be done after obtaining the permission from the competent authority.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA
( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
The average rainfall of the district during all these years is 420 mm only.
1. An examination of the above reveals that the rainy season extends from June to September. Although in the above period under consideration there has been rainfall in other months also, but it can be considered as stray occurrence and will not after all proposed pumping scheme.
2. The water to be pumped out from the open pits will be contributed both by direct precipitation over the open pits and seepage. The water due to direct precipitation will depend upon the rainfall and the area of the pit.
3. Based on the rainfall records, the sumps of the sizes as shown plates No. 5-9 shall be provided at the bottom most bench. During the monsoon period a continuous process of dewatering the sumps shall be there to facilitate the mining at the lower benches.
4. Based on the Rainfall data it is proposed to have two diesel engine operated water pumps of \(20 \mathrm{H} . \mathrm{P}\) which may dewater \(50 \mathrm{~m} 3 /\) hour from the pit. The water will be sent to the drain of 0.5 mtr depth as shown in the year wise figure 2.4 . This water will finally go into the natural nallah.

\subsection*{2.9. Stacking of Mineral Rejects and Disposal of Waste}

There was only a little quantity of soil was generated during the plan period which was used for reclamation/plantation purpose.
In addition to it, entire mineral produced was saleable. Therefore, no overburden/waste was stacked during the plan period.

\subsection*{2.9.1. Disposal of Waste}

Soil: There is a thin soil cover in the eastern part whereas the western and northwestern part of lease area contains soil varying from \(0.5-2.0 \mathrm{~m}\). Some amount of soil/powder is also generated from joints and cracks. Soil has been stacked at soil stockyard and shall be used for plantation /reclamation purpose only.
Rejects: No rejects generated during the plan period. Further about \(2 \%\) mineral production will come under the category of rejects as there are thin, soft layers of calc schist within the bed rock which are not fit as road metal/crushed material. This reject/overburden/inter-burden shall be used for internal uses like making of haul road, parapet wall, boundary walls etc and rest of the waste shall be disposed-off/sold to open market as per Haryana Minerals Rules, 2012 after taking due permission from Mines \& Geology Department of Government of Haryana. All unsold rejects and soil will be finally used for reclamation of the mined-out area at the final closure of the mine.

\subsection*{2.9.2. Maximum Height and Slope of Dumps}

The area earmarked for the stacking the soil mixed finer material of stone is \(1000 \mathrm{M}^{2}\) figure 2.4 which can accommodate at least 5000 MT of material. In the present case soil generated contains fine powder of quartzite; the same shall be sorted out and stacked in separate dump yards. Yearly generation of soil/ fines which only 500 tones shall be used for plantation and as an upper layer on the dumps. The dump may attain a maximum height of Deepak Kumar 6 mtr . With gentle slopes of \(28-30^{\circ}\). Tow walls and drains around dumps are proposed to safeguard the dumps.

\footnotetext{
PROPONENT
M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)
}

PAGE. 69

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

\subsection*{2.9.3. Dump Yard of Mineral}

The whole material excavated shall be sent to buyers/crushers but still it is proposed to have a dump yard for mineral (Size \(60 \mathrm{~m} \times 15 \mathrm{~m}\) ), which will be used in the event of less demand or any other emergent reasons to stack the mineral in the dump yard.
The height of the dump yard may attaln a maximum of \(6-8\) mirs with moderate slope of 39 degrees. This can accommodate about 5000 MT mineral.
The location of the soil and mineral dump yard is shown in figure 2.4.
The annual quantum for construction of retaining walls/ dump yards for soil and miheral will be done during plan period. The length of the soil stack yard and dumping yard walls will be 360 m and 480 mtr . all along with height of one meter. Rest of the height will be made in the coming years as per the requirements of dumps. The thickness of the wall will be half meter.
As already described the optimum height of dumps shall be kept 6 mtr with gentle slope of \(30^{\circ}\) for soil stack and with moderate slope of \(39^{\circ}\) for rejects/ inter burden stacks.

\subsection*{2.10. Use of Mineral}

\subsection*{2.10.1. Use of Dolomite}

Dolomite is double carbonate of calcium and magnesium ( Ca Mg ) Co3 containing 54.25\%, CaCO 3 and \(45.65 \% \mathrm{MgCo} 3\).
A typical Dolomite contains CaO-29.6\% MgO \(21 \%\) LOI \(-44 \%, \mathrm{SiO2-3.7} \% \mathrm{Al} 2 \mathrm{O} 3\) and \(\mathrm{Fe} 203-1.4 \%\) The hardness varies between 3.5 to 4 and specific gravity 2.8 to 2.9 . Colour Gray, white, medium fine grained.

\section*{Specification of Dolomite: -}

Refractory
Sio2 3\% Maximum
MgO 20\% Maximum
\(\mathrm{CaO}+\mathrm{Fe}_{2} \mathrm{O}_{3}\) and \(\mathrm{MgO} 20 \%\)
Glass Industry \(<0.2 \% \mathrm{Fe}_{2} \mathrm{O}_{3}\) and \(\mathrm{MgO} 20 \%\)
As a flux in steel
\((\mathrm{Cao}+\mathrm{Mgo})+90 \%\)
\& Feero Alloys ( \(\mathrm{Sio} 2+\mathrm{Al}_{2} \mathrm{O}_{3}\) ) \(<5 \%\)
Dolomite is mainly used for manufacturing of refractories and as a flux in iron and steel industry, also used for high magnesia lime and used as soil conditioner to neutralise the acidic soils. Can be used in manufacturing of papers, glass work, as a chemicals and fertilizers. Also used for making animal feed for animal.
At present most of the dolomite produced in Mahendragarh district is crushed and grinded by the local industries and sent to various industries. Also, dolomite being white colored, it can be used for making for mossaic tiles and flooring. The present dolomite deposit meets out the specifications for various industries and can be used accordingly.
Road metal and masonry stone
The entire mineral produced will be used in the building industry as road metal, crushed metal and dust etc after crushing by the crushers. The mineral is sold to buyers in and around Haryana,

Delhi, and other states of north India. Mineral rejects (around \(2 \%\) ) will stacked temporally and will be sold as and when demand arises. There will be no mineral rejects at the end of life of mine.

\subsection*{2.11. Mineral Beneficiation \& Processing}

In view of the availability of direct market for Dolomite R.O.M., presently there is no proposal of beneficiation. R.O.M. Mineral will be sold to various crushers located in the area. Dolomites will be sold in the form of lumps to the crusher owners.
Road Metal \& Masonry stone has direct local market for crushing and making of various sized crushed material.

\subsection*{2.12. Surface Transport}

The transportation of mineral from pit head / stock yard to the consumer end crushers / traders is carried out by the trucks deployed by the customer/purchaser generally of 25 MT Capacity. There is all weather metalled road and then a katcha road right up to mines to dispatch the material from mines to the market. Material is sold to the customers/ at mine site and transported by them through their own arrangement of trucks. The practice is quite sound in the area and ensure continuous lifting of the material. Customers/purchasers come with transport arrangement of their own. This practice will continue during the next plan period also. However necessary arrangement of trucks can be done from the nearby truck operators union available at Nangal Chaudhary, Narnaul \& Mahendragarh if so demanded.
To accommodate and to ensure smooth production and its transport (about 40 trips) to the tune of 1083 T/Day, the following points shall be considered:
1. Existing Kachcha road which joins mine to metalled road shall be further strengthened and shall be maintained regutarly.
2. Proper traffic control shall be done at road crossings.
3. Road crossings shall be wide enough to ensure that dumpers plying on the roads are safe to cross/overtake, wherever necessary.
4. Plantation shall be done along both sides of kachehca road, as it will arrest the dust and will act as sound barrier to larger extent.

\subsection*{2.13. Site Service}

\subsection*{2.13.1. Manager's Office}

As detailed in the preceding chapter the mines are designed to produce \(3,25,000\) tons (maximum) of building stone. The activities shall be supervised by one competent person as overall manager. In addition, its other supporting staff as required under statute has been engaged by the lease holder for day-to-day mining, drilling, blasting, and loading operations. Main administrative office was setup at the start of lease near the lease area which accommodates the Manager as well as other supervisory and administrative staff. The same is shown in the surface plan in figure 2.3.

\subsection*{2.13.2. Canteen-cum-rest Shelter}

In order to provide the rest shelter for the personnel working in the mine and also to provide tea/refreshment etc. as per the Mines Act, 1952. Canteen-cum Rest shelter is there as shown in plate no. 4 which is utilized by the workers. This rest shelter is used by labor and driver/operators
during the lunch hours. The size of rest shelter is about \(15 \times 10\) meter to accommodate the working labors.

\subsection*{2.13.3. Store}

Since the mining operations involve heavy earth moving machinery, a small workshop and storeroom is provided for day-to-day operations. No provision for workshop as there is PVT shops in the area for repair and maintenance of Machinery.

\subsection*{2.13.4. First Aid Room}

To provide the first aid for any sort of injuries encountered during the mining operation, one small first aid room is provided. First aid kit and sufficient stock of material / medicines needed for first aid are provided as per requirement. As the mining engineer/Manager and mining mates are qualified first aiders they can provide first aid to the labor on the spot.
More ever the Govt. Hospitals is there at the Narnaul which is just 25 km . From the mine and necessary medical aid can be provided from there.

\subsection*{2.13.5. Magazine}

Both primary/mass blast and secondary blasting is carried out in the mines. At preset explosive is procured from the authorized source complying with the provisions of Indian Explosives act 1884. Explosives are and will be transported to site from the magazine by approved explosive van.

All statutory provisions made under the Explosive act and modifications thereof are proposed to be followed.

\subsection*{2.13.6. Electricity Supply}

Presently, there is no electric supply, at the mine as well as mine site office.

\subsection*{2.13.7. Water Supply}

The water supply for drinking\& dust suppression are made available by hired tractor tanker. The water is taken from the village public water supply which is just 0.5 km . away from the mine site and is controlled by the public health department of the state Govt. The water form supply tube well is used for the entire village Donkhera. Therefore, the same arrangement shall continue for the mines as well. The water is transported by the tractor and stored in a RCC tank of 5000 liters capacity.
Water Requirement: - There is seepage of water in the mine. This water is accumulated at the bottom of the mine. Same is used for dust suppression by own tankers. Water for drinking purpose will be met from hired private tankers. The details are given in below table.

Table 2-16: Water Demand for Proposed Mine Lease
\begin{tabular}{|c|c|c|}
\hline S. No. & Description & Demand \\
\hline 1 & Drinking \& domestic & 1.0 j \\
\hline 2 & Green Belt/Plantation & 4.1 \\
\hline 3 & Dust Suppression & 5.3 \\
\hline & Tatal & \(\mathbf{1 0 . 3}\) KLD \\
\hline
\end{tabular}

Source: - Approved Mining Plan

PROPONENT

\subsection*{2.14. Employment Potential}

\subsection*{2.14.1. General Consideration}

In this project the mechanized mining is going on for production of building stone. The proposed organizational structure for the project for mining system adopted and the need of effective environment Management Plan. The following technical and non-technical personnel are deployed as per norms:
1. The mine is worked in two shifts and same will continue in future as well.
2. In estimating the requirement of magazine attendants, and provision of competent person, mates, blaster etc. due consideration has been given to the statutory provisions.

\subsection*{2.14.2. Manpower Requirement and Its Distribution}

Total requirement of employee (skilled \& unskilled) will be required 33 which may be sourced from nearest villages as per their skills. The mine shall be worked in two shifts with following manpower deployment.

Table 2-17: Manpower Requirement for Proposed Mine Lease
\begin{tabular}{|c|l|c|c|}
\hline S. No. & \multicolumn{1}{|c|}{ Designation } & Category & Numbers \\
\hline 1 & Mines Manager & Highly skilled & 1 \\
\hline 2 & Assistant Managers & Highly skilled & 1 \\
\hline 3 & Mining Mate cum Blaster & Highly skilled & 1 \\
\hline 4 & Clerical and other staff & Skilled & 2 \\
\hline 5 & Security Guard \& Water man & Semi-skilled & 2 \\
\hline 6 & Environment Assistance & Skilled & 1 \\
\hline 7 & Diesel hydraulic shoved operator & Highly skilled & 1 \\
\hline 8 & Diesel backhoe operator & Highly skilled & 1 \\
\hline 9 & Rear dumpers operators & Highly skilled & 15 \\
\hline 10 & Drill operators & Highly skilled & \(\mathbf{1}\) \\
\hline \(\mathbf{1 1}\) & Tractor operator/driver & Skilled & 1 \\
\hline \(\mathbf{1 2}\) & Tractor compressor operator & Skilled & 1 \\
\hline 13 & Helpers/labour & Semi-skilled & 5 \\
\hline
\end{tabular}

Source: - Approved Mining Plan
In addition to the above-mentioned staff rest of the function i.e., supply of explosives, preparation, and amendment of plans etc. security personnel shall be proposed to be performed from the professional on lease/job work basis. The above-mentioned manpower is already deployed by the lessee for Scientific and systematic working of the mine.

\subsection*{2.15. Conclusion}

This mining project will provide employment to 33 people which will include skilled and unskilled labours and indirect employment will also be created due to this project. The project proponent will also play an important role in the development and improvement of the infrastructure of that region which will help in improving the standard of living of that region.

CHAPTER 3

\section*{DESCRIPTION OF THE ENVIRONMENT}

\section*{3. Description of Environment}

\subsection*{3.1. Introduction}

Mining activities invariably affect the existing environmental status of the site. It has both adverse and beneficial effects. To maintain the environmental commensuration with the mining operation, it is essential to undertake studies on the existing environmental scenario and assess the impact on different environmental components. This would help in generating the baseline data before the project starts and assess how it is changing over the years when the mine becomes operational. This will help Management in formulating suitable management plans and sustainable resource extraction.
Baseline data collection/generation forms a part of the Environmental Impact Assessment (EIA) study and helps to evaluate the predicted impacts on the various environmental attributes in the study area by using scientifically developed and widely accepted environmental impact assessment methodologies. Baseline data is also required in preparing an Environmental Management Plan (EMP) outlining the measures for improving the environment quality and scope of future expansions for environmentally sustainable development.
Baseline environmental status in and around enhanced project depicts the existing environmental conditions of air, noise, water, soil, biological and socio-economic environment. A radial distance of 10 km is considered as "study area" for baseline data collection and environmental monitoring. Baseline data was collected for various environmental attributes to compute the impacts that are likely to arise due to proposed development activity.
The main aim of the impact assessment study is to find out the impact of the project on the environment. The study is carried out during the project planning stage itself, so that the proponent can implement the project in a technically, financially, and environmentally viable way. Existing environmental conditions are enumerated by collected baseline data. The estimated impact due to the enhanced project is superimposed over the existing conditions to arrive at the project scenario. The scope of the baseline studies includes detailed characterization of various environmental components, which are most likely to be influenced by setting up an industry.
1. Land Environment
2. Meteorology
3. Air Environment
4. Noise Environment
5. Water Environment
6. Soil Environment
7. Biological Environment
8. Socio-economic Environment

The relevant information and data (both primary and secondary) were collected in core as well as buffer zone ( 10.0 km distance from the project boundary) during Pre-Monsoon Season (March to May 2023) in accordance with the guidelines for preparation of EIA studies by In Situ Enviro Care, Bhopal. The study area map of 10 km buffer from project site is presented in Figure 3.1.

\footnotetext{
PROPONENT M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES NABFT /EIA/2124/IA 0092(Rev.01)
}

\section*{DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT}

Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed

Figure 3.1: Study Area Map ( 10 km Buffer) of Proposed Site


\subsection*{3.2. Study Area \& Period}

According to Appendix III of EIA Notification, 2006 and its amendment till date, study area was selected from 10.0 km radius from the project boundary. The area was selected to do the studies and collect the baseline data as ambient air, water, soil, noise, meteorology, hydrogeology, hydrology, land-use, ecological and socio-economic data etc. The relevant information and data (both primary and secondary) were collected in core as well as buffer zone of 10 km from the project boundary during pre-monsoon season (March to May 2023) in accordance with the guidelines for preparation of EIA. The study area map is given above in Figure 3.1.

\footnotetext{
PROPONENT CONSULTANT
}

\subsection*{3.3. Methodologies Adopted}

The baseline data for environmental parameters were collected as per standard Terms of Reference for the relevant category of the project. The data was also authenticated or validated from the secondary data collected from regarding departments of agencies.
For the present study the project site is considered as core zone and the area lying within 10.0 Km radius from the boundary of proposed site is considered as buffer zone in which some impacts may be observed on its physical and biological environment.
The following instruments were used at the site for environmental baseline data collection work.
- Respirable Dust Sampler with attachment for gaseous Pollutants, Environment APM 460.
- Fine Particulate Matter (FPM) Sampler, APM 550
- Dry and Wet Bulb Thermometer.
- Sound Level Meter Model SL \(\mathbf{- 4 0 1 0}\)
- Micro Meteorological Station Model Enviro Wm 251
- Global Positioning System (GPS)

\subsection*{3.3.1. Primary Data Collection Methodologies}

A detailed field monitoring study of the project study area was carried out for baseline environment assessment of the project area. Baseline data was generated for various environmental parameters including air, water (surface and groundwater), land and soil, ecology, and socio-economic status to determine quality of the prevailing environmental settings. Sampling of soil and water, monitoring of air quality and noise level and other field data collection were carried out by the team operating from this field station. The field team consisted of technical personnel viz. environmental scientists and social experts along with the field staff. The noteworthy activities completed during the field visit were as follows:
\(\checkmark\) A meteorological station was setup on the roof top a house in nearby village Donkhera which is near to the mine lease area. Wind speed, wind direction, dry and wet bulb temperature, relative humidity, and general weather conditions were recorded throughout the study period in an automated data logger.
\(\checkmark\) To assess the Ambient Air Quality (AAQ), samples of ambient air were collected by installation of Respirable Dust Sampler and Fine Particulate Sampler at different locations from the study area during study period and analysed for primary air pollutants to work out the existing status of air quality.
\(\checkmark\) Groundwater samples were collected during the study period from the existing handpumps and bore wells, while surface water was collected from nearest pond, rivers, and lakes. The samples were analysed for parameters necessary to determine water quality (based on IS: 10500: 2012, iS 3025 and APHA 23 \({ }^{\text {rd }}\) Edition, 2017 for ground water, water quality criteria classified by CPCB for surface water) and those which are relevant from the point of view of environmental impact of the proposed site.
\(\checkmark\) Soil samples were collected and analysed for relevant physical and chemical characteristics to assess the impact of the proposed plant on soil.

\footnotetext{
PROPONENT M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)
}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\(\checkmark\) The noise level measurements were also made at two locations in different intervals of time with the help of sound level meter to establish the baseline noise levels in the impact zone.
\(\checkmark\) Ecological data was procured from both primary and secondary sources. A primary data was collected through survey and walkover by ecological experts.
\(\checkmark\) Socio-economic data was collected from field studies and secondary sources like Census of India 2011 etc.

Table 3-1: Baseline Monitoring for the Environmental Parameters
\begin{tabular}{|c|l|l|}
\hline S. No. & Description \\
\hline 1 & \begin{tabular}{l} 
Ambient Alr \\
Ambient air monitoring ( 24 hourly samples) , twice a week continuously. \\
Parameters: \(\mathrm{PM}_{10}, \mathrm{PM}_{2.5}, \mathrm{SO}_{2}, \mathrm{NO}_{\times} \& \mathrm{CO}\)
\end{tabular} \\
\hline \(\mathbf{2}\) & Meteorological Parameters on hourly duration at project site. & \\
\hline 3 & \begin{tabular}{l} 
Water \\
Ground water sample for various locations ( 10.0 Km radius) once in each month of \\
monitoring season. Tested for physical and chemical parameters according to \\
applicable standards.
\end{tabular} \\
\hline \(\mathbf{4}\) & \begin{tabular}{l} 
Soil \\
Once in each month of monitoring season at various locations in study arfea
\end{tabular} \\
\hline \(\mathbf{5}\) & \begin{tabular}{l} 
Noise \\
Once in each month of monitoring season at various locations in core and \\
for day and night.
\end{tabular} & buffer zone \\
\hline
\end{tabular}

\subsection*{3.3.2. Secondary Data Collection}

Secondary data are those collected over the years that can be used to understand the existing environmental scenario of the study area. The secondary data is required to authenticate the primary data as the primary data was collected over the short period which should be comparing to know the trend of baseline data to compete the understanding of baseline scenario of the study area. The secondary sources used for reference for this project are given in below table.

Table 3-2: Detailed of Secondary Data Collection
\begin{tabular}{|c|c|c|c|c|}
\hline S. No. & Area & Description & Source & \\
\hline 1. & Meteorology & Temperature, humidity, rainfall, wind speed, Wind Direction & IMD Station Gurugram 2010). & \[
\mathrm{n} \quad \text { (1981- }
\] \\
\hline 2. & Ambient Air & \multirow[t]{2}{*}{\begin{tabular}{l}
Air Pollutants \\
Water (Surface \& Ground) \\
Characteristics
\end{tabular}} & \multirow[t]{3}{*}{CPCB.} & \\
\hline 3. & Water Quality & & & \\
\hline 4. & Soil Quality & Soil characteristics & & \\
\hline 5. & Nature of
terrain & Land-use & Survey of India ( National Remote Sensi (Satellite image). & Toposheet), sing Centre \\
\hline 6. & Hydrogeology & Geological formation, hydrogeological analysis & District Ground Water Booklet, Mahendragarh Haryana. & Information h District, \\
\hline
\end{tabular}

PROPONENT CONSULTANT

M/S XANDY MINES AND MINERALS
PARIVESH ENYIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|l|l|l|}
\hline S. No. & \multicolumn{1}{|c|}{ Area } & \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{c|}{ Source } \\
\hline 7. & Seismic Data & Seismic zone & Seismicity Map. \\
\hline 8. & \begin{tabular}{l} 
Biological \\
Environment
\end{tabular} & Inventory of flora \& fauna & District Forest Department. \\
\hline 9. & \begin{tabular}{l} 
Socio- \\
economic \\
status
\end{tabular} & \begin{tabular}{l} 
Demographic profile, \\
household, occupation status.
\end{tabular} & Census data (2001 \& 2011). \\
\hline
\end{tabular}

Source: Studies done by PARIVESH ENVIRONMENTAL ENGINEERING SERVICES

\subsection*{3.4. Physical Environment}

\subsection*{3.4.1. Seismic Status of Study Area}

The area which has struck by the present event has been described as a region of Seismic ZoneIII which is defined as moderate damage risk zone (MSK intensity VIII) in the Seismic Map of Haryana. Adequate measures need to be adopted during operation phase of the project-byproject proponent.
Seismic Hazard of Haryana: The seismic zoning map of Haryana is shown in Figure 3.2. Ambala, Sonipat, Rohtak, Kamal, Gurgaon, Faridabad, Panipat, Rewari and Yamuna Nagar districts lie in Zone IV. The districts of Kurukshetra, Jind, Hissar, Bhiwani, Mahendra Garh and Kaithal lie in Zone III while only Sirsa district lies in Zone II. The entire state of Delhi lies in Zone IV and so does the Union Territory of Chandigarh. Since the earthquake database in India is still incomplete, especially with regards to earthquakes prior to the historical period (before 1800 A.D.), these zones offer a rough guide of the earthquake hazard in any region and need to be regularly updated.

Figure 3.2: Earthquake Hazard Map of Haryana
```

PROPONENT M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)

```


\section*{Earthquake History of Haryana State}

Eastern parts of Haryana along with Delhi lie in the Gangetic Plain. This is a fore-deep a downward of the Himalayan foreland, of variable depth, converted into flat plains by long-vigorous sedimentation. This is known as a geosyndine and the Gangetic Plain is the Indo-Gangetic Geosyncline. This has shown considerable amounts of flexure and dislocation at the horthern end and is bounded on the north by the Himalayan Frontal Thrust. The floor of the Gangetic trough (if see without ali the sediments) is not an even plain but shows corrugated inequalities and buried ridges (shelf faults). The region sits atop the Delhi-Haridwar ridge, which is a sub-surface ridge, trending NE-SW. There are numerous faults in this region, like the Moradabad, Panipat and Sohna faults. Delhi, Chandigarh, and many parts of Haryana lie in Zone IV and thus they aire extremely vulnerable to earthquakes. Most earthquakes in this region are shallow though a few earthquakes of intermediate depth have been recorded in Haryana. The alluvial cover of the Indo-Gangetic plain makes even distant earthquake felt here quite strongly. This region often feels deep-seated earthquakes that are centred on the Pakistan-Afghanistan Border and in the Hindukush mountains in Afghanistars. However, it must be stated that proximity to faults does not necessarily translate
into a higher hazard as compared to areas located further away, as damage from earthquakes depends on numerous factors such as subsurface geology as well as adherence to the building codes.

\subsection*{3.4.2. Land-Use Details}

The objective of assessing the land use details of the area is to know the existing land use pattern of the area and to know about the land that can be used for the proposed development activities in the study area. It also enables to envisage the scenario emerging due to the increase in demand for land with increase in population and the impacts arising due to the interface with various project activities.
Methodology: The land use / land cover map is prepared by adopting the interpretation techniques of the satellite image in combination with collateral data such as Survey of India topographical maps and census records. Image classification has been done by using visual interpretation techniques and digital classification using the image processing software's. The various activities for preparation of Land-use (LU)/ Land cover (LC) include pre-processing, rectification, enhancements and classifying the satellite data for assessing the change in LU/LC due to proposed developmental activities. The imagery is interpreted, and ground verification was done for corrections. The final map is prepared after ground truthing of the study area. The different land use/land cover categories in the study area have been carried out based on the NRSC land use / land cover classification system.
Interpretation Technique: Standard on-screen visual interpretation procedure was followed. The various Land use / Land cover classes interpreted along with the Survey of India topographical maps during the initial rapid reconnaissance of the study area. The physiognomic expressions conceived by image elements of Colour, tone, texture, size, shape, pattern, shadow, location, and associated features are used to interpret the FCC imagery. Image interpretation keys were developed for each of the LU/LC dasses in terms of image elements.
FCC imagery (Digital data) was used for interpretation for the relevant land use classes. On screen visual interpretation coupled with supervised image classification techniques are used to prepare the land use classification.
\(\checkmark\) Digitization of the study area ( 10 km radius from the plant site) from the Survey of India Toposheet maps.
\(\checkmark\) Satellite Data Selection: In the present study the Landsat satellite image with Toposheet no. G43D13, G43D14, G43E1 \& G43E2 have been procured and interpreted using the ERDAS imaging software adopting the necessary interpretation techniques.
\(\checkmark\) Satellite data interpretation and vectorization of the resulting units.
\(\checkmark\) Field checking and ground truth validation.
\(\checkmark\) Composition of final LU/LC map.

\subsection*{3.3.2.1. Land-use of the Study Area}

Study area is mainiy covering agricultural land ( \(44.7 \%\) ) by following open scrub area ( \(35.5 \%\) ) \& forest land ( \(12.1 \%\) ) of the total study area.

Table 3-3: Land-use Classification of the Study Area
\begin{tabular}{ll} 
PROPONENT & M/S XANDV MINES AND MINERALS \\
CONSULTANT & PARIVESH ENVIRONMENTAL ENGINEERING SERVICES \\
& NABFT /EIA/2124/IA 0092(Rev.01)
\end{tabular}

PAGE. 80

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Minerai - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
\begin{tabular}{|c|c|c|c|c|}
\hline Classification (Level 1) & Category (Level 2) & Sub_Category (Level 3) & Area in Hectare & \[
\begin{gathered}
\text { Area in } \\
\%
\end{gathered}
\] \\
\hline Built-up & Rurâ \(:\) \% & Rural max & 1622.44 & 4.95 \\
\hline \multirow[t]{2}{*}{Agriculture Land} & Cropland & & 14651.11 & 44.71 \\
\hline & Fallow land & Fallow land & 193.50 & 0.59 \\
\hline \multirow[t]{3}{*}{} & H0hers &  & 19.54 & 0.06 \\
\hline & Pony & Sketataray & 31.72 & 0.10 \\
\hline &  & Non Perennial fivesma & 66.22 & 0.20 \\
\hline \multirow[t]{5}{*}{Wastelind sank} & Screw hand &  & 11623.10 & 35.47 \\
\hline & Sandy Area & & 12.45 & 0,04 \\
\hline & Mining Area. & W, & 289.80 & 0.88 \\
\hline & Stony Waster &  & 92.82 & 0.28 \\
\hline & Plantation - Cutas &  & 211.96 & 0.65 \\
\hline  & Deciduous (Div / Moist /Thorn) &  & 3956.35 & 12.07 \\
\hline Whetwothal &  &  & 2771.00 & 100.00 \\
\hline
\end{tabular}

Source: SOI Toposheet No. G43D13, G43D14, G43E1 8 G43E2.
Figure 3.3: Pia-gram of Land-Use Map of Study Area (10 km Buffer)


Figure 3.4: Land-Use Map of Study Area ( 10 km Buffer)

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metai \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed


DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
Figure 3.5: FCC Imagery of Study Area (10 km Buffer)


\subsection*{3.3.2.2. Land-use of the Project Area}

The proposed project site area is in river Yamuna as this is sand mining project from riverbed, Area land-use is detailed below.

Table 3-4: Land-use Classification of the Project Site
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Ciassification \\
(Level 1)
\end{tabular} & \begin{tabular}{c} 
Category (Level \\
2)
\end{tabular} & \begin{tabular}{c} 
Subcategory \\
(Level 3)
\end{tabular} & \begin{tabular}{c} 
Area in \\
Hectare
\end{tabular} & \begin{tabular}{c} 
Area in \\
\(\%\)
\end{tabular} \\
\hline Wastelands & Mining Area & & 4.80 & 100.00 \\
\hline
\end{tabular}

PROPONENT CONSULTANT

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Classification \\
(Level 1)
\end{tabular} & \begin{tabular}{c} 
Category (Level \\
2)
\end{tabular} & \begin{tabular}{c} 
Subcategory \\
(Level 3)
\end{tabular} & \begin{tabular}{c} 
Area in \\
Hectare
\end{tabular} & \begin{tabular}{c} 
Area in \\
\(\%\)
\end{tabular} \\
\hline Total & & 4.80 & 100.00 \\
\hline
\end{tabular}

Source: SOI Toposheet No. G43E1.
Figure 3.6: Land-Use Map of Project Site


\subsection*{3.4.3. Soil Environment}

To assess the baseline status of soil quality in the study area for tree plantation, filtration/ percolation of water, ground water scenario etc. total 6 soil samples were collected. The samples were collected by ramming an augur into the soil up to \(30-\mathrm{cm}\) depth. The sealed samples were

\footnotetext{
PROPONENT M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)
}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
sent to laboratory for analysis. Soil samples were analysed as per the standard methods prescribed in "Soil Chemical Analysis" (M.L. Jackson, 1967). The soil quality as analysed from the collected samples is given in Table 3.5 and the locations are shown in Figure 3.6.

Table 3-5: Soil Sampling Locations
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ S. No. } & Location Name & \multirow{2}{*}{ Location Code } & \multicolumn{2}{|c|}{ Co-ordinates } \\
\cline { 4 - 5 } & & Latitude & Longitude \\
\hline \(\mathbf{1}\) & Near Project Site & \(S-1\) & \(27^{\circ} 50^{\prime} 25.51^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 2^{\prime} 45.78^{\prime \prime} \mathrm{E}\) \\
\hline 2 & Golwa & \(S-2\) & \(27^{\circ} 50^{\prime} 39.70^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 1^{\prime} 49.56^{\prime \prime} \mathrm{E}\) \\
\hline 3 & Donkhera & \(S-3\) & \(27^{\circ} 51^{\prime} 5.81^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 3^{\prime} 19.11^{\prime \prime} \mathrm{E}\) \\
\hline 4 & Bhedanti & \(\mathrm{S}-4\) & \(27^{\circ} 50^{\prime} 56.16^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 4^{\prime} 14.75^{\prime \prime} \mathrm{E}\) \\
\hline \(\mathbf{5}\) & Dalpatpura & \(\mathrm{S}-5\) & \(27^{\circ} 49^{\prime} 50.03^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 3^{\prime} 14.34^{\prime \prime} \mathrm{E}\) \\
\hline
\end{tabular}

Figure 3.7: Soil Sampling Locations

District State Haryana proposed


The samples were analysed as per the standard methods prescribed in Department of Agriculture \& Cooperation Ministry of Agriculture; Government of India" \& IS 2720. The important properties analysed for soil are bulk density, porosity, infiltration rate, pH , and organic matter, kjehldal Nitrogen, Phosphorous and Potassium. The standard classification of soil and physico-chemical characteristics of the soils is presented below in Table 3.6.

Table 3-6: Soil Classification Standards as per ICAR
\begin{tabular}{|l|l|l|}
\hline Soil Test & \(\quad\) Classification \\
\hline pH & \(<4.5\) Extremely acidic & \(\sqrt{7.31-7.80}\) slightly alkaline \\
\hline
\end{tabular}

\footnotetext{
PROPONENT CONSULTANT
}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
\begin{tabular}{|c|c|c|}
\hline Soil Test & \multicolumn{2}{|c|}{Classification} \\
\hline & \begin{tabular}{l}
4.51-5.50 Very strongly acidic \\
5.51-6.0 moderately acidic \\
6.01-6.50 slightly acidic \\
6.51-7.30 Neutral
\end{tabular} & 7.81-8.50 moderately alkaline 8.51-9.0 strongly alkaline 9.01 very strongly alkaline \\
\hline Salinity Electrical
Conductivity
(mmhos/cm) (1 ppm \(=\)
\(640 \mathrm{mmhos} / \mathrm{cm})\) & Upto 1.00 Average
\begin{tabular}{l} 
1.01-2.00 harmful to \\
germination
\end{tabular} & 2.01-3.00 harmful to crops (sensitive to salts) \\
\hline Organic Carbon & \begin{tabular}{l}
Upto 0.2: very less \\
0.21-0.4: less \\
\(0.41-0.5\) medium,
\end{tabular} & 0.51-0.8: on an average
sufficient
\(0.81-1.00:\) sufficient
\(>1.0\) more than sufficient \\
\hline Nitrogen (Kg/ha) & Upto 50 very less 51-100 less 101-150 good & \begin{tabular}{l}
151-300 Better \\
\(>300\) sufficient
\end{tabular} \\
\hline Phosphorus (Kg/ha) & Upto 15 very less 16-30 less 31-50 medium, & 51-65 on an average sufficient 66-80 sufficient \(>80\) more than sufficient \\
\hline Potash (Kg/ha) & \(0-120\) very less 120-180 less 181-240 medium & \begin{tabular}{l}
241-300 average \\
301-360 better \\
\(>360\) more than sufficient
\end{tabular} \\
\hline
\end{tabular}

Source: Handbook of Agriculture, Indian Councll of Agriculture Research, New Delhi
Table 3-7: Soil Quality Results
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Parameters } & Unit & \(\mathbf{S - 1}\) & \(\mathbf{S - 2}\) & \(\mathbf{S - 3}\) & \(\mathbf{S - 4}\) & \(\mathbf{S - 5}\) \\
\hline pH & --- & 7.8 & 6.8 & 7.1 & 7.5 & 7.3 \\
\hline \(\begin{array}{l}\text { Electrical } \\
\text { Conductivity }\end{array}\) & umhos \(/ \mathrm{cm}\) & 279 & 2.57 & 284 & 314 & 324 \\
\hline Moisture & & \(\%\) & 13.7 & 22 & 16.8 & 14.3 & 18.2 \\
\hline Soil texture & USDA System & Loam & \(\begin{array}{c}\text { Sandy } \\
\text { Clay } \\
\text { Loom }\end{array}\) & Loam & Loam & Sandy Clay \\
Loam
\end{tabular}\(]\)

PROPONENT CONSULTANT

M/S XANDY MINES AND MINERALS
PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Parameters } & Unit & \(\mathbf{S - 1}\) & \(\mathbf{S - 2}\) & \(\mathbf{5 - 3}\) & \(\mathbf{S - 4}\) & \(\mathbf{5 - 5}\) \\
\hline Nitrogen as N & \(\mathrm{kg} / \mathrm{ha}\) as N & 313 & 259 & 281 & 287 & 298 \\
\hline Phosphorus & \(\mathrm{kg} / \mathrm{ha}\) as P & 15 & 16 & 16 & 18 & 22 \\
\hline Potassium as K & \(\mathrm{kg} / \mathrm{ha}\) as K & 72 & \(8 \mathbf{1}\) & 71 & 75 & 89 \\
\hline Organic Carbon & \(\%\) & 0.59 & 0.77 & 0.65 & 0.73 & 0.76 \\
\hline Organic matter & \(\%\) & 1.02 & 1.05 & 1.08 & 0.99 & \(\mathbf{1 . 1 2}\) \\
\hline
\end{tabular}

SQ-Soll Sampling Locations
Results Interpretation: The soil was predominantly Sandy Loam in the study area. The pH was found ranging from 6.8 to 7.8 , this presents that soil is neutral to moderately alkaline as per ICAR guideline. The conductivity was found varying from \(257 \mu \mathrm{mhos} / \mathrm{cm}\) to \(314 \mu \mathrm{mhos} / \mathrm{cm}\) in the study area. The level of organic carbon in study area found varying from \(0.99 \%\) to \(1.08 \%\) as observed sufficient to more than sufficient as per ICAR classification. Nitrogen was varying from \(259 \mathrm{~kg} / \mathrm{ha}\) to \(313 \mathrm{~kg} / \mathrm{ha}\) i.e., better to sufficient for soil fertility as per ICAR classification. Phosphorous was varying from \(15 \mathrm{~kg} / \mathrm{ha}\) to \(22 \mathrm{~kg} / \mathrm{ha}\) as observed very less to less in soil as per ICAR classification. Potassium was varying from \(71 \mathrm{~kg} / \mathrm{ha}\) to \(89 \mathrm{~kg} / \mathrm{ha}\) as observed very less to average in soil as per ICAR classification. Overall, the soil quality was found good in terms of fertility.

\subsection*{3.5. Water Environment}

\subsection*{3.5.1. Hydrogeology (Aquifer System)}

The district is underlain by alluvium and blown sand of Recent to sub-Recent age which are overlying the rocks of post Delhi and Delhi system. The alluvium in the area belongs to older alluvium stage comprising of sand, silt, clay, and calcareous nodules. The alluvium is the freshwater deposit of Indo-Gangetic River system.
In alluvium the granular zones exist down to entire thickness, which is negligible near the out crop of Delhi system to about 150 m in the northern part of district. The average thickness of the alluvium in the district is more than 50 m . Exploratory drilling has been carried out at 19 exploratory sites in alluvial formation and 35 in Hard rock areas. In alluvial formations the successful exploratory tube well tapped aquifer zones down to the depth of \(170 \mathrm{~m} \& 235 \mathrm{~m}\) yielding 220 lpm to 1200 lpm for 6 to 23 m drawdown.
The transmissivity value ranges from 150 to 810 mz /day in alluvial formations and between 370 and \(1685 \mathrm{~m} 2 /\) day in hard rocks. The lateral hydraulic conductivity ranges from 1.5 to \(20 \mathrm{~m} /\) day. In hard rock area the depth of bore holes ranges between 50 to 135 m and the water bearing zones in weathered fractured quartzite and limestone were tapped. The discharge of tube wells varies between 100 to 1325 Ipm with 3 to 15 m draw down in limestone aquifers. The discharge of tube wells constructed in quartzite formation ranges between 22 and 820 lpm for reasonable drawdowns.
The block wise ground water resource potential in the district has been assessed as per GEC 97. The stage of ground water development in the district ranges between \(49 \%\) (block -Narnaul) to \(178 \%\) (block -Kanina). The total replenishable ground water resource in the district is 21435 Ham . The net ground water draft is 22778 Ham., thus over exploiting 1343 Ham of ground water. The stage of ground water, development in the district is \(104 \%\).

PROPONENT
CONSULTANT

M/S XANDY MINES AND MINERALS
Parivesh environmental engineering services
NABFT /EIA/2124/IA 0092(Rev.01)

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
The water supply of the district is mainly based on ground water through tube wells. The water supply of the villages is met out through installation of hand pumps and construction of and dug wells by the local villagers.
Water for irrigation in the district is also based mainly on ground water. Out of total irrigated area of 1210 sq km an area of 1190 sq km is based on ground water irrigation. Only in 20 sq km irrigation is based on canals. Ground water is being extracted through large no of tupe wells and dug wells in the district.
The stage of ground water development in the district is \(107 \%\). This means that the ground water in the district is under stress and there is very limited scope for ground water development. Two numbers of artificial recharge schemes were implemented in the district in collaboration with the state agencies to create awareness in the district.

Figure 3.8: Hydrogeology Map of Mahendragarh District Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarn District State Haryana proposed


Figure 3.9: Pre-Monsoon (May 2012) \& Post-Monsoon (November 2012) Water Level

PROPONENT CONSULTANT

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Rgad Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed


Source: https://cgwb.gov,in/District Profile/Haryana/Mahendragarh.pdf

\subsection*{3.5.2. Water Level Fluctuation in Study Area}

To assess the ground water scenario, 5 samples were collected from dug wells. Sampling locations with co-ordinates are given below in Table 3.7. The water level fluctuation in ground water was varying from 10.8 MBGL to 15.0 MBGL in pre-monsoon and 9.6 MBGL to 13.6 MBGL in postmonsoon season.

Table 3-8: Ground Water Level Fluctuation in Area
\begin{tabular}{|c|c|c|c|c|}
\hline Location & Latitude & Longitude & Pre-Monsoon & Post-Monsoon \\
\hline \(\mathrm{WL}-1\) & \(27^{\circ} 50^{\prime} 26.58^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 2^{\prime} 40.47^{\prime \prime} \mathrm{E}\) & 10.80 & 9.60 \\
\hline \(\mathrm{WL}-2\) & \(27^{\circ} 50^{\prime} 38.60^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 1^{\prime} 51.71^{\prime \prime} \mathrm{E}\) & 11.40 & 10.20 \\
\hline \(\mathrm{WL}-3\) & \(27^{\circ} 51^{\prime} 6.00^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 3^{\prime} 21.50^{\prime \prime} \mathrm{E}\) & 12.60 & 11.80 \\
\hline \(\mathrm{WL}-4\) & \(27^{\circ} 50^{\prime} 56.32^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 4^{\prime} 16.59^{\prime \prime} \mathrm{E}\) & 13.80 & 12.60 \\
\hline \(\mathrm{WL}-5\) & \(27^{\circ} 50^{\prime} 3.27^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 3^{\prime} 27.36^{\prime \prime} \mathrm{E}\) & 15.00 & 13.60 \\
\hline
\end{tabular}

Figure 3.10: Water Level Fluctuation of Pre-monsoon and Post-monsoon


DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed

\subsection*{3.5.3. Ground Water Quality}

\subsection*{3.4.6.1. Methodology for Sampling \& Analysis}

Water samples were collected from the available identified water bodies during the pre-monsoon season (March to May 2023). Five ground water sources were examined for physico-chemical and heavy metals to access the effect of the already ongoing activities on surface and ground water. Water sampling locatlons are given in Table 3.9 \& Figure 3.11.

Table 3-9: Ground Water Sampling Location
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Location Name} & \multirow[t]{2}{*}{Location Code} & \multirow[t]{2}{*}{Distance (km)} & \multirow[t]{2}{*}{Direction} & \multicolumn{2}{|c|}{Co-Ordinates} \\
\hline & & & & Latitude & Longitude \\
\hline Atwa & GW1 & 0.42 & N & \(30^{\circ} 22^{\prime} 53.53^{\prime \prime} \mathrm{N}\) & \(77^{\circ} 9^{\prime} 49.86^{\prime \prime} \mathrm{E}\) \\
\hline Kashipur & GW2 & 1.5 & SE & \(30^{\circ} 23^{\prime} 42.83{ }^{\prime \prime} \mathrm{N}\) & \(77^{\circ} 11^{\prime} 29.01{ }^{\prime \prime} \mathrm{E}\) \\
\hline Sultanpur & GW3 & 1.38 & SE & \(30^{\circ} 22^{\prime} 10.69^{\prime \prime} \mathrm{N}\) & \(77^{\circ} 10^{\prime} 36.43{ }^{\prime \prime} \mathrm{E}\) \\
\hline Rahimpur & GW4 & 1.71 & WNW & \(30^{\circ} 22^{\prime} 33.32^{\prime \prime} \mathrm{N}\) & \(77^{\circ} 8^{\prime} 23.68^{\prime \prime} \mathrm{E}\) \\
\hline Gharbara & GW5 & 1.81 & WSW & \(30^{\circ} 24^{\prime} 49.22^{\prime \prime} \mathrm{N}\) & \(77^{\circ} 9^{\prime} 20.23^{\prime \prime} \mathrm{E}\) \\
\hline
\end{tabular}

Figure 3.11: Water Sampling Locations

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone) ) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed


Analyses of the samples were carried out as per established standard methods and procedures prescribed by CPCB, IS 3025 Codes and APHA 23rd edition, 2017. Samples for chemical analysis were collected in glass/plastic sterilized water bottles. Samples collected for metal content were acidified with 1 ml HNO 3 . Parameters like dissolved oxygen (DO) and pH were analysed at the time of sample collection. The analyze details of ground water is given below.

Table 3-10: Ground Water Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Source } & \multicolumn{4}{|c|}{ Handpump/Borewell } & \multicolumn{2}{c|}{ IS 10500:2012 } \\
\hline S. & Parameters & Unit & GW-1 & GW-2 & GW-3 & GW-4 & GW-5 & AL & PL \\
\hline No. & pH & -- & 7.20 & 7.60 & 7.20 & 7.70 & 7.50 & \(6.5-8.5\) & NR \\
\hline
\end{tabular}

PROPONENT CONSULTANT

M/S XANDY MINES AND MINERALS
PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT/EIA/2124/IA 0092(Rev.01)

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Source} & \multicolumn{5}{|c|}{Handpump / Borewell} & \multicolumn{2}{|l|}{IS \(10500: 2012\)} \\
\hline \begin{tabular}{l}
S. \\
No.
\end{tabular} & Parameters & Unit & GW-1 & GW-2 & GW-3 & GW-4 & GW-5 & AL & PL \\
\hline 2 & Conductivity & \(\mu \mathrm{S} / \mathrm{cm}\) & 1612 & 1298 & 1189 & 1342 & 2248 & \$ & \$ \\
\hline 3 & Total Dissolve Solids & \(\mathrm{mg} / \mathrm{l}\) & 1017 & 797 & 723 & 817 & 1361 & 500 & 2000 \\
\hline 4 & Alkalinity as \(\mathrm{CaCO}_{3}\) & \(\mathrm{mg} / \mathrm{l}\) & 328.4 & 160.0 & 237.1 & 245.0 & 360.0 & 200 & 600 \\
\hline 5 & Total Hardness as \(\mathrm{CaCO}_{3}\) & mg/l & 395.3 & 295.7 & 360.7 & 412.7 & 472.8 & 300 & 600 \\
\hline 6 & Calcium as Ca & \(\mathrm{mg} / \mathrm{l}\) & 86.3 & 62.4 & 68.4 & 74.3 & 89.3 & 75 & 200 \\
\hline 7 & Magnesjum as Mg & \(\mathrm{mg} / \mathrm{l}\) & 43.7 & 34.0 & 46.2 & 55.2 & 60.8 & 30 & 100 \\
\hline 8 & Sodium & \(\mathrm{mg} / \mathrm{l}\) & 176 & 134 & 89 & 107 & 245 & \$ & \$ \\
\hline 9 & Potassium & \(\mathrm{mg} / \mathrm{l}\) & 4 & 3 & 5 & 4 & 21 & \$ & \$ \\
\hline 10 & Bicarbonate & \(\mathrm{mg} / \mathrm{l}\) & 328.4 & 245.0 & 237.1 & 245.0 & 360.0 & \$ & \$ \\
\hline 11 & Chloride as Cl & \(\mathrm{mg} / \mathrm{l}\) & 304.9 & 244.0 & 209.3 & 267.0 & 451.0 & 250 & 1000 \\
\hline 12 & Sulphate as
\[
\mathrm{SO}_{4}
\] & \(\mathrm{mg} / \mathrm{l}\) & 60.0 & 65.0 & 58.0 & 54.0 & 120.0 & 200 & 400 \\
\hline 13 & Nitrate as \(\mathrm{NO}_{3}\) & \(\mathrm{mg} / 1\) & 2.1 & 1.9 & 1.0 & 2.1 & 3.1 & 45 & NR \\
\hline 14 & Total Nitrogen as N & \(\mathrm{mg} / \mathrm{l}\) & <0.5 & <0.5 & \(<0.5\) & <0.5 & <0.5 & \$ & \$ \\
\hline 15 & Fluoride as F & \(\mathrm{mg} / \mathrm{l}\) & 1.03 & 1.19 & 1.14 & 1.01 & 1.37 & 1.00 & 1.50 \\
\hline 16 & Total Phosphorus as P & \(\mathrm{mg} / \mathrm{l}\) & <0.03 & <0.03 & <0.03 & <0.03 & <0.03 & \$ & \$ \\
\hline 17 & Phenolic compound as \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\) & \(\mathrm{mg} / \mathrm{l}\) & \(<0.001\) & \(<0.001\) & <0.001 & <0.001 & <0.001 & 0.001 & 0.002 \\
\hline 18 & Cyanide & \(\mathrm{mg} / \mathrm{l}\) & <0.05 & <0.05 & \(<0.05\) & <0.05 & <0.05 & 0.05 & NR \\
\hline 19 & Aluminium & \(\mathrm{mg} / \mathrm{l}\) & \(<0.03\) & \(<0.03\) & \(<0.03\) & \(<0.03\) & \(<0.03\) & 0.03 & 0.2 \\
\hline 20 & Arsenic & \(\mathrm{mg} / \mathrm{l}\) & \(<0.01\) & \(<0.01\) & \(<0.01\) & <0.01 & \(<0.01\) & 0.01 & 0.05 \\
\hline 21 & Cadmium & \(\mathrm{mg} / \mathrm{l}\) & <0.003 & \(<0.003\) & \(<0.003\) & \(<0.003\) & <0.003 & 0.003 & NR \\
\hline 22 & Chromium as \(\mathrm{Cr}^{+6}\) & \(\mathrm{mg} / \mathrm{l}\) & \(<0.05\) & <0.05 & \(<0.05\) & \(<0.05\) & \(<0.05\) & 0.05 & NR \\
\hline 23 & Iron & \(\mathrm{mg} / \mathrm{l}\) & 0.31 & 0.11 & 0.21 & 0.1 & 0.14 & 0.3 & NR \\
\hline 24 & Copper & \(\mathrm{mg} / \mathrm{l}\) & \(<0.05\) & \(<0.05\) & <0.05 & \(<0.05\) & <0.05 & 0.05 & 1.5 \\
\hline 25 & Lead & \(\mathrm{mg} / 1\) & \(<0.01\) & \(<0.01\) & \(<0.01\) & \(<0.01\) & \(<0.01\) & 0.01 & NR \\
\hline 26 & Manganese & \(\mathrm{mg} / \mathrm{l}\) & \(<0.03\) & \(<0.03\) & \(<0.03\) & \(<0.03\) & \(<0.03\) & 0.1 & 0.3 \\
\hline 27 & Mercury & \(\mathrm{mg} / \mathrm{l}\) & \(<0.001\) & \(<0.001\) & \(<0.001\) & \(<0.001\) & \(<0.001\) & 0.001 & NR \\
\hline 28 & Zinc & \(\mathrm{mg} / \mathrm{l}\) & 1.8 & 2.1 & 1.7 & 1.8 & 2.2 & 5 & 15 \\
\hline
\end{tabular}

AL- Acceptable Limit, PL- Permissible Limits in absence of alternate sources, NR- No Relaxation

\section*{GROUND WATER RESULTS INTERPRETATION}

All the parameters were observed well within permissible limits for drinking water standard 10500:2012. \(\mathrm{pH}(7.2\) to 7.7 ), TDS ( \(723 \mathrm{mg} / 1\) to \(1361 \mathrm{mg} / \mathrm{l}\) ), alkalinity ( \(160.0 \mathrm{mg} / 1\) to \(360.0 \mathrm{mg} / \mathrm{l}\) ), Total Hardness ( \(295.7 \mathrm{mg} / \mathrm{I}\) to \(472.8 \mathrm{mg} / \mathrm{l}\) ), Calcium as \(\mathrm{Ca}(62.4 \mathrm{mg} / \mathrm{I}\) to \(89.3 \mathrm{mg} / \mathrm{l}\) ), Magnesium as \(\mathrm{Mg}(34.0 \mathrm{mg} / \mathrm{l}\) to \(60.8 \mathrm{mg} / \mathrm{l})\), Chloride ( \(209.3 \mathrm{mg} / \mathrm{l}\) to \(451.0 \mathrm{mg} / \mathrm{l})\) \& Sulphate \((54.0 \mathrm{mg} / \mathrm{l}\) to \(120.0 \mathrm{mg} / \mathrm{l})\) parameters were analysed. Water was also analysed for heavy metal. Fluoride level is very high and not good for health. Ground water quality of the Mahendragarh District is not potable without treatment.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed

\subsection*{3.5.4. Surface Water Quality}

Table 3-11: Surface Water Sampling Location
\begin{tabular}{|c|c|c|c|}
\hline Location Name & Location & \multicolumn{2}{|c|}{ Co-Ordinates } \\
\cline { 3 - 4 } & Code & Latitude & Longitude \\
\hline Pond Near Project Site & SW1 & \(27^{\circ} 50^{\prime} 31.29^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 2^{\prime} 55.13^{\prime \prime} \mathrm{E}\) \\
\hline Donkhera Ki Dhani Near Pond & SW2 & \(27^{\circ} 51^{\prime} 26.90^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 3^{\prime} 10.15^{\prime \prime} \mathrm{E}\) \\
\hline Bhedanti Near Pond & SW3 & \(27^{\circ} 50^{\prime} 57.54^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 4^{\prime} 32.83^{\prime \prime} \mathrm{E}\) \\
\hline Rampur Near Pond & SW4 & \(27^{\circ} 48^{\prime} 51.84^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 2^{\prime} 19.05^{\prime \prime} \mathrm{E}\) \\
\hline
\end{tabular}

Table 3-12: CPCB Water Quality Criteria
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { Designated Best } \\
& \text { Use }
\end{aligned}
\] & Class of water & Criteria & \\
\hline \multirow[t]{4}{*}{Drinking Water Source without conventional treatment but after disinfection} & \multirow[t]{4}{*}{A} & \multicolumn{2}{|l|}{Total Coliforms Organism MPN/ 100 ml shall be 50 or less} \\
\hline & & pH between 6.5 and 8.5 & \\
\hline & & Dissolved Oxygen \(6 \mathrm{mg} / \mathrm{l}\) or more & \\
\hline & & Biochemical Oxygen Demand 5 days \(20^{\circ}\) less & C \(2 \mathrm{mg} / \mathrm{l}\) or \\
\hline \multirow[t]{4}{*}{Outdoor bathing
(Organized)} & \multirow[t]{4}{*}{B} & Total Coliforms Organism MPN/ 100 ml shal less & be 500 or \\
\hline & & pH between 6.5 and 8.5 & \\
\hline & & Dissolved Oxygen \(5 \mathrm{mg} / \mathrm{l}\) or more & \\
\hline & & Biochemical Oxygen Demand 5 days \(20^{\circ}\) less & C \(3 \mathrm{mg} / \mathrm{l}\) or \\
\hline \multirow[t]{4}{*}{Drinking water source after conventional treatment and disinfection} & \multirow[t]{4}{*}{C} & Total Coliforms Organism MPN/100ml shall less & be 5000 or \\
\hline & & pH between 6 to 9 & \\
\hline & & Dissolved Oxygen \(4 \mathrm{mg} / \mathrm{l}\) or more & \\
\hline & & Biochemical Oxygen Demand 5 days \(20^{\circ}\) less & C \(3 \mathrm{mg} / 1\) or \\
\hline \multirow[t]{3}{*}{Propagation of
Wildife and Fisheries} & \multirow[t]{3}{*}{D} & pH between 6.5 to 8.5 & \\
\hline & & Dissolved Oxygen \(4 \mathrm{mg} / \mathrm{l}\) or more & \\
\hline & & Free Ammonia (as N ) \(1.2 \mathrm{mg} / \mathrm{l}\) or less & \\
\hline \multirow[t]{4}{*}{Irrigation, Industrial Cooling, Controlled Waste disposal} & \multirow[t]{4}{*}{E} & pH between 6.0 to 8.5 & \\
\hline & & Electrical Conductivity at \(25^{\circ} \mathrm{C}\) micro Max. 2250 & mhos/cm \\
\hline & & Sodium absorption Ratio Max. 26 & \\
\hline & & Boron Max. 2mg/l & \\
\hline & Below-E & Not Meeting A, B, C, D \& E Criteria & \\
\hline
\end{tabular}

The analyze details of surface water is given in Table 3.13.
Table 3-13: Surface Water Results

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
S. \\
No \\
。
\end{tabular}} & \multirow[t]{2}{*}{Parameters} & \multirow[t]{2}{*}{Unit} & \multirow[t]{2}{*}{SW-1} & \multirow[t]{2}{*}{SW-2} & \multirow[t]{2}{*}{SW-3} & \multirow[t]{2}{*}{SW-4} & \multicolumn{2}{|l|}{CPCB
Standards*} \\
\hline & & & & & & & \[
\begin{gathered}
\text { IS } \\
2296
\end{gathered}
\] & Class \\
\hline 1 & Turbidity & NTU & 17.9 & 19.5 & 18.5 & 17.5 & \$ & \$ \\
\hline 2 & pH & -- & 7.54 & 8.14 & 7.36 & 8.11 & \[
\begin{gathered}
6.5- \\
8.5
\end{gathered}
\] & \[
\begin{gathered}
\text { Class } \\
\text { A }
\end{gathered}
\] \\
\hline 3 & Temperature & \({ }^{0} \mathrm{C}\) & 25.1 & 25.6 & 25.9 & 25.8 & \$ & \$ \\
\hline 4 & Total Suspended Solids & \(\mathrm{mg} / \mathrm{l}\) & 39 & 33 & 25 & 31 & \$ & \$ \\
\hline 5 & Conductivity & \(\mu \mathrm{S} / \mathrm{cm}\) & 632 & 599 & 548 & 521 & \$ & \$ \\
\hline 6 & Total Dissolve Solids & \(\mathrm{mg} / \mathrm{l}\) & 457 & 484 & 399 & 418 & \$ & \$ \\
\hline 7 & Alkalinity as \(\mathrm{CaCO}_{3}\) & mg/l & 168.9 & 176.9 & 181.1 & 183.6 & \$ & \$ \\
\hline 8 & Total Hardness as \(\mathrm{CaCO}_{3}\) & mg/l & 179.2 & 168.7 & 180.7 & 180.0 & \$ & \$ \\
\hline 9 & Calcium as Ca & \(\mathrm{mg} / \mathrm{l}\) & 42.3 & 39.9 & 41.9 & 45.9 & \$ & \$ \\
\hline 10 & Magnesium as Mg & \(\mathrm{mg} / \mathrm{l}\) & 17.9 & 16.8 & 18.5 & 15.9 & \$ & \$ \\
\hline 11 & Sodium & \(\mathrm{mg} / \mathrm{l}\) & 30 & 38 & 35 & 33 & \$ & \$ \\
\hline 12 & Potassium & \(\mathrm{mg} / \mathrm{l}\) & 4 & 5 & 4 & 5 & \$ & \$ \\
\hline 13 & Bicarbonate & \(\mathrm{mg} / \mathrm{l}\) & 168.9 & 176.9 & 181.1 & 183.6 & \$ & \$ \\
\hline 14 & Chloride as Cl & \(\mathrm{mg} / \mathrm{l}\) & 48.5 & 46.9 & 42.6 & 44.5 & \$ & \$ \\
\hline 15 & Sulphate as \(\mathrm{SO}_{4}\) & \(\mathrm{mg} / \mathrm{l}\) & 30.3 & 32.4 & 36.8 & 33.9 & \$ & \$ \\
\hline 16 & Nitrate as \(\mathrm{NO}_{3}\) & \(\mathrm{mg} / \mathrm{l}\) & 9.9 & 10.2 & 11.9 & 10.1 & \$ & \$ \\
\hline 17 & Total Carbon & \(\mathrm{mg} / 1\) & \(<1\) & <1 & <1 & <1 & \$ & \$ \\
\hline 18 & Fluoride as F & mg/l & 0.98 & 0.87 & 0.71 & 0.84 & 1.5 & \$ \\
\hline 19 & Phenolic compound as
\[
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}
\] & \(\mathrm{mg} / \mathrm{l}\) & <0.001 & <0.001 & <0.001 & \[
\begin{gathered}
<0.00 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.00 \\
5
\end{gathered}
\] & \$ \\
\hline 20 & Nicke! & \(\mathrm{mg} / \mathrm{l}\) & \(<0.03\) & \(<0.03\) & \(<0.03\) & <0.03 & \$ & \$ \\
\hline 21 & Arsenic & \(\mathrm{mg} / \mathrm{l}\) & \(<0.020\) & <0.020 & \(<0.020\) & \[
\begin{gathered}
<0.02 \\
0
\end{gathered}
\] & 0.2 & \$ \\
\hline 22 & Cadmium & \(\mathrm{mg} / \mathrm{l}\) & \(<0.01\) & <0.01 & \(<0.01\) & <0.01 & \$ & \$ \\
\hline 23 & Chromium as \(\mathrm{Cr}^{+6}\) & \(\mathrm{mg} / \mathrm{l}\) & \(<0.05\) & \(<0.05\) & \(<0.05\) & \(<0.05\) & \$ & \$ \\
\hline 24 & Iron & \(\mathrm{mg} / \mathrm{l}\) & 0.54 & 0.49 & 0.69 & 0.68 & \$ & \$ \\
\hline 25 & Lead & \(\mathrm{mg} / \mathrm{l}\) & \(<0.1\) & \(<0.1\) & <0.1 & \(<0.1\) & \$ & \$ \\
\hline 26 & Zinc & \(\mathrm{mg} / \mathrm{l}\) & 2.8 & 3.3 & 4.1 & 0.51 & \$ & \$ \\
\hline 27 & Dissolve Oxygen & \(\mathrm{mg} / 1\) & 6.9 & 6.2 & 7.1 & 6.8 & 5 & \[
\begin{gathered}
\text { Class } \\
\hline
\end{gathered}
\] \\
\hline 28 & COD & mg/l & 9.6 & 10.1 & 9.2 & 8.9 & \$ & \$ \\
\hline 29 & BOD, \(27^{\circ} \mathrm{C} 3\) days & \(\mathrm{mg} / \mathrm{l}\) & <5 & <5 & <5 & <5 & 3 & \[
\begin{gathered}
\text { Belo } \\
\text { W } \\
E^{* *}
\end{gathered}
\] \\
\hline 30 & Total Coliforms & MPN / 100 ml & \[
\begin{gathered}
0.3 x \\
10^{3}
\end{gathered}
\] & \[
\begin{gathered}
0.2 \times \\
10^{3}
\end{gathered}
\] & \[
\begin{gathered}
0.1 x \\
10^{3}
\end{gathered}
\] & \[
\begin{gathered}
0.2 \times \\
10^{3}
\end{gathered}
\] & 500 & \[
\begin{gathered}
\text { Class } \\
\text { B }
\end{gathered}
\] \\
\hline
\end{tabular}
*IS 2296-class B designated for inland surface water \& class as per CPCB Water Quality Criteria, ** Not meeting to any class defined by CPCB.

OBSERVATIONS \& INTERPRETATIONS

The parameters were analysed compared to CPCB water quality criteria. The pH was varying between 7.2 to 7.8 , denotes water meeting to the Class A which is defined for Drinking Water Source without conventional treatment but after disinfection. Dissolved Oxygen was varying between 6.2 to 7.1, denotes water quality meeting to Class \(A\). Total Coliform is medting to Class B which denotes as Outdoor bathing (Organized). The water is suitable for irrigation purposes.

\subsection*{3.6. Meteorological Condition}

Meteorology is the key to understand the air quality. The essential relationship between meteorological condition and atmospheric dispersion involves the wind in the broadest sense. Wind fluctuations over a very wide range of time, accomplish dispersion and strongly influence other processes associated with them.

\subsection*{3.6.1. Meteorological Data as per IMD Gurugram (Haryana)}

The climate of Mahendragarh district can be classified as tropical steppe, semi-arid and hot which is mainly dry with very hot summer and cold winter except during monsoon season when moist air of oceanic origin penetrates the district. There are four seasons in a year. The hot weather season starts from mid-March to last week of the June followed by the south-west monsoon which lasts up to September. The transition period from September to October forms the post-monsoon season. The winter season starts late in November and remains up to first week of March. The normal annual rainfall of the district is 420 mm which is unevenly distributed over the area 22 days. The southwest monsoon sets in from last week of June and withdraws in in end of September, contributed about \(85 \%\) of annual rainfall. July and August are the west test months. Rest \(15 \%\) rainfall is received during non-monsoon period in the wake of western disturbances and thunderstorms. Generally, rainfall in the district increases from southwest to northeast. The general direction of wind in summer season is west to east and in winter it is horthwest to southwest.
\begin{tabular}{ll} 
Normal Annual Rainfall & \(: 420 \mathrm{~mm}\) \\
Normal Monsoon Rainfall & \(: 355 \mathrm{~mm}\) \\
Temp. Mean Maximum & \(: 41^{\circ} \mathrm{C}\) (May \& June) \\
Normal Rain Days & \(: 22\)
\end{tabular}

The meteorological data is collected from the nearest IMD station at Gurugram, Haryana. The monthly maximum, minimum and average values are collected for all the parameters like rainfall, temperature, humidity \& wind speed are presented in Table 3.14.

Table 3-14: Meteorological Table as per IMD, Gurugram (1981-2010)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Season / Month}} & \multirow[b]{2}{*}{Rainfall (mm)} & \multicolumn{2}{|l|}{Temperature ( \({ }^{\circ} \mathrm{C}\) )} & \multicolumn{2}{|l|}{Humidity (\%)} & \multicolumn{2}{|c|}{Wind} \\
\hline & & & Max & Min & \[
08.30
\] & \[
17: 30
\] & Speed & Direction \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& \text { B } \\
& \text { 芯 } \\
& 3
\end{aligned}
\]} & December & 9.9 & 27.0 & 2.8 & 80.0 & 55.0 & 2.0 & NW, W \\
\hline & January & 15.0 & 24.9 & 2.4 & 82.0 & 54.0 & 2.8 & NW, W \\
\hline & February & 21.4 & 28.7 & 4.2 & 73.0 & 45.0 & 3.4 & NW, SE \\
\hline & Total / Mean & 46.3 & 26.9 & 3.1 & 78.3 & 51.3 & 2.7 & - \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& E \\
& \stackrel{E}{5} \\
& \stackrel{y}{0}
\end{aligned}
\]} & March & -12.3 & 35.7 & 8.0 & 65.0 & 37.0 & 4.1 & NW, SE \\
\hline & April & 18.2 & 42.1 & 13.3 & 49.0 & 28.0 & 4.3 & NW, W \\
\hline
\end{tabular}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Season / Month}} & \multirow[t]{2}{*}{Rainfall (mm)} & \multicolumn{2}{|l|}{Temperature ( \({ }^{\circ} \mathrm{C}\) )} & \multicolumn{2}{|l|}{Humidity (\%)} & \multicolumn{2}{|c|}{Wind} \\
\hline & & & Max & Min & \[
\begin{gathered}
08.30 \\
\text { hrs. }
\end{gathered}
\] & \[
\begin{gathered}
\text { 17:30 } \\
\text { hrs. }
\end{gathered}
\] & Speed (kmph) & Direction \\
\hline & May & 34.3 & 44.5 & 18.3 & 48.0 & 31.0 & 4.6 & NW, SE \\
\hline & Total / Mean & 64.8 & 40.8 & 13.2 & 54.0 & 32.0 & 4.3 & - \\
\hline \multirow{5}{*}{} & June & 67.3 & 44.9 & 24.6 & 57.0 & 40.0 & 5.5 & NW, SE \\
\hline & July & 171.3 & 40.2 & 23.1 & 76.0 & 63.0 & 4.1 & SE, NW \\
\hline & August & 190.7 & 37.8 & 23.2 & 81.0 & 69.0 & 2.1 & SE, NW \\
\hline & September & 93.8 & 37.6 & 20.5 & 74.0 & 59.0 & 2.6 & NW, SE \\
\hline & Total / Mean & 523.1 & 40.1 & 22.9 & 72.0 & 57.8 & 3.6 & - \\
\hline \multirow[t]{4}{*}{\[
\begin{array}{ll}
\text { E } \\
\text { i } \\
\text { i } \\
0 \\
0 \\
0 & 0 \\
0 \\
\hline
\end{array}
\]} & October & 12.0 & 36.2 & 12.4 & 66.0 & 45.0 & 1.9 & NW, SE \\
\hline & November & 10.7 & 32.7 & 7.2 & 66.0 & 47.0 & 1.6 & NW, W \\
\hline & December & 9.9 & 27.0 & 2.8 & 80.0 & 55.0 & 2.0 & NW, W \\
\hline & Total / Mean & 32.6 & 32.0 & 7.5 & 70.7 & 49.0 & 1.8 & , \\
\hline \multicolumn{9}{|c|}{Total Annual average Rainfall is 657 (mm)} \\
\hline
\end{tabular}

Source: https://imdpune.gov.in/library/publication.htmb;
Figure 3.12: Average Rainfall (30 Years)

13.5 drys

10 deys

httpsi//wwwimeteoblue.com/en/weather/historyclimate/climatemodelled/mahendragarh india_1264395

\subsection*{3.6.2. Onsite Micro-Meteorology (Hourly)}

The data on meteorological parameters in the study area were monitored continuously for premonsoon season (March to May 2023). A meteorological station was setup on the roof top a house in nearby habitat to proposed lease. Wind speed, wind direction, dry and wet bulb temperature, relative humidity, and general weather conditions were "recorded throughout the study period in an automated data logger.

\footnotetext{
PROPONENT CONSULTANT
}

Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
Table 3-15: On-site Micro Meteorological Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Months} & \multicolumn{3}{|l|}{Temperature ( \({ }^{\circ} \mathrm{C}\) )} & \multicolumn{3}{|l|}{Relative Humidity (\%)} & \multicolumn{2}{|l|}{Average Wind Speed} & Rainfall \\
\hline & Max. & Min. & Average & Max. & Min. & Average & m/s & kmph & mm \\
\hline March & 36.7 & 14.6 & 26.8 & 81.5 & 47.0 & 62.2 & 8.2 & 2.3 & 23.6 \\
\hline April & 41.6 & 20.7 & 31.7 & 80.9 & 46.3 & 62.5 & 11.1 & 3.1 & 11.8 \\
\hline May & 43.1 & 22.2 & 32.8 & 83.2 & 47.7 & 64.4 & 13.5 & 3.8 & 46.0 \\
\hline Average & 40.5 & 19.2 & 30.4 & 81.9 & 47.0 & 63.0 & 11.0 & 3.0 & 81.4 \\
\hline
\end{tabular}

The maximum temperature recorded during the study period was \(43.1^{\circ} \mathrm{C}\) in the month of May and the minimum temperature was \(14.6^{\circ} \mathrm{C}\) in the month of March. The highest RH found in the study area was \(83.2 \%\) in the month of May, while minimum monthly average RH found \(46.3 \%\) in the month of April. The average wind speed recorded was \(3.0 \mathrm{~m} / \mathrm{sec}\). Predominant wind direction during the study period was mainly North-West to South-East followed by west to east. Hourly onsite micro-meteorological data is enclosed as Annex 3.1.

Figure 3.13: Wind Pattern as per IMD Gurugram \& Onsite


\subsection*{3.7. Air Environment}

The baseline studies on air environment include identification of specific air pollution parameters and their existing levels in ambient air. The ambient air quality with respect to the core and buffer zone of 10 km radius around the proposed project site forms the baseline information. The sources of air pollution in the region are mostly due to vehicular traffic, dust arising from unpaved village road and domestlc fuel/ biomass burning. The quantification of impacts of the proposed project on the ambient air quality requires to evaluate the existing ambient air quality of the area.

\subsection*{3.7.1. Monitoring Methodology, Parameters \& Locations}

Monitoring has been carried out as per the latest CPCB and MoEF\&CC guidelines and notifications. This is to allow a comparison with the present revised standards mentioned in the latest Gazette Notification of the Central Pollution Control Board (November 2009).

The monitoring has been carried out at a frequency of two samples per week at each of 8 locations, adopting a continuous 24 -hour continuous schedule for Particulate Matter, Sulphur Dioxide and Nitrogen Dioxide except CO for one hour. It was ensured that the equipment was placed at a height of at least 1 m to 1.5 m above the ground level at each monitoring station, for negating the effects of windblown ground dust. Also, distance of the sampler to any air flow obstacle i.e., buildings, must be more than two times the height of the obstacle above the sampler has been ensured. The equipment was placed at open space free from trees and vegetation which otherwise act as a sink of pollutants resulting in lower levels in monitoring results.
The sampling locations for ambient air quality were established based on the following considerations: Meteorological conditions including wind direction, Topography of the study area; and Representativeness of regional background air quality for obtaining baseline status.

Table 3-16: Ambient Air Monitoring Locations
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline S. No. & Location Name & Code & Distance (km) & Direction & Latitude & Longitude \\
\hline 1 & Near Project Site & AAQ-1 & 0.2 & NNE & \(27^{\circ} 50^{\circ} 27.05^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 2^{\prime} 40.97^{\prime \prime} \mathrm{E}\) \\
\hline 2 & Mina Ka Nangal & AAQ-2 & 1.4 & SW & \(27^{\circ} 49^{\prime} 46.32^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 2^{\prime} 4.26^{\prime \prime} \mathrm{E}\) \\
\hline 3 & Golwa & AAQ-3 & 1.6 & WNW & \(27^{\circ} 50^{\prime} 38.52^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 1^{\prime} 43.77^{\prime \prime} \mathrm{E}\) \\
\hline 4 & Donkhera Ki Dhani & AAQ-4 & 1.4 & NNE & \(27^{\circ} 51^{\prime} 23.13^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 3^{\prime} 10.25^{\prime \prime} \mathrm{E}\) \\
\hline 5 & Bhedanti & AAQ-5 & 2.3 & ENE & \(27^{\circ} 50^{\prime} 58.99^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 4^{\prime} 18.83^{\prime \prime} \mathrm{E}\) \\
\hline 6 & Dilpura & AAQ-6 & 1.3 & SE & \(27^{\circ} 50^{\prime} 2.72^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 3^{\prime} 27.36^{\prime \prime} \mathrm{E}\) \\
\hline 7 & Rampura & AAQ-7 & 2.6 & SSE & \(27^{\circ} 48^{\prime} 57.00^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 2^{\prime} 46.06^{\prime \prime} \mathrm{E}\) \\
\hline
\end{tabular}

Figure 3.14: Ambient Air Monitoring Locations

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed


\subsection*{3.7.2. Air Quality of Study Area}

Consolidated values of ambient air quality are given in Table 3.17. The locations-wise air quality results twice a weak are given in separate document which is enclosed as Annex 3.2.
AIR QUALITY RESULT INTERPRETATION
\(\checkmark\) Particulate Matter: PM \({ }_{10}\) was varying from \(42 \mu \mathrm{~g} / \mathrm{m}^{3}\) to \(82 \mu \mathrm{~g} / \mathrm{m}^{3} . \mathrm{PM}_{2.5}\) was observed 15 \(\mu \mathrm{g} / \mathrm{m}^{3}\) to \(34 \mu \mathrm{~g} / \mathrm{m}^{3}\).
\(\checkmark\) Gaseous Pollutants: \(\mathrm{SO}_{2}\) was varying from \(5.8 \mu \mathrm{~g} / \mathrm{m}^{3}\) to \(11.6 \mu \mathrm{~g} / \mathrm{m}^{3}\). NOX was observed \(10.1 \mu \mathrm{~g} / \mathrm{m}^{3}\) to \(16.0 \mu \mathrm{~g} / \mathrm{m}^{3}\) in study area: CO was observed from \(0.41 \mathrm{mg} / \mathrm{m}^{3}\) to \(1.12 \mathrm{mg} / \mathrm{m}^{3}\) in study area.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh
\(\checkmark\) The mineralogical composition of free silica in PM10 was also analysed and is presented in the Table 3.17, which follows the standard ToR requirement.
\(\checkmark\) As per the results observed of ambient air quality of the project site and the surrounding areas, the ambient air quality is well below the NAAQS limits, however after commissioning of the project the prevailing baseline status of area will be changed so to maintain the ambient air quality of the area.
\(\checkmark\) To control the air pollution, proper measurements along with suitable EMP will be adopted, which will be elaborated in environment management plan and impact chapter of report.
DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine


* 24 hourly or 8 hourly or 1 hourly monitored value, as applicable shall be complied with \(98 \%\) of the time in a year, ** Annual Arithmetic Means of minimum 104 measurements in a year at a site taken twice a week 24 hourly at uniform intervals, *** Category defined as Residential, Industrial \& Sensitive. \(5 \%\) of the time they may exceed the limits but not on two consecutive days of monitoring, For CO 1 hourly standard is being considered.
Table 3-18: Mineralogical Composition of PM10
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Location Name & Date & PM 10 ( \(\mathrm{g} / \mathrm{m}^{3}\) ) & Free Silica (\%) & \(\mathrm{Ca}\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)\) & \(\mathrm{Mg}\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)\) & \(\mathrm{Ni}\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)\) & \(\mathrm{Pb}\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)\) \\
\hline Near Project Site & 25-03-2023 & 82 & 4.1 & 1.23 & 0.82 & \(<0.5\) & <0.05 \\
\hline Mina Ka Nangal & 11-03-2023 & 63 & 3.2 & 0.98 & 0.61 & <0.5 & \(<0.05\) \\
\hline Golwa & 08-05-2023 & 47 & 2.4 & 0.69 & 0.49 & \(<0.5\) & <0.05 \\
\hline Donkhera Ki & 10-03-2023 & 57 & 2.9 & 0.87 & 0.62 & \(<0.5\) & \(<0.05\) \\
\hline Dhani & & & & & & & \\
\hline Bhedanti & 20-04-2023 & 59 & 3.2 & 0.91 & 0.55 & \(<0.5\) & \(<0.05\) \\
\hline Dilpura & 05-04-2023 & 58 & 2.8 & 0.88 & 0.69 & \(<0.5\) & \(<0.05\) \\
\hline Rampura & 29-04-2023 & 65 & 3.4 & 1.13 & 0.73 & <0.5 & \(<0.05\) \\
\hline
\end{tabular}

\subsection*{3.8. Noise Environment}

\subsection*{3.8.1. Ambient Noise Level Monitoring Stations}

In the present study, sound pressure levels (SPL) were measured by a sound level meter (Model: Envirotech Make SLM 100). Since loudness of sound is important for its effects on people, the dependence of loudness upon frequency must be considered in noise impact assessment. This has been achieved using A-weighting filters in the noise measuring instrument which gives a direct reading of approximate loudness. A-weighted equivalent continuous sound pressure level (Leq) values have been computed from the values of A-weighted sound pressure level measured with the help of noise meter.

\subsection*{3.8.2. Frequency \& Parameters of Sampling}

Noise levels were recorded continuous for 24 hours at an interval of 60 minutes during the day and night times to compute the day equivalent, night equivalent and day-night equivalent level. The noise level was monitored once during the study period at each monitoring location. The noise level is recorded in \(\mathrm{dB}(\mathrm{A})\). The important parameters measured are Leq, Lday, and Lnight.

\subsection*{3.8.3. Ambient Noise Level Monitoring Locations}

Assessment of ambient noise levels is an important parameter in preparation of impact assessment report. The environmental impact of noise can have several effects varying from annoyance to hearing loss depending on loudness of noise levels. The monitoring for noise levels were done in Six locations keeping considering the population and traffic of the area.

Table 3-19: Ambient Noise Monitoring Locations
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline S. No. & Location Name & Location Code & Distance (km) & Direction & Latitude & Longitude \\
\hline 1 & Near Project Site & \(\mathrm{N}-1\) & 0.3 & NNE & 27* \({ }^{\circ} 0^{\prime} 27.05^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 2^{\prime \prime} 40.97^{\prime \prime} \mathrm{E}\) \\
\hline 2 & Mina Ka Nangal & \(\mathrm{N}-2\) & 1.4 & SW & \(27^{\circ} 49^{\prime} 46.32^{\prime \prime} \mathrm{N}\) & \(76^{\circ} \mathrm{Z}^{\prime} 4.26^{\prime \prime} \mathrm{E}\) \\
\hline 3 & Golwa & \(\mathrm{N}-3\) & 1.7 & WNW & \(27^{\circ} 50^{\prime} 38.52^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 1^{1} 43.77^{\prime \prime} \mathrm{E}\) \\
\hline 4 & Donkhera Ki Dhani & \(\mathrm{N}-4\) & 1.5 & NNE & \(27^{\circ} 51{ }^{\prime} 23.13^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 3^{\prime} 10.25^{\prime \prime} \mathrm{E}\) \\
\hline 5 & Bhedanti & N-5 & 2.3 & ENE & 270 \({ }^{\prime}\) '58.99"N & \(76^{\circ} 4^{\circ} 18.83{ }^{\prime \prime} \mathrm{E}\) \\
\hline 6 & Dilpura & N-6 & 1.3 & SE & 27050'2.72"N & \(76^{\circ} 3^{\prime} 27.36^{\prime \prime} \mathrm{E}\) \\
\hline 7 & Rampura & \(\mathrm{N}-7\) & 3 & SSE & \(27^{\circ} 48^{\prime} 57.00^{\prime \prime} \mathrm{N}\) & \(76^{\circ} 2^{\prime} 46.06^{\prime \prime} \mathrm{E}\) \\
\hline
\end{tabular}

Figure 3.15: Ambient Noise Level Locations

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed


\subsection*{3.8.4. Method of Monitoring}

At each location, noise monitoring has been carried out once during study period over a period of 24 hours to obtain Leq values at uniform time intervals of 1 hour. In each hourly time interval Leq values have been computed from SPL readings taken at uniform time intervals of 10 minutes. For each location, day and night-time Leq values have then been computed from the hourly Leq values such that comparison could be made with the national ambient noise standards. Day time Leq was computed from the hourly Leq values between \(6.00 \mathrm{AM}-10.00 \mathrm{PM}\) and night-time Leq from the hourly Leq values between 10.00PM- 6.00AM.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA
( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
For noise levels measured over a given period interval, it is possible to describe important features of noise using statistical quantities. This is calculated using the percent of the time certain noise levels exceeds the time interval.
The notation for the statistical quantities of noise levels is described below:
\(\checkmark\) Hourly Leq values have been computed by integrating sound level meter.
\(\checkmark\) Lday: As per the CPCB guidelines the day-time limit is between 06:00 hours to 22.00 hours as outlined in Ministry of Environment and Forest Notification S.O. 123 (E) dated 14/02/2000.
\(\checkmark\) Lnight: As per the CPCB guidelines the night-time limit is between 22:00 hours to 06.00 hours as outlíned in Ministry of Environment and Forest Notification S.O. 123 (E) dated 14/02/2000.
\(\checkmark\) Ldn: A rating developed by Environmental Protection Agency, (US-EPA) for specification of community noise from all the sources is the Day Night Sound Level, (Ldn). It is like a 24-hr equivalent sound level except that during night period ( 10 PM to 06 AM ) a 10 dB (A) weighting penalty is added to the instantaneous sound level before computing the \(24-\mathrm{hr}\) average.

Table 3-20: Ambient Noise Level (CPCB Standards)
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Area \\
Code
\end{tabular}} & \multirow{2}{*}{ Type of Area } & \multicolumn{2}{|c|}{ Limits in dB(A) Leq* } \\
\hline & & Day (06:00hrs to 20:00hrs) & Night (20:00hrs to 06:00hrs) \\
\hline A & Industrial Area & 75 & 70 \\
\hline B & Commercial Area & 65 & 55 \\
\hline C & Residential Area & 55 & 45 \\
\hline D & Silence Zone & 50 & 40 \\
\hline
\end{tabular}
* Silence zone is defined as an area up to 100 meters around such premises as hospitals, educational institutions, and courts. The silence zones are to be declared by the competent authority.

\subsection*{3.8.5. Ambient Noise Level in Study Area}

An analysis of the different Leq data obtained during the study period has been made. Variation was noted during the day - time as well as night - time. The results are presented in Table 3.20.

Table 3-21: Ambient Noise Quality Result
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Noise Location} & \multirow[b]{2}{*}{Zone} & \multirow[b]{2}{*}{Code} & \multicolumn{4}{|c|}{Day} & \multicolumn{4}{|c|}{Night} \\
\hline & & & Std. & I. Max & \[
\stackrel{L}{\mathrm{Min}}
\] & L eq & Std. & L Max & \[
\underset{M i n}{L}
\] & 1 eq \\
\hline Near Project Site & \multirow{7}{*}{} & AN-1 & 55 & 54.9 & 38.6 & 49.9 & 45 & 40.2 & 29.5 & 35.6 \\
\hline Mina Ka Nangal & & AN-2 & 55 & 56.4 & 39.5 & 50.4 & 45 & 38.2 & 29.3 & 34.3 \\
\hline Golwa & & AN-3 & 55 & 55.0 & 39.6 & 49.6 & 45 & 38.9 & 29.9 & 35.0 \\
\hline Donkhera Ki Dhani & & AN-4 & 55 & 54.2 & 40.6 & 49.0 & 45 & 37.6 & 30.0 & 34.5 \\
\hline Bhedanti & & AN-5 & 55 & 55.9 & 39.5 & 50.3 & 45 & 38.6 & 29.9 & 34.8 \\
\hline Dilpura & & AN-6 & 55 & 53.9 & 41.6 & 49.6 & 45 & 39.5 & 30.1 & 35.2 \\
\hline Rampura & & AN-7 & 55 & 54.5 & 39.6 & 49.7 & 45 & 40.1 & 30.2 & 36.2 \\
\hline
\end{tabular}

PROPONENT
CONSULTANT

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
The Sound Pressure Level recorded during the daytime on all locations varies from \(38.6 \mathrm{~dB}(\mathrm{~A})\) to \(56.4 \mathrm{~dB}(\mathrm{~A}) \&\) in time it varies between \(29.3 \mathrm{~dB}(A)\) to \(40.2 \mathrm{~dB}(\mathrm{~A})\). The noise level was found well within prescribed standards due to absence of any major noise generating activities in the area.

\subsection*{3.9. Biological Environment}

Study of biological environment is one of the important aspects for the Environmental Impact Assessment, in view of the need for conservation of Environmental quality and bibdiversity of geographical area. Ecological systems show complex interrelationship between biotic and Abiotic components including dependence, competition, and mutualism. Biotic components comprise of plant and animal communities which interact not only within and between themselves but also with the Abiotic components viz. Physical and Chemical, components of the environment.
Generally, biological communities are the good indicators of climatic and edaphic factors. Studies on biological aspects of ecosystems are important in Environmental Impact Assessment for safety of natural flora and fauna. Information on the impact of environmental stress on the community structure serves as an inexpensive and efficient early warning system to check the damage to a particular ecosystem. The biological environment includes mainly terrestrial and aquatic ecosystems.
The animal and plant communities exist in their natural habitats in weli-organized manner. Their natural settings can be disturbed by any externally induced anthropological activities or by naturally induced calamities or disaster. So, once this setting is disturbed, it becomes practically impossible or takes a longer time to come to its original state. Plants and animals are more susceptible to environmental stress. The sensitivity of animal and plant species to the changes occurring in their existing ecosystem can, therefore, be used for monitoring Environmental Impact Assessment studies of any project.

\subsection*{3.9.1. Objective of Biological Study}

The main objectives of biological study were:
\(\checkmark\) To collect the baseline data for the study along with a description of the existing terrestrial, wetland, and aquatic biodiversity.
\(\checkmark\) To assess the scheduled species in the proposed site (rare, endangered, critically endangered, endemic, and vulnerable).
\(\checkmark\) To identify the locations and features of ecological significance.
\(\checkmark\) To identify the Impacts of proposed project before, after and during development phase.
Table 3-22: Mode of Data Collection and Parameters
\begin{tabular}{|c|c|c|l|l|}
\hline \begin{tabular}{c} 
S. \\
No.
\end{tabular} & Aspect & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Mode of Data \\
collection
\end{tabular}} & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Parameters \\
monitored
\end{tabular}} & \multicolumn{1}{c|}{ Remarks } \\
\hline 1. & \begin{tabular}{l} 
Terrestrial \\
Biodiversity
\end{tabular} & By field survey & \begin{tabular}{l} 
Floral and Faunal \\
diversity
\end{tabular} & \begin{tabular}{l} 
For Floral Diversity: Random \\
survey, sapling survey/forest \\
inventory, walking transects, \\
coliection and identification with \\
the help of relevant literature. \\
For Faunal Diversity: direct \\
and indirect sampling, walking \\
transects, point sampling and \\
nest sampling etc..
\end{tabular} \\
\hline
\end{tabular}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
\begin{tabular}{|c|c|c|c|c|}
\hline S. No. & Aspect & Mode of Data collection & Parameters monitored & Remarks \\
\hline 2. & & From authentic sources like Forests department of Haryana and available published literatures from ZSI, BSI etc. & Floral and Faunai diversity and study of vegetation, forest type, importance etc. & Data collected from the working plan of the region, forest types from the authentic literature of Champion \& Seth. \\
\hline 3. & Aquatic Biodiversity & By field survey & Floral and Faunal diversity & \begin{tabular}{l}
For Plankton Study- \\
Lackey's drops method and light microscope \\
For other aquatic- Random survey, opportunistic observations
\end{tabular} \\
\hline 4. & & From authentic sources like Forests department of Haryana. & Floral and Faunal diversity and study of vegetation, forest type, importance etc. & Desktop literature review to identify the representative spectrum of threatened species, population, and ecological communities. \\
\hline
\end{tabular}

\subsection*{3.9.2. Environmental Sensitivity of the Study Area}

There is no wildlife sanctuary, elephant corridor, tiger reserve or any sensitive receptor within study area ( 10 km ) from lease area.

Table 3-23: Environmental Settling of Study Area ( 15 km Buffer)
\begin{tabular}{|c|c|c|c|c|}
\hline S. No. & Accessibility & Description & Distance (km) & Direction \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{Highway/ Road} & SH-37B & 6.8 & SSW \\
\hline & & Dhotera Nizampur Road & 5.3 & NNW \\
\hline 2 & Railway Stations & Dabla Railway Station & 11.2 & NW \\
\hline \multirow[t]{2}{*}{3} & \multirow[t]{2}{*}{Religious} & Baba Madhodas Mandir & 0.4 & SE \\
\hline & & Hanuman Mandir & 1.1 & NE \\
\hline 4 & Airport & Bachhod Airstrip & 29.3 & NE \\
\hline 5 & Hospitals & Sub Hospital Syaldora & 8.2 & NW \\
\hline \multirow[t]{2}{*}{6} & \multirow[t]{2}{*}{Institutional Buildings} & Dholera Primary School & 10.2 & NNE \\
\hline & & Budhwal Primary School & 12.2 & E \\
\hline 7 & Post Office & Rampura Branch Post Office & 2.6 & SSW \\
\hline 8 & Nearby Settlement & Donkhera & 0.8 & NE \\
\hline 9 & Interstate Boundary & Haryana-Rajhasthan & 0.1 & SW \\
\hline \multirow[t]{8}{*}{10} & \multirow[t]{8}{*}{Waterbody} & Sota Nadi & 13.6 & SE \\
\hline & & Kasaunti Nadi & 2.4 & ESE \\
\hline & & Kasaunti Nadi & 8.7 & NE \\
\hline & & Dostpur Minor & 3.8 & NE \\
\hline & & Dantal Minor & 7.5 & ENE \\
\hline & & Shahbazpur Distributary & 5.1 & NNE \\
\hline & & Raipur Canal & 7.6 & SSW \\
\hline & & Nolpur Distributary & 10.4 & ENE \\
\hline \multirow[t]{2}{*}{11} & \multirow[t]{2}{*}{Forest \({ }^{\text {a }}\)} & Baneti Protected Forest & 3.6 - & SE \\
\hline & & Protected Forest & 7.4 & SE \\
\hline
\end{tabular}

PROPONENT
CONSULTANT

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|c|c|c|c|}
\hline S. No. & Accessibility & Description & Distance (km) & Direction \\
\hline \multirow[t]{14}{*}{} & & Protected Forest & 9.2 & SE \\
\hline & & Hasampur Protected Forest & 8.7 & 5 \\
\hline & & Gadrata Protected Forest & 13.5 & SSW \\
\hline & & Protected Forest & 7.4 & SW \\
\hline & & Patan Protected Forest & 7.5 & SW \\
\hline & & Kharjo Protected Forest & 1.5 & SW \\
\hline & & Kharjo Protected Forest & 4.9 & WSW \\
\hline & & Bhopiya Protected Forest & 5.3 & SSE \\
\hline & & Balupur Protected Forest & 3.6 & SSW \\
\hline & & Balupur Protected Forest & 3.8 & SSW \\
\hline & & Dokan Protected Forest & 9.3 & WNW \\
\hline & & Protected Forest & 7.6 & NW \\
\hline & & Reserve Forest & 13.2 & N \\
\hline & & Reserve Forest & 12.9 & NNE \\
\hline
\end{tabular}

Source: SOI foposheet (G43D13, G43D14, G43E1 \& G43E2) \& Googfe References.
Figure 3.16: Environment Sensitivity Map ( 15 km Buffer) of Proposed Site

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed


\subsection*{3.9.3. Forest Cover of the Region}

The forest type found in the study area is Dry Deciduous Type Forest as per Champion and Seth Classification (1968). The recorded forest cover of the state is \(1559 \mathrm{sq} . \mathrm{km}\), which is \(3.53 \%\) of its geographical area. The reserved, protected, and unclassified forests are \(249 \mathrm{sq} . \mathrm{km}, 1158 \mathrm{sq} . \mathrm{km}\) and 152 sq . km respectively of the recorded forest area. (India State of Forest Report, 2021). The proposed mine area is not falling under any reserve forest. However, some forest areas are located around the proposed mine area and the details of such forests area given in Table 3.24.

\section*{Table 3-24: Forest Cover of the Project Affected Area}

\section*{PROPONENT CONSULTANT}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline District / State & \begin{tabular}{l}
Geographical \\
Area ( \(\mathrm{km}^{2}\) )
\end{tabular} & Very Dense Forest ( \(\mathrm{km}^{2}\) ) & Mod. Dense Forest ( \(\mathrm{km}^{2}\) ) & Open Forest ( \(\mathrm{km}^{2}\) ) & \[
\begin{aligned}
& \text { Total } \\
& \left(\mathrm{km}^{2}\right)
\end{aligned}
\] & \(\%\) of GA \\
\hline Mahendragarh & 1,899 & 0.00 & 20.82 & 82.56 & 103.38 & 5.44 \\
\hline Haryana & 44212 & 28 & 445.38 & 1130 & 1603.48 & 3.63 \\
\hline
\end{tabular}

Source: ISFR, 2021
Figure 3.17: Eco-regions of Haryana


\subsection*{3.9.4. Ecology of the Study Area}

Biological communities are the indicator environmental condition and resource of its distribution and survival. Biotic component comprises of both plants (Flora) and animals (Fauna) communities, which interact not only within and between them but also with the Abiotic components, viz. physical and chemical components of the environment. The changes in biotic community are studied in the pattern of distribution, abundance, and diversity. The study area is divided into two parts i.e.:
Core Zone: Project Site i.e., Stone Mine, Donkhera, Mahedragarh. The core zone consists of slightly undulatory agriculture land. The highest point in the lease area ls recorded to be 355 mRL and the lowest point recorded is 350 mRL . The lease area does not have any water body. The area sloping towards west in which water flows during rains for a short duration, otherwise they remain dry for the rest of the months. The rainwater from fields drains either into local johars or in agriculture fields.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Vilage, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
The excavation will be done in this area. Hence, the impacts on the biological environment in this area will be larger, which will require specific environment mitigation measures:
Buffer Zone: Area within 10 Km radius from the project site. The buffer zone consists of agriculture fields, inhabited areas, ranges of Aravali Hills, Forest areas, scrub lands and various types of water bodies like rivers, nallas, johars etc. The buffer zone exhibits various types of terrestrial as well as aquatic biodiversity.
This area will have less impact of mining. However, it is necessary to assess the impacts of the project activities to prevent the surrounding biological communities from adverse impacts. The impact of the project area beyond ten kilometres is considered insignificant.
Methodology: The present study on the floral assessment for the project activity is based on the field survey of the area. By the following forest inventory methodology, the survey of biological parameters has been conducted within the core zone and buffer zone ( 10 km radial distance) from project site, in accordance with the guidelines issued by the ministry of Environment, Forest and Climate Change, \(C P C B\) and \(S P C B\) during the study period.
A preliminary survey of the study area has been performed to get a general picture of the landscapes in vegetation. Traverses have been taken within different zone of the study area to note major vegetation patterns and plant communities including their growth form and dominant species. A forest inventory is "an attempt to describe the quantity and quality of forest trees and many of the characteristics of the land area upon which the trees are grown." The objective for this floral inventory of the study area is to provide complete checklist of floristic structure within the core zone and buffer zone ( 10 km radial distance) from project site for formulating effective management and conservation measures.
Biological environment is a good bio-indicator of changing environmental quality. Reconnaissance survey was undertaken around the proposed project site. In the present survey 10 km radius area around the project site was considered as study area. Both terrestrial and aquatic ecological analysis was carried out in the field and in the laboratory. Assessment of flora and fauna was undertaken in the study area. The field study was undertaken during April 2023.
In addition to the field study, literature review /desk research was carried out to determine the existing conditions within the study area and to identify habitats and species of potential importance that may be affected by the Project.
The following parameters were primarily considered in the study.
\(\checkmark\) Assessment of present state of vegetation, flora and fauna in the study area.
\(\checkmark\) Collection of data from literature about the flora and fauna accounts
\(\checkmark\) Identification of rare, endangered plants and animal species (if any).
\(\checkmark\) Identification of important plants/animals' species having diverse economic values.

\subsection*{3.9.5. Terrestrial Ecology}

The natural flora and fauna of the land habitats constitute terrestrial ecosystem. The study of terrestrial ecosystem is important as a part of the monitoring environmental changes. Due to rapid industrialization and other anthropogenic activities, the ecological status of an area changes dramatically. Thus, impact evaluation of any , developmental activities is highly essential with a view to develop proper mitigation plan.

\footnotetext{
PROPONENT M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)
}

\subsection*{3.9.5.1. Floral Survey}

The core Zone of study area mainly consists undulating agricultural land. Hence, trees were sparsely observed in some of the fields. Some Shrubs and herbs were observed during the season when there are no agriculture practices.
The buffer zone of the study area shows floral diversity. Dense forest was observed in forest areas of Aravalli Hills. Shrubs, Herbs, Climbers, Grasses were seen in agricultural fields, forest areas and Scrub lands etc.
As per the primary survey and secondary sources, a total of 86 plant species were recorded with 35 tree species, 11 shrub species, 25 herb species and 15 species of grasses and climbers. All these species belong to 37 families in which Fabaceae stands with highest number of species i.e., 13 followed by Poaceae i,e., 11 species. Other families were found with 1 to 4 species under them.

Table 3-25: Floral of the Study Area
\begin{tabular}{|c|c|c|c|}
\hline S. No. & Description & No. of Species & \\
\hline 1 & Trees & 35 & \\
\hline 2 & Shrubs & 11 & \\
\hline 3 & Herbs & 25 & 15 \\
\hline 4 & Grasses \& Climbers & & 86 \\
\hline
\end{tabular}

Figure 3.18: Floral Species observed in Study Area


Figure 3.19: Plant Families Observed in Study Area

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Minerai - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed


During the survey, no rare, endangered, or threatened species of flora was observed in the study area. The floral inventory is presented in table below:

Table 3-26: Floral Checklist of Buffer Zone
\begin{tabular}{|c|c|c|c|}
\hline S. No. & Scientific Name & Local Name & Family \\
\hline \multicolumn{4}{|r|}{Trees - -} \\
\hline 1 & Acacia nilotica & Babool & Fabaceae \\
\hline 2 & Acacia catechu & Khair & Fabaceae \\
\hline 3 & Acacia leucophloea & Ronjh & Fabaceae \\
\hline 4 & Aegle marmelos & Bel & Rutaceae \\
\hline 5 & Ailanthes excelsa & Arusa & Simaroubaceae \\
\hline 6 & Albizia lebbeck & Siris & Fabaceae \\
\hline 7 & Alstonia scholoris & Saptaparni & Apocyanaceae \\
\hline 8 & Anthocephalus cadamba & Kadamb & Rubiaceae \\
\hline 9 & Azadiracta indica & Neem & Meliaceae \\
\hline 10 & Bauhinia variegata & Kachnar & Caesalpiniaceae \\
\hline 11 & Bombax ceiba & Semal & Malvaceae \\
\hline 12 & Butea monosperma & Dhak & Fabaceae \\
\hline 13 & Cassia fistula & Amaltas & Fabaceae \\
\hline 14 & Cassia siamea & Kassod & Caesalpiniaceae \\
\hline 15 & Casuarina equisetifolia & Jungll Saru & Casuarinaceae \\
\hline 16 & Callistemon viminalis & Bottle Brush & Myrtaceae \\
\hline 17 & Dalbergia sissoo & Shisham & Fabaceae \\
\hline 18 & Delonix regia & Gulmohar & Fabaceae \\
\hline 19 & Eucalyptus spp & Safeda & Mytraceae \\
\hline 20 & Ficus benghalensis & Bargad & Moraceae \\
\hline 21 & Ficus religiosa & Pipal & Moraceae \\
\hline 22 & Ficus glomerata & Gular & Moraceae \\
\hline 23 & Pithecellobium dulce & Jungle Jalebi & Fabaceae \\
\hline 24 & Mangifera indica & Aam & Anacardiaceae \\
\hline 25 & Melia azedarach & Bakain & Meliaceae \\
\hline
\end{tabular}

\footnotetext{
PROPONENT
CONSULTANT
M/S XANDY MINES AND MINERALS
PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)
}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|c|c|c|}
\hline S. No. & Scientific Name & Local Name & Family \\
\hline 26 & Morus alba & Toot & Moraceae \\
\hline 27 & Pongamia pinnata & Karanj & Fabaceae \\
\hline 28 & Prosopis juliflora & Angrezi babool & Fabaceae \\
\hline 29 & Polyalthia longifolia & Ashok & Annonnaceae \\
\hline 30 & Syzygium cumini & Jamun & Myrtaceae \\
\hline 31 & Tamarindus indica & Imli & Caesalpiniaceae \\
\hline 32 & Terminalia arjuna & Arjun & Combretaceae \\
\hline 33 & Terminalia bellerica & Bahera & Combretaceae \\
\hline 34 & Toona ciliata & Toon & Meliaceae \\
\hline 35 & Ziziphus mauritiana & Ber & Rhamnaceae \\
\hline \multicolumn{4}{|c|}{Shrubs} \\
\hline 1 & Bougainvillea glabra & Bougalnvellia & Nyctaginaceae \\
\hline 2 & Calotropis procera & Aak & Asclepladaceae \\
\hline 3 & Calligonum polygonoides & Phog & Polygonaceae \\
\hline 4 & Carissa carandas & Karonda & Apocynaceae \\
\hline 5 & Helicteres isora & Maror phali & Sterculiaceae \\
\hline 6 & Indigofera pulchella & Kathi & Fabaceae \\
\hline 7 & Lantana camara & Raimuniya & Verbenaceae \\
\hline 8 & Nerium oleander & Kaner & Apocynaceae \\
\hline 9 & Ricinus communis & Arandi & Euphorbiaceae \\
\hline 10 & Thevetia peruviana & Pili Kaner & Apocynaceae \\
\hline 11 & Ziziphus nummularia & Jharberi & Rhamnaceae \\
\hline \multicolumn{4}{|c|}{- Herbs} \\
\hline 1 & Abutilon indicum & Kanghi & Malyaceae \\
\hline 2 & Achyranthes aspera & Chirchita & Amaranthaceae \\
\hline 3 & Adhatoda vasica & Bansak & Acanthaceae \\
\hline 4 & Aerva tomentosa & Bui & Amaranthaceae \\
\hline 5 & Agave americana & Gwarpatha & Amaryllidaceae \\
\hline 6 & Argemone mexicana & Satyanashi & Papaveraceae \\
\hline 7 & Asparagus racemosus & Satawari & Asparagaceae \\
\hline 8 & Cannabis sativa & Bhang & Cannabaceae \\
\hline 9 & Cassia tora & Panwar & Caesalpinlaceae \\
\hline 10 & Cleome viscosa & Bagra & Capparaceae \\
\hline 11 & Clitoria ternatea & Aparajita & Fabaceae \\
\hline 12 & Cyperus segetum & Gungu & Cyperaceae \\
\hline 13 & Datura metel & Dhatura & Solanaceae \\
\hline 14 & Echinops echinatus & Gokharu & Asteraceae \\
\hline 15 & Eclipta alba & Bhringaraj & Asteraceae \\
\hline 16 & Euphobia hirta & Dudhi & Euphorbiaceae \\
\hline 17 & Mimosa pudica & Lajwanti & Mimosaceae \\
\hline 18 & Opuntia dillenii & Nagphani & Cactaceae \\
\hline 19 & Parthenium hysterophorus & Gajar Ghass & Asteraceae \\
\hline 20 & Solanum nigrum & Makoi & Solanaceae \\
\hline 21 & Solanum xanthocarpum & Kateri & Solanaceae \\
\hline 22 & Tribulus terrestris & Gokhru & Zygophyceae \\
\hline 23 & Vitex negundo & Bana & Verbenaceae \\
\hline 24 & Withania somnifera & Ashvagandha & Solanaceae \\
\hline 25 & Xanthium strumarium & Chota gokhru & Asteraceae \\
\hline \multicolumn{4}{|c|}{Grasses and Climbers} \\
\hline
\end{tabular}

PROPONENT
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT/EIA/2124/IA 0092(Rev.01)

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|c|c|c|}
\hline S. No. & Scientific Name & Local Name & Family \\
\hline 1 & Apluda mutica & Tachula & Poaceae \\
\hline 2 & Arundo donax & Doka & Poaceae \\
\hline 3 & Brachiaria ramosa & Makra & Poaceae \\
\hline 4 & Cuscuta reflexa & Amarbel & Cuscutaceae \\
\hline 5 & Capparis sepiaria & Hins & Capparaceae \\
\hline 6 & Cenchrus cillaris & Anjan grass & Poaceae \\
\hline 7 & Cyperus rotundus & Dilla & Cyperaceae \\
\hline 8 & Cynodon dactylon & Doob & Poaceae \\
\hline 9 & Digitaria cilliaris & Wild Crab grass & Poaceae \\
\hline 10 & Heteropogon contortus & Black Spear Grass & Poaceae \\
\hline 11 & Saccharum munja & Moonj & Poaceae \\
\hline 12 & Saccharum spontaneum & Kaans grass & Poaceae \\
\hline 13 & Sporobolus marginalus & Chiria & Poaceae \\
\hline 14 & Tinospora cordifolia & Giloy & Menispermeaceae \\
\hline 15 & Vetiveria zizanoides & Khas & Poaceae \\
\hline
\end{tabular}

Source: Primary Survey Supported by Secondary Data and Study done by PARIVESH ENVIRONMENTAL ENGINEERING SERVICES

Plantation of Economic Importance: Several plants found in the study area possess importance as medicine \& other allied uses. The details of such plants are as follows:

Table 3-27: Plants of Medicinal Importance \& Other Allied Uses
\begin{tabular}{|c|c|c|c|c|c|}
\hline S. No. & Botanical Name & Common Name & Family Name & Part used & Medicinal use \\
\hline \multirow[t]{3}{*}{1} & \multirow[t]{3}{*}{Abution indicum} & \multirow[t]{3}{*}{Kanghi} & \multirow[t]{3}{*}{Malvaceae} & Roots & Roots decoction is taken with milk or honey orally for long life span with strength \\
\hline & & & & Seeds & Seeds powder is taken orally as a Constipation remedy \\
\hline & & & & Leaves & Leaves Powder is taken orally with cow milk to cure diabetes \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{Ailanthus excelsa} & \multirow[t]{2}{*}{Ardu} & \multirow[t]{2}{*}{Simaroubaceae} & Stem & Stem Juice mixed with sugar or honey is given orally to birth control \\
\hline & & & & Bark & Stem bark Decoction is given orally mixed with honey to treat Dysentery \\
\hline \multirow[t]{3}{*}{3} & \multirow[t]{3}{*}{Albizia lebbeck} & \multirow[t]{3}{*}{Safed Siris} & \multirow[t]{3}{*}{Leguminosae} & Leaf & Leaf extracts are helpful in Bites and stings from venomous animals, ear pain and coughing \\
\hline & & & & Bark & Bark extract is helpful in Blood purification. \\
\hline & & & & Seeds & Seeds extracts are used in Diarrhea and Dysentery \\
\hline 4 & Azadirachta indica. & Neem & Meliaceae & Leaf & Leaf extract cures Leprosy, intestinal helminthiasis, respiratory disorders, constipation, rheumatism, chronic syphilitic sores, and ulcer \\
\hline
\end{tabular}

\footnotetext{
PROPONENT CONSULTANT

M/S XANDY MINES AND MINERALS
PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|c|c|c|c|c|}
\hline S. No. & Botanical Name & Common Name & Family Name & Part used & Medicinal use \\
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & Flower & Flowers extracts are useful in Bile suppression, elimination of intestinal worms and phlegm \\
\hline & & & & Fruit & Fruit is taken for curing Piles, intestinal worms, urinary disorder, phlegm, eye problem, diabetes, wounds, and leprosy \\
\hline & & & & Bark & Analgesic and antipyretic \\
\hline 5 & Butea monosperma & Dhak & Fabaceae & Flowers & Powder of flowers mixed with milk is taken for three days to cure fever \\
\hline \multirow[t]{4}{*}{6} & \multirow[t]{4}{*}{Cassia siamea} & \multirow[t]{4}{*}{Kassod} & \multirow[t]{4}{*}{\[
\begin{gathered}
\text { Caesalpiniacea } \\
\mathrm{e}
\end{gathered}
\]} & Roots & Roots extracts ane helpful in getting rid of Conjunctivitis \\
\hline & & & &  & Leaf and flower extract are helpful in Indigestion and taken as expectorant \\
\hline & & & & Leaf & Leaf extract cures Heartburn and taken as antipyretic \\
\hline & & & & Seeds & Seeds are useful in getting rid of Intestinal worms and used as antidote for snake and scorpion bites \\
\hline \multirow[t]{3}{*}{7} & \multirow[t]{3}{*}{Cassia fistula} & \multirow[t]{3}{*}{Amaltas} & \multirow[t]{3}{*}{Caesalpiniacea e} & Seeds & Mild laxative \\
\hline & & & & Leaf & Insect bites, \$welling, rheumatism and facial paralysis \\
\hline & & & & Roots & Tonic, an astringent, febrifuge and strong purgative, migraine, and dysentery \\
\hline 8 & Cynodon dactylon & Doob & Poaceae & Whole plant & fodder \\
\hline 9 & Cassia tora & Chakor & \[
\begin{gathered}
\text { Caesalpiniacea } \\
e
\end{gathered}
\] & leaves & used as vegetables \\
\hline \multirow[t]{4}{*}{10} & \multirow[t]{4}{*}{Datura metel} & \multirow[t]{4}{*}{Dhatura} & \multirow[t]{4}{*}{Solanaceae} & Seeds & Its 2-3 seeds should be taken daily to cure headache \\
\hline & & & & Leaves & Crushed leaves of Datura are used in treatment of bones diseases and scrotum swelling \\
\hline & & & & & Pulp of its leaves is used for a scorpion sting \\
\hline & & & & Seeds & Its seeds crushed with water and used to treat for skin diseases \\
\hline \multirow[t]{3}{*}{11} & \multirow[t]{3}{*}{Dalbergia sissoo} & \multirow[t]{3}{*}{Shisham} & \multirow[t]{3}{*}{Leguminosae} & Leaf & Gonorrhea \\
\hline & & & & Roots & Astringent \\
\hline & & & & Wood & Leprosy and to allay vomiting \\
\hline 12 & Ficus benghalensis & Bargad & Moraceae & Bark & Dysentery, diarrhea, leucorrhoea, nervous \\
\hline
\end{tabular}

\footnotetext{
PROPONENT M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)
}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
\begin{tabular}{|c|c|c|c|c|c|}
\hline S. No. \begin{tabular}{c} 
Botanical \\
Name
\end{tabular} & \begin{tabular}{c} 
Common \\
Name
\end{tabular} & \begin{tabular}{c} 
Family \\
Name
\end{tabular} & \begin{tabular}{c} 
Part \\
used
\end{tabular} & \begin{tabular}{c} 
Medicinal use
\end{tabular} \\
\hline & & & & & \begin{tabular}{c} 
disorders and reduces blood \\
sugar in dlabetes
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
PROPONENT
CONSULTANT
M/S XANDY MINES AND MINERALS
PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)
}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Rgad Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsii, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|c|c|c|c|c|}
\hline S. No. & \begin{tabular}{c} 
Botanical \\
Name
\end{tabular} & \begin{tabular}{c} 
Common \\
Name
\end{tabular} & \begin{tabular}{c} 
Family \\
Name
\end{tabular} & \begin{tabular}{c} 
Part \\
used
\end{tabular} & Medicinal use \\
\hline & & & & & \begin{tabular}{c} 
three times In a day to treat \\
asthma
\end{tabular} \\
\hline 20 & Tamarindus indica & Imli & Leguminosae & Fruit & used as food \\
\hline 21 & Terminalia arjuna & Arjun & Combretaceae & \begin{tabular}{c} 
Leaf, \\
Stem \\
Bark
\end{tabular} & Medicinal use \\
\hline 22 & Terminalia bellirica & Bahera & Combretaceae & Fruit & Used in stomach pain \\
\hline
\end{tabular}

Source: Primary Survey Supported by Secondary Data

\subsection*{3.9.5.2. Agricultural Status of Area}

As the study area mainly comprises agriculture land and buffer area has mainly agricultural lands, various crops were reported in varjous seasons in the area. The major crops reported were paddy, jowar, bajra and makai in kharif seasons, while that of Rabi seasons crops were wheat, barley, mustard, sunflower, toor, mung, chana, masoor, rapeseed, pea and barseem. The dultivation in this area is highly mechanized and there are profound facilities for irrigation through canals and deep tube welis. The farmers also use both chemical and bio-fertilizer in adequate quantity.

Table 3-28: Crops in Study Area
\begin{tabular}{|c|c|c|c|c|}
\hline S. No & Scientific Name & Common Name & Family & Season \\
\hline 1 & Brassica napus & Rapeseed/Canola & Brassicaceae & Rabi \\
\hline 2 & Brassica nigra & Mustard & Brassicaceae & Rabi \\
\hline 3 & Cicer arietinum & Chana & Fabaceae & Rabi \\
\hline 4 & Hordeum vulgare & Barley & Poaceae & Rabi \\
\hline 5 & Lens culinaris & Masoor/Lentil & Fabaceae & Rabi \\
\hline 6 & Oryza sativa & Rice / Paddy & Poaceae & Kharif \\
\hline 7 & Pennisetum glaucum & Bajra/Pearlmillet & Poaceae & Kharif \\
\hline 8 & Sorghum bicolor & Jowar & Poaceae & Kharif \\
\hline 9 & Triticum aestivum & Wheat & Poaceae & Rabi \\
\hline 10 & Zea mays & Maize/Makai & Poaceae & Kharif \\
\hline 11 & Helianthus spp. & Sunflower & Asteraceae & Rabi \\
\hline 12 & Cajanus cajan & Toor & Fabaceae & Rabi \\
\hline 13 & Vigna spp. & Mung & Fabaceae & Rabi \\
\hline 14 & Pisum sativum & Pea & Fabaceae & Rabi \\
\hline 15 & Trifolium alexandrinum & Berseem & Fabaceae & Rabi \\
\hline
\end{tabular}

Source: Primary Survey Supported by Secondary Data

\subsection*{3.9.5.3. Faunal Diversity}

To prepare a detailed report on the status of wildlife biodiversity within 10 km radial area to assess the impacts due to the project activity and evolve suitable mitigation measures to protect and conserve wildife biodiversity following components were studied:
a. Wildlife Survey (Diversity)
b. Habitat Study (Feeding, Breeding and Roosting areas)
c. Distribution/Status of Birds
d. Rare \& Endangered species of Fauna
e. Specific local characteristics of biodiversity in the study area.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
Methodology for Faunal Diversity: The presence of mammals, avifauna and reptiles were observed by using conventional methods like transect walks during the daytime. Amphibians were observed in the river and other water bodies. Butterflies were also observed in the study area. As the study area consists of agricultural lands, built-up areas, forest areas, river, roads, canals and drains etc. many species of fauna was seen. Domesticated animals like Cow, Buffalo, Goat, Sheep etc. were seen near inhabited areas while some wild animals were reported from agricultural fields, near river area and forest area. The presence of fauna species was also confirmed from the local inhabitants.
As per the primary survey and secondary sources, a total of 60 fauna species were recorded with 12 mammal species, 29 avifauna species, 8 reptile species, 5 amphibian species and 6 species of butterfly.

Table 3-29: Faunal Checklist of Buffer Zone
\begin{tabular}{|c|c|c|}
\hline \(\mathbf{S}_{\mathrm{o}}\) No. & Description & No. of Species \\
\hline 1 & Mammals & 12 \\
\hline 2 & Avifauna & 29 \\
\hline 3 & Reptiles & 8 \\
\hline 4 & Amphibians & 5 \\
\hline 5 & Butterflies & 6 \\
\hline & & 60 \\
\hline
\end{tabular}

Figure 3.20: No. of Fauna Species recorded from Study Area

- Mammals * Aves : Reptiles Amphibians © Butterflies

Table 3-30: Faunal Species of Buffer Zone
\begin{tabular}{|c|c|c|c|}
\hline S. No. & Common Name & Scientific Name & Schedule as per WPA, 1972 \\
\hline \multicolumn{4}{|r|}{Mammals -} \\
\hline 1. & Black Rat & Rattus rattus & Schedule-V \\
\hline 2. & Common Mongoose & Herpestes edwardsii & Schedule-I \\
\hline 3. & Nilgal & Boselaphus tragocamelus & Schedule - III \\
\hline 4. & Five Strlped Palm Squirrel & Funambulus pennanti & Schedule-IV \\
\hline 5. & Little Indlan field mouse & Mus booduga & Schedule-V \\
\hline 6. & Indian Hare & Lepus nigricollis & Schedule-IV \\
\hline 7. & Bandar & Macaca mulatta & Schedule-II \\
\hline 8. & Bat & Rousettus leschenaultia & Schedule-V \\
\hline
\end{tabular}

\section*{PROPONENT \\ CONSULTANT}

M/S XANDY MINES AND MINERALS
PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metai \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|c|c|c|}
\hline S. No. & Common Name & Scientific Name & Schedule as per WPA 1972 \\
\hline 9. & Common Langur & Presbytis entellus & Schedule-II \\
\hline 10. & Jungle Cat & Felis chaus & Schedule-I \\
\hline 11. & Asian House Shrew & Suncus murinus & Least Concern \\
\hline 12. & Common House Mouse & Mus musculus & Schedule-V \\
\hline \multicolumn{4}{|c|}{Amphibians} \\
\hline 13. & Common Indian Toad & Duttaphrynus melanostictus & Not Listed \\
\hline 14. & Indian Bull Frog & Hoplobatrachus tigerinus & Schedule-IV \\
\hline 15. & Indian Skipper Frog & Euphlyctis cyanophlyctis & Schedule-IV \\
\hline 16. & Toad & Bufo bufo & Not Listed \\
\hline 17. & Common Frog & Rana tigrina & Schedule-IV \\
\hline \multicolumn{4}{|c|}{Reptiles} \\
\hline 18. & House gecko & Hemidactylus flavivridis & Common \\
\hline 19. & Common garden lizard & Calotes versicolor & Common \\
\hline 20. & Indlan Cobra & Naja naja & Schedule-I \\
\hline 21. & Rat Snake & Ptyas mucosa & Schedule-I \\
\hline 22. & Common Indian Krait & Bungarus caeruleus & Schedule-IV \\
\hline 23. & Snake-eyed Lacerta & Ophisops jerdonii & Schedule-IV \\
\hline 24. & Common Indian Monitor & Varanus benghalensis & Schedule-I \\
\hline 25. & Indian Python & Python molurus & Schedule-I \\
\hline \multicolumn{4}{|c|}{Butterflies} \\
\hline 26. & White orange tip & Ixias marianne & Common \\
\hline 27. & Lime butterfly & Papilio demoleus & Common \\
\hline 28. & Common mormon & Papilio polytes & Common \\
\hline 29. & Common Grass Yellow & Eurema hecabe & Fairly Common \\
\hline 30. & Stripped Tiger & Danaus genutia & Common \\
\hline 31. & Common Bush Brown & Mycalesis perseus & Common \\
\hline \multicolumn{4}{|c|}{Avifauna} \\
\hline 32. & House Crow & Corvus splendens & Schedule-V \\
\hline 33. & Rock Pigeon & Columba livia & Common \\
\hline 34. & Jungle babbler & Turdoides striatus & Schedule-IV \\
\hline 35. & Common Myna & Acridotheres tristis & Schedule-IV \\
\hline 36. & Green bee-eater & Merops orientalis & Least Concern \\
\hline 37. & Indian roller & Coracias benghalensis & Schedule-IV \\
\hline 38. & Black Drongo & Dicrurus macrocercus & Schedule-IV \\
\hline 39. & House swift & Apus affinis & Schedule-IV \\
\hline 40. & Indian Cuckoo & Cuculus micropterus & Schedule-IV \\
\hline 41. & Cattle Egret & Bubulcus ibis & Schedule-IV \\
\hline 42. & Little Egret & Egretta garzetta & Schedule-IV \\
\hline 43. & Pond heron & Ardeola grayii & Schedule-IV \\
\hline 44. & Red wattled lapwing & Vanellus indicus & Schedule-IV \\
\hline 45. & Spotted Dove & Streptopelia chinensis & Schedule-IV \\
\hline 46. & Tree Pie & Dendrocitta vagabunda & Schedule-IV \\
\hline 47. & White Breasted Kingfisher & Halcyon smyrnensis & Schedule-IV \\
\hline 48. & Asian Koel & Eudynamys scolopacea & Schedule-IV \\
\hline 49, & Indian Robin & Saxicooides fulicata & Schedule-IV \\
\hline 50. & Sun Bird & Nectarinia asiatica & Schedule-IV \\
\hline 51. & House Sparrow & Passer domesticus & Schedule-IV \\
\hline 52. & Red Vented Bulbul & Pycnonotus cafer & Schedule-IV \\
\hline 53. & Bank Myna & Acridotheres ginginianus & Schedule-IV \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{ll} 
PROPONENT & M/S XANDY MINES AND MINERALS \\
CONSULTANT & PARIVESH ENVIRONMENTAL ENGINEERING SERVICES \\
& NABFT /EIA/2124/IA 0092(Rev.01) \\
&
\end{tabular}}} & \\
\hline & & & \\
\hline
\end{tabular} Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|c|c|c|}
\hline S. No. & Common Name & Scientific Name & \begin{tabular}{c} 
Schedule as per \\
WPA, 1972
\end{tabular} \\
\hline 54. & Common Babbler & Turdoides caudatus & Schedule-IV \\
\hline \(5 \overline{5 .}\) & Rose Ringed Parakeet & Psittacula krameri & Schedule-IV \\
\hline 56. & Baya & Ploceus philippinus & Schedule-IV \\
\hline 57. & Pavowl cristatus & Schedule-I \\
\hline 58. & Bater & Coturnix coturnix & Schedule-IV \\
\hline 59. & Red-wattled lapwing & Vanellus indicus & Schedule-IV \\
\hline 60. & Hoopoe & Upupa epops & Schedule-IV \\
\hline
\end{tabular}

Source: Primary Survey Supported by Secondary Data

\subsection*{3.9.6. Scheduled Species as per WPA, 1972}

As per the faunal survey data, a total of seven species were found within the Schedule-I of Indian Wildlife (Protection) Act, 1972 which includes Pavo cristatus (Indian Peafowl), Naja naja (Indian Cobra), Ptyas mucosa (Rat Snake), Varanus benghalensis (Common Indian Monitor lizard), Python molurus (Indian Python), Herpestes edwardsii (Common Mongoose) and Felis chaus (Jungle Cat).
Certain steps in consultation with forest department shall be undertaken to protect and conserve these species which are as follows:
- Habitat of these species will not be disturbed.
- Arrangement of food, water etc. shall be done within their natural habitat.
- Plantation using native species shall be undertaken to enhance the natural habitat of these species.
- Suitable roosting and nesting sites with acacia species will be developed for Peafowl.
- Awareness camp will be organized for workers and villagers.

\subsection*{3.9.7. Aquatic Ecology}

The core zone of study area comprises the riverbed of Markanda River. Besides, buffer zone of study area includes other rivers, ponds, canals, and drains. Aquatic biotic communities like Phytoplankton and Zooplanktons, Macrophytes and Fishes were studied.
Methodology for Aquatic Diversity: The samples for analysis of planktons were collected from the sub surface layer at knee depth of the water bodies. Water samples were filtered through plankton net of \(20 \mu\) mesh size (APHA, 1971). The filtered samples were concentrated by using the centrifuge in laboratory. By using Lackey's drops method and light microscope (Lackey, 1938), the analysis was carried out for phytoplankton and zooplankton.

Macrophytes: The presence of macrophytes were studied in rivers, ponds, canal, waterlogged area and drains within the study area. An inventory of macrophytes is given in the Table below.

Table 3-31: Checklists of Macrophytes in Aquatic Habitats
\begin{tabular}{|c|c|c|c|}
\hline S. No. & Common Name & Scientific Name & Growth Form \\
\hline 1. & Water hyacinth & Eichhornea crassipes & Floating \\
\hline 2. & Duck weed & Lemna minor & Floating \\
\hline 3. & Kalmi Saas & Ipomoea aquatica & Floating \\
\hline 4. & Garundi & Alternanthera sessilis & Floating \\
\hline 5. & Oriental Pepper & Polygonum orientale & Amphibious \\
\hline 6. & Barnyard Grass & Echinochloa glabrescens & Amphibious \\
\hline
\end{tabular}

\section*{PROPONENT \\ CONSULTANT}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|c|c|c|}
\hline S. No. & Common Name & Scientiflc Name & Growth Form \\
\hline 7. & Jal kumbhi & Pistia stratiotes & Floating \\
\hline 8. & Lotus & Nymphea nouchali & Emergent \\
\hline 9. & Harinkhuri & Convolvulus arvensis & Amphibious \\
\hline 10. & Patera & Typha angustifolia & Amphibious \\
\hline
\end{tabular}

Source: Primary Survey Supported by Secondary Data
Plankton: The samples collected from the water bodies were analysed for identification of phytoplankton and zooplankton. The details of phytoplankton and zooplankton are as follows.

Table 3-32: List of Phytoplankton from Study Area
\begin{tabular}{|c|c|c|}
\hline Cyanophyceae & Bacillariophyceae & Chlorophyceae \\
\hline Anabaena & Fragilaria & Spirogyra \\
\hline Nostoc & Synedra & Chlorella vulgaris \\
\hline Oscillatoria formosa & Navicula & Microspora \\
\hline Phormidium & Cylindrotheca & Ulothrix \\
\hline
\end{tabular}

Source: Primary Survey Supported by Secondary Data
Table 3-33: List of Zooplanktons from Study Area
\begin{tabular}{|c|c|c|c|}
\hline Rotifers & Protozoa & Cladocera & Copepoda \\
\hline Ascomorpha saltans & Amoeba proteus & Bosmina longirostris & Cydlops sp. \\
\hline Brachionus bidentata & Centropyxis spp. & Daphnia laevis & Eucydlops agilis \\
\hline Colurella obtusa & Chlamydomonas minor & Moina brachiata & Nauplii \\
\hline Keratella & Amoeba & & Diaptomus \\
\hline
\end{tabular}

Source: Primary Survey Supported by Secondary Data
Fishes: The fishes were observed in the rivers, canals, and ponds. The pisciculture activities were observed very less and restricted only in the rivers and ponds of some villages. The fishes found were major carps like Rohu (Labeo rohita), Catla (Catia catla) and Mrigal (Cirrhinus mrigala). Other species found were Puntius sophore, Wallago attu, Channa punctatus etc. An inventory of fishes are as follows.

Table 3-34: List of Fish Species from Study Area
\begin{tabular}{|c|c|c|c|}
\hline S. No. & Scientific Name & Common Name & Family \\
\hline \multicolumn{4}{|c|}{Major Carps} \\
\hline 1 & Catla catla & Katla & Cyprinidae \\
\hline 2 & Labeo rohita & Rohu & Cyprinidae \\
\hline 3 & Cirthinus mrigala & Mrigal & Cyprinidae \\
\hline 4 & Labeo calbasu & Kalbasu & Cyprinidae \\
\hline \multicolumn{4}{|c|}{Minor Carps} \\
\hline 5 & Puntius sophore & Putti & Cyprinidae \\
\hline 6 & Labeo bata & Bata & Cyprinidae \\
\hline \multicolumn{4}{|c|}{Cat Fishes} \\
\hline 7 & Wallago attu & Lanchi & Siluridae \\
\hline 8 & Mystus seenghala & Singhara & Bagridze \\
\hline 9 & Channa punctatus & Girai & Channidae \\
\hline 10 & Clarias batrachus & Mangur & Clariidae \\
\hline
\end{tabular}

Source: Primary Survey Supported by Secondary Data

\subsection*{3.10. Socioeconomic Environment}

Socio-economic environment is an essential part of environmental study which incorporates various facts related to socio-economic conditions in the area and deals with the total environment. Socio-economic study includes demographic structure of the area, provision of basic amenities viz. housing education, health and medical services, occupation, water supply, sanitation, communication, transportation, prevailing diseases pattern as well as feature of aesthetic significance such as temples, historical monuments etc, at the baseline level. This would heip in visualizing and predicting the possible impact depending upon the nature and magnitude of the project.

Socio-economic study of an area provides a good opportunity to assess the socioeconomic conditions of an area. This study will possibly estimate the change in living and social standards of the area benefitted due to the project. The gross economic production of the area will be increased substantially due to the existence of this project. It can undoubtedly be said that this plant will provide direct and indirect employment and improve the infrastructural facilities and living standards of the area.

\subsection*{3.10.1. Demography of Study Area}

Study area is following 2 states namely, Haryana \& Rajasthan. Three districts (Mahendragarh, Jaipur \& Sikar) \& Three blocks (Narnaul, Kotputli \& Neem ka Thana) are coming in study area. Demography of the study area is given in table below.

Figure 3.21: Population \& Gender Ration of Study Area 70000








PROPONENT
CONSULTANT

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT

 of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed Table 3-35: Demographic Structure of the Study Area
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { S. } \\
& \text { No. }
\end{aligned}
\] & State & Name of District & Name of the Block & Household & Total
Population & Male & Female & \[
\begin{aligned}
& \text { Population } \\
& 0-6 \text { Years }
\end{aligned}
\] & HH Size & Gender Ratio \\
\hline 1 & Haryana & Mahendragarh & Narnaul & 9721 & 59283 & 31477 & 27806 & 7779 & 6.1 & 883 \\
\hline 2 & \multirow[t]{2}{*}{Rajasthan} & Jaipur & Kotputii & 5619 & 31641 & 16584 & 15057 & 4571 & 5.6 & 908 \\
\hline 3 & & Sikar & \begin{tabular}{l}
Neem-Ka- \\
Thana
\end{tabular} & 9532 & 56414 & 29856 & 26558 & 8065 & 5.9 & 890 \\
\hline \multicolumn{4}{|l|}{Total} & 24872 & 147338 & 77917 & 69421 & 20415 & 5.9 & 894 \\
\hline
\end{tabular}

Table 3-36: Population Distribution of the Study Area
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{State} & \multirow[t]{2}{*}{Name of District} & \multirow[t]{2}{*}{Name of the Block} & \multirow[t]{2}{*}{Household} & \multicolumn{7}{|l|}{Population} \\
\hline No. & & & & & Total & SC & Male & Female & ST & Male & Female \\
\hline 1 & Haryana & Mahendragarh & Narnaul & 9721 & 59283 & 8456 & 4501 & 3955 & 0 & 0 & 0 \\
\hline 2 & \multirow[t]{2}{*}{Rajasthan} & Jaipur & Kotputii & 5619 & 31641 & 5517 & 2886 & 2631 & 2051 & 1068 & 983 \\
\hline 3 & & Sikar & Neem-Ka-Thana & 9532 & 56414 & 7367 & 3865 & 3502 & 4057 & 2151 & 1906 \\
\hline & & Total & & 24872 & 147338 & 21340 & 11252 & 10088 & 6108 & 3219 & 2889 \\
\hline
\end{tabular}

Figure 3.22: Population \& Gender Ration of Study Area 70.00 60.00

\subsection*{50.00} 40.00 30.00 20.00 10.00 : of Male Literates
\% of Female Literates \(\longrightarrow\) Overall Literacy Rate


M/S XANDY MINES AND MINERALS NABFT /EIA/2124/IA 0092(Rev.01)
PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
PAGE. 125

Table 3-38: Occupational Structure of the Study Area
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
S. \\
No.
\end{tabular}} & \multirow[t]{2}{*}{State} & \multirow[t]{2}{*}{Name of District} & \multirow[t]{2}{*}{Name of the Block} & \multirow[t]{2}{*}{Total Population} & \multirow[t]{2}{*}{Total Main Workers} & \multicolumn{4}{|l|}{Main Workers} & \multirow[t]{2}{*}{Marginal Workers} & \multirow[t]{2}{*}{Nonworkers} \\
\hline & & & & & & Cultivators & Agricultural labours & Household labours & Other Workers & & \\
\hline 1 & Haryana & Mahendragarh & Narnaul & 59283 & 14053 & 6200 & 597 & - 384 & 6872 & 7198 & 38032 \\
\hline 2 & \multirow[t]{2}{*}{Rajasthan} & Jaipur & Kotputli & 31641 & 10517 & 6089 & 1062 & 124 & 3242 & 198 & 17850 \\
\hline 3 & & Sikar & Neem-Ka-Thana & 56414 & 14048 & 5937 & 526 & 225 & 7360 & 6392 & 35974 \\
\hline \multicolumn{4}{|l|}{Total} & 147338 & 38618 & 18226 & 2185 & 733 & 17474 & 16864 & 91856 \\
\hline
\end{tabular}

> Table 3-39: Education and Medical Facilities of the Study Area
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{S. NO.} & \multirow[t]{2}{*}{State} & \multirow[t]{2}{*}{Name of District} & \multirow[t]{2}{*}{Name of the Block} & \multicolumn{4}{|l|}{Govt School} & \multirow[t]{2}{*}{CHC} & \multirow[t]{2}{*}{PHC} & \multirow[t]{2}{*}{PHSC} & \multirow[t]{2}{*}{MCWC} \\
\hline & & & & Primary & Middle & Secondary & Sr. Secondary & & & & \\
\hline 1 & Haryana & Mahendragarh & Narnaul & 32 & 17 & 7 & - 4 & 0 & 1 & 7 & 1 \\
\hline 2 & \multirow[t]{2}{*}{Rajasthan} & Jaipur & Kotputli & 22 & 17 & 9 & 2 & 1 & 2 & 7 & 5 \\
\hline 3 & & Sikar & Neem-Ka-Thana & 42 & 27 & 15 & 7 & 2 & 1 & 19 & 5 \\
\hline \multicolumn{4}{|l|}{Total} & 96 & 61 & 31 & 13 & 3 & 4 & 33 & 12 \\
\hline HC. & unity He & enter, PHC-Pr & & & & & 13 & 3 & 4 & 33 & 12 \\
\hline
\end{tabular}

Table 3-40: Drinking Water Facilities in the Study Area


PROPONENT M/S XANDY MINES AND MINERALS
CONSULTANT

PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT/EIA/2124/IA 0092(Rev.01)
PAGE. 126
DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT

 of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed

Table 3-41: Land Use Classification in the Study Area
\begin{tabular}{|c|c|c|c|c|}
\hline Land-Use Classification & \multicolumn{4}{|l|}{Study Area} \\
\hline State & Haryana & & han & Total \\
\hline Name of District & Mahendragarh & Jaipur & Sikar & \\
\hline Name of the Block & Narnaul & Kotputli & Neem-Ka-Thana & Total \\
\hline Forest Area (in Hectares) & 0 & 1055 & 4241 & 5295 \\
\hline Area under Non-Agricultural Uses (in Hectares) & 5621 & 450 & 658 & 6728 \\
\hline Barren \& Un-cultivable Land Area (in Hectares) & 0 & 300 & 618 & 918 \\
\hline Permanent Pastures and Other Grazing Land Area (in Hectares) & 0 & 137 & 768 & 5296 \\
\hline Land Under Miscellaneous Tree Crops etc. Area (in Hectares) & 0 & 3 & 95 & 6729 \\
\hline Culturable Waste Land Area (in Hectares) & 44 & 40 & 497 & 919 \\
\hline Fallows Land other than Current Fallows Area (in Hectares) & 0 & 177 & 349 & 905 \\
\hline Current Fallows Area (in Hectares) & 7 & 387 & 384 & 98 \\
\hline Net Area Sown (in Hectares) & 7907 & 5148 & 5978 & 581 \\
\hline Total Unirrigated Land Area (in Hectares) & 3774 & 2787 & 2401 & 526 \\
\hline Area Irrigated by Source (in Hectares) & 4133 & 2361 & 3577 & 778 \\
\hline Canals Area (in Hectares) & 0 & 796 & 563 & 19033 \\
\hline Wells/Tube Wells Area (in Hectares) & 4133 & 1452 & 3014 & 8962 \\
\hline Tanks/Lakes Area (in Hectares) & 0 & 0 & 0 & 10071 \\
\hline Waterfall Area (in Hectares) & 0 & 0 & 0 & 1358 \\
\hline Other Source (specify) Area (in Hectares) & 0 & 113 & 0 & 8599 \\
\hline
\end{tabular}
DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
 3-42: Public Facilities Availat Maryana proposed
Table 3-42: Public Facilities Available in the Study Area
\begin{tabular}{|c|c|c|c|c|}
\hline Kıesq! ग!ıqnd & 0 & \(m\) & N & n \\
\hline ॥ен оәр!л/ешәи! & 0 & \(\square\) & \(\square\) & \(N\) \\
\hline ¥еен Арәәм & \(\bigcirc\) & \(\square\) & \(\rightarrow\) & N \\
\hline aOपS (SDd) wrises uo!nnq!nłsia O!lqnd & N & \(\stackrel{\square}{4}\) & N & 0 \\
\hline
\end{tabular}
The baseline status of the project site is good as maximum area is agricultural land. No other source of emission identified in the region except traffic density and mining projects.

CHAPTER 4
ANTICIPATED ENVIRONMENTAL IMPACTS ASSESSMENT \& MITIGATION MEASURES

\title{
4. Anticipated Environmental Mitigation Measures
}

\begin{abstract}
4.1. General
"Environmental Impact" can be defined as any alternation of base line environmental conditions or creation of a new set of environmental conditions, adverse or beneficial, caused or induced by the action or set of proposed actions under consideration. Opencast mining activities cause adverse impacts on the surrounding environment unless proper environmental management plan is adopted. Selecting suitable sites for mining and adopting all the guidelines prescribed by the Ministry of Environment and Forests \& Climate Change (MoEF\&CC) and Indian Bureau of Mines (IBM) can minimize the major possible impacts.
This chapter deals with the environmental impacts due to various activities carried out at the project site, which could affect the various biotic and abiotic factors of the surrounding environment and suggesting mitigation measures to minimize the impact as far as possible. For understanding the impact and its severity on the environment it becomes necessary to identify all the probable sources of pollutants, type of releases and characteristics of the pollutants, quantification of the pollutants. Accordingly, Pollution Control Equipment and mitigation measures are suggested to minimize the impacts of the project activity on the environment.
Classification the sources, estimating the quantity of pollutant, impact of pollution \& mitigating them is the most important component in the Environmental Impact Assessment process. This chapter quantifies the environmental impacts of project related activities on various receptors of environment. The predictions estimated are superimposed on the baseline value for achieving the resultant value which signifies the overall impact. It also suggests the various mitigation measures which can be advocated to minimize the adverse impacts of the project activity.
\end{abstract}

\subsection*{4.2. Impact Assessment}

Environment Impact Assessment (EIA) study is the most important aspect of overall environmental management strategy. Superimposition of predicted additional impacts over baseline environmental scenario gives the ultimate environmental scenario. In the present study, baseline environmental scenario was established through environmental monitoring data. It summarizes the pollution potential of the proposed open cast mine, its possible impact on the surrounding environment and the necessary management actions proposed for control and abatement of pollution. The environmental components that are likely to be influenced are illustrated below in Table 4.1.

Table 4-1: Types of Impact due to Mining Activity
\begin{tabular}{|l|l|}
\hline Types of the Impact & Causes of Impact \\
\hline Impact on land and soil & \begin{tabular}{l} 
By overburden, mining, topsoil removal and solid waste \\
generation.
\end{tabular} \\
\hline Impact on air quality & Generation of particulate matters from various sources \\
\hline
\end{tabular}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragart

District State Haryana proposed
\begin{tabular}{|l|l|l|}
\hline Types of the Impact & Causes of Impact & \\
\hline \begin{tabular}{l} 
Impact on surface water, \\
ground water and \\
hydrogeology
\end{tabular} & \begin{tabular}{l} 
Run-off from OB dump; wash off eroded material of soil, leaching \\
of oil /grease, wastewater generated due to sanitation purpose and \\
other purposes.
\end{tabular} \\
\hline \begin{tabular}{l} 
Impact on noise and \\
vibration level
\end{tabular} & Movement of dumpers for transportation of minerals; blasting \\
\hline \begin{tabular}{l} 
Impact on ecology (flora \\
and fauna)
\end{tabular} & Loss of forest land, loss of surface vegetation & \\
\hline \begin{tabular}{l} 
Impact on socio-economic \\
environment (population \\
and settlement)
\end{tabular} & \begin{tabular}{l} 
Land use pattern change, economic growth, environment quality \\
degradation, lowering of water table causing shortage of drinking \\
water.
\end{tabular} & \\
\hline
\end{tabular}

\subsection*{4.3. Identification of Impacts}

During the working life of mine, air, water, noise, and land use are likely to be affected due to minerals and associated activities. Positive impacts on socio-economic environment are expected due to creation of employment opportunities and development of infrastructure such as roads, schools, hospitals etc. The identification matrix indicates interrelationship between activities causing impact (columns) and aspects getting impacted (rows). The significant impacts are marked as \(\left({ }^{*}\right)\) for beneficial impacts and as (*) for adverse impacts. Any detailed assessment shall be done only for the significant impacts. The matrix will assist in identifying significant impacts as Table 4.2.

Table 4-2: Impact Identification Matrix
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & Site & \multicolumn{9}{|l|}{Mining, Storage and handling and allied activity} & \multicolumn{3}{|l|}{Post Operation} \\
\hline &  &  &  &  &  &  &  &  &  &  &  &  &  \\
\hline Ambient Air & - & - & - & - & - & & & & * & & - & - & - \\
\hline Water Resource & & - & & & & - & & & & & - & & - \\
\hline Water Quality & & - & & & - & & - & & & & - & & - \\
\hline Ambient Noise & & - & - & - & & & & - & * & & - & - & * \\
\hline Vibration & & - & & & & & & & & & & & \\
\hline Flora and Fauna & - & - & * & & ' & & & & * & & - & & - \\
\hline
\end{tabular}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
Site \\
 \\
荡
\end{tabular}} & \multicolumn{9}{|l|}{Mining, Storage and handling and allied activity} & \multicolumn{3}{|r|}{Post Operation} \\
\hline & &  &  &  & \[
\begin{aligned}
& \text { Mining Mineral Storage } \\
& \text { /Stacking }
\end{aligned}
\] &  &  &  &  &  &  &  &  \\
\hline Soil and Landuse & - & - & * & & - & & & & * & & - & - & - \\
\hline Infrastructure & - & - & & * & & & & * & & & * & * & * \\
\hline Traffic & & & & - & & & & & & & & & \\
\hline Health \& Safety & & - & & & - & & & & & & & & - \\
\hline Socioeconomic & - & - & & & & & & & & * & * & * & * \\
\hline
\end{tabular}
-Adverse Impact * Beneficial Impacts

\subsection*{4.4. Impacts on Land \& Soil}

Various components of land environment have been identified for study of impact of the mine operations. The impact of mining on land and soil can be assessed in following ways: -
- Change in landscape.
- Soil and Land-use pattern.
- Impact due to OB Dump.
- Impact due to mining activities.

\subsection*{4.4.1. Landscape}

The waste generation will have two major impacts on landscape.
- Land degradation by mining and resultant external dumps which conflicts with land use for agriculture/ forestry.
- Destruction of soil and vegetation, changes in geological structure \& relief.

The landscape of the ML area will be disturbed by the proposed excavation and dumping in the area. The topography of the mine lease area will be characterized by excavated depressions / voids and elevated portions by dumping of \(O B\) / waste. The proposed mining will affect the corezone but would marginally affect the buffer zone or over all view of the area. Since opencast other than fully mechanized method of mining has been proposed, subsidence is not expected.

\subsection*{4.4.2. Solid Waste Generation}

As stated in mining method, there will be \(\mathrm{OB} /\) waste generation which is saleable. There will not be any difficulty in OB/handling. There is very thin soil/topsoil which will be scraped and used for plantation.
The Mining affect environment in various ways including depletion of land cover, vegetation, removal of soil, change of landscape \& deposition of the solid waste product thus causing imbalance in the landscape and increasing air, water, and soil pollution. About \(2 \%\) mineral production will come under the category of rejects as there are thin, soft layers of calc schist within the bed rock which are not fit as road metal/crushed material. This reject/overburden/interburden shall be used for internal uses like making of haul road, parapet wall, boundary walls etc and rest of the waste shall be disposed-off/solid to open market as per Haryana Minerals Rules, 2012 after taking due permission from Mines \& geology Department of Government of Haryana. All unsold rejects and soil will be finally used for reclamation of the mined-out area at the final closure of the mine.

\subsection*{4.4.3. Soil and Land-use Pattern of the Mine Lease Area}

The applied area is 4.80 ha . The lease area is consisting of hilly terrain. The highest point in the lease area is recorded to be 375 mRL in east side lease boundary and the lowest point recorded is 312 mRL bottom pit level. The lease area does not have any water body. There are dry nalas in which water flows during rains for a short duration, otherwise they remain dry for the rest of the months. The rainwater from these nalas drains either into local johars or in agriculture fields. The present landuse of the mine lease area is gram panchayat waste land. The impact on landuse shall be reverted in future by way of afforestation or construction of water reservoir.
In buffer zone, no adverse impact is envisaged as all mining activities will be restricted to the core zone (Mine Lease Area) only. However, no change in land-use of buffer zone is expected and mining will not have any impact on land-use of the buffer zone.
Topsoil Management: There was only a little quantity of soil was generated during the plan period which was used for reclamation/plantation purpose.
In addition to it, entire mineral produced was saleable. Therefore, no overburden/waste was stacked during the plan period.

\subsection*{4.5. Impact on Water Quality}

\subsection*{4.5.1. Impact on Surface Water Bodies}

There is no tank, water reservoir or any nalla in the core zone. Hence, impacts on surface water drainage may be envisaged. The wastewater generation in the mining process is not envisaged. The possibility of surface water contamination due to wash off dumps is not envisaged.
Water treatment is not expected as there will be no harmful effluent to be discharged. Since there is no river or any perennial water course in the applied area, diversion will not be required.
No underground mining is proposed and hence no surface subsidence is expected into ground water.

\subsection*{4.5.2. Impact on Ground Water}

There is no water body in the core zone. Hand pump / bore well are available in nearby village. The ground water table in the lease area varies from 90.0 m to 100.0 m below general ground level. The mining will be done above ground water table as ultimate depth of mine is 92 m from surface level. The rainwater stored in mine pit act as artificial ground water source as well as recharge and full fil the need of use in mining and allied activities. This infers that no adverse impacts are there on the local ground water regime due to mining operations. The water requirement at the site, mainly for sprinkling on haul road will be met by nearby villages. Water for drinking \& service utilities will be met by nearby village.
The mining will not be intersecting the ground water table; hence there will be no impacts on the local ground water regime due to mining operations. Thus, no impact on ground water table is envisaged due to the proposed mining activity.

\subsection*{4.5.3. Acid Mine Drainage}

Acid mine drainage is produced wherever a mine of any type, impermeable formations interact with the water table, aquifer, perched water body or where surface water finds its way into a mine in terrains where sulphides (particularly pyrites) are present in the ore or country rock. Among objectionable features of the acid mine drainage are low pit and high levels of sulphides, iron and total dissolved solid. These deplete the oxygen levels in water, increase the toxicity by rendering heavy metals soluble, and create corrosion problems. There is no sulphide in the country rock, hence problems of acid mine drainage are irrelevant in this mine.

\subsection*{4.5.4. Water Consumption and Wastewater Generation}

Total Water requirement will be 7.8 KLD which will be used for mining and allied activities with drinking \& domestic use also. Drinking water will be supplied by private water tanker as MOU has been done between supplier and proponent. Besides this, rainwater will be collected in the working pit which will be used for dust suppression and plantation purpose. No process wastewater will be generated from mining activity. Figure \(\mathbf{4 . 1} 1\) is showing the water balance diagram as per total requirement. The calculation for dust suppression is estimated and given in Table 4.3.

Table 4-3: Water Consumption and Management
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
The mining in the lease area may cause the ground water Contamination due to intersection of the water table. \\
The domestic wastewater generated will be stored in septic
\end{tabular}} & \multicolumn{3}{|c|}{Mitigation Measures} & \multirow[t]{4}{*}{\[
\begin{gathered}
\text { Budget } \\
\hline 15.0 \\
\text { Lakhs } \\
\text { for plan } \\
\text { period }
\end{gathered}
\]} \\
\hline & \multicolumn{3}{|l|}{The water table will not be intersected during mining in the lease area as ultimate depth of mining is 92 m and the water table is \(90-100 \mathrm{~m}\) BGL. Proper analysis/ monitoring will be done to check the ground water.} & \\
\hline & \[
\begin{gathered}
\text { Drinking \& } \\
\text { Domestic@30 lpcd/ } \\
\text { worker } \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 33 \text { workers } \times 30 \mathrm{lpcd} \\
& =990 \mathrm{l} / \mathrm{day}
\end{aligned}
\] & 0.99 KLD & \\
\hline & Plantation@2 1/tree in mining lease and approach road & \[
\begin{aligned}
& 2047 \text { Trees } \times 2 \mathrm{l} / \text { day } \\
& =4093 \mathrm{l} / \mathrm{day}
\end{aligned}
\] & 4.09 KLD & \\
\hline
\end{tabular}

\section*{PROPONENT \\ CONSULTANT}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Viliage, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed


\subsection*{4.5.5. Water Quality Management}

There are no surface water bodies, the ground water Is available in the form of hand pump \& bore well near the applied area. Ground water level is below the ultimate depth of mine. After the completion of mining operation in the area, the surface water is likely to be contaminated due to wash off from the dust prone area then pit will provide by adequate plantation before the conceptual period is over.
During conceptual period following steps will be taken from water quality management:
- There is no surface water body, the water table is quite below the proposed conceptual working, and hence there will be no impact on ground water.
- During the rainy or post monsoon season, the collected water within the pit will be passing through the settling tanks to settle the suspended heavy particles the clear|water will be discharged to focal nallah.
- The garland drain will be provided around the dump, whatever wash off from higher altitude area then it will be further drained to settling tank to suspend if any heavy particles, then it will drain to agriculture field or nallah.
- The Stone does not contain any toxic element which is likely to cause surface/ground water
- pollution. Mining operation will not pose any problem to general water table of area.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

\subsection*{4.6. Impact on Ambient Air Quality}

\subsection*{4.6.1. Identified Anticipated Impact on Ambient Air Quality}

The air pollution impact of proposed stone mine depends on the intensity of ore extraction operations, mode of transport and mode of screening of ore. The intensity of operation is directly related to the rate of production of ore from mining. Drills and dumpers are engaged mainly for extracting and transporting the ore from the mining areas.
Proposed mining activity will be carried out by the existing open cast manual/semi mechanized means at location shown by year wise plan and section using excavator/loader \& dumper combination and other manual tools such as spades, chisel, hammer etc. The air borne particulate matter ( \(\mathrm{PM}_{10}\) ) generated by ore and waste handling operations, transportation and screening of ore is the main respirable air pollutant. The emissions of Sulphur dioxide ( \(\mathrm{SO}_{2}\) ), Nitrogen Oxides \(\left(\mathrm{NO}_{2}\right), \mathrm{CO}\) and \(\mathrm{CH}_{4}\) contributed by transportation of minerals will be marginal. Prediction of impacts on air environment has been carried out taking into consideration proposed production and net increase in emissions. Air pollution sources in the operating mine have been classified into three categories as given below:
- Area sources; Control by dust suppressions
- Line sources; Control by dust suppressions
- Point Source; Control by dust collection and treatment or/and by dust suppressions

Area Sources: Being an opencast mine, loading, unloading, and stockpiling on ground area are considered as area sources.
Line Sources: Transportation of ore through movement of tippers on the haul road inside the mine lease area is considered as line sources.
Point Sources: Stacks of bag filters connected to belt conveyors, if any and stack of DG sets are considered as point sources.
As the project is mining project and DG set is not proposed for power back. So, point source is not applicable for this project. Only two types of sources are considered for impact modelling purpose.
In opencast mining the different process of handling, transportation, and storage of line in the mining activities are prone to generation of high levels of fugitive dust that may increase the levels of PM 10 and SPM to high extent. The probable sources of pollution due to mining activities are shown in Table 4.4.

Table 4-4: Predominant Source of Air Pollution
\begin{tabular}{|c|l|c|}
\hline S. No. & \multicolumn{1}{|c|}{ Source } & Type of Pollutant \\
\hline \(\mathbf{1}\) & Mining activity (loading/unloading) & \(\mathrm{PM}_{10}, \mathrm{PM}\) \\
\hline 2 & \begin{tabular}{l} 
Transport of overburden or soil for dumping/ backfill and \\
mining mineral to sorting/sizing
\end{tabular} & \(\mathrm{PM}_{10}, \mathrm{PM}\) \\
\hline 3 & Dumping of waste & \(\mathrm{PM}_{10}, \mathrm{PM}\) \\
\hline 4 & Sorting of mining mineral and loading & \(\mathrm{PM}_{10}, \mathrm{PM}\) \\
\hline 5 & Transportation of sorted mining mineral & \(\mathrm{PM}_{10}, \mathrm{SPM}, \mathrm{SO}_{2}, \mathrm{NO}_{x}, \mathrm{CO}\) \\
\hline
\end{tabular}

PROPONENT
CONSULTANT

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
The effects of air pollutants upon receptors are influenced by concentrations of pollutants and their dispersion in the atmosphere. Air quality modelling is an important tool for prediction, planning and evaluation of air pollution control activities besides identifying the requirements for emission control to meet the regulatory standards. The efficient management of air quality requires the use of modelling techniques to analyze the patterns of pollutant concentrations from many individual sources of air pollutants operating simultaneously. The main impacts of air pollutants on the health of human and others are given Table 4.5.

Table 4-5: Identified Impacts of Air Pollutions on Human, Animals and Plants
\begin{tabular}{|c|c|c|}
\hline S. No. & Pollutant & Impact on human health, habitats, and species \\
\hline 1 & Particulate matter & PM \(M_{10}\) can penetrate deep into the lung and cause more damage, while larger particles are typically filtered out through the airways' natural mechanisms. Particulates can damage surfaces and materials. \\
\hline 2 & Sulphur dioxide \(\left(\mathrm{SO}_{2}\right)\) & \(\mathrm{SO}_{2}\) can cause coughing, make people more prone to respiratory infections, and aggravate asthma and chronic bronchitis. \(\mathrm{SO}_{2}\) can attach itself to particles and, if these particles are inhaled, they can cause more serious health effects. Acid rain acidifies soils and water. This can affect aquatic life, cause deforestation, and alter the species composition of plant and animal communities. Acid rain kan corrode building materials and paints. \\
\hline 3 & Oxides of
Nitrogen
\(\left(\mathrm{NO}_{x}\right)\) & \(\mathrm{NO}_{x}\) can increase a person's susceptibility to, and the severity of, respiratory infections and asthma. Long-term exposure to high levels of \(\mathrm{NO}_{x}\) can cause chronic lung disease. High \(\mathrm{NO}_{x}\) levels damage foliage, decrease plant growth, and reduce crop yield. Deposition of nitrogen compounds can lead to soil and water acidification. NOX can cause eutrophication of soils and water, which alters the species composition of plant communities and can eliminate sensitive species. \(\mathrm{NO}_{\mathrm{x}}\) is a component of photochemical smog. \\
\hline 4 & Carbon monoxide (CO) & When inhaled by people and animals, CO bonds to the haemoglobin in the blood, and reduces the oxygen carrying capacity of the red blood cells. The resulting lack of oxygen in the body causes cells to die. \\
\hline 5 & Methane \(\left(\mathrm{CH}_{4}\right)\) & Methane in its gas form is an asphyxiant, which in high concentrations may displace the oxygen supply you need for breathing, especially in confined spaces. Decreased oxygen can cause suffocation and loss of consciousness. It can also cause headache, dizziness, weakness, nausea, vomiting, and loss of coordination \\
\hline
\end{tabular}

\subsection*{4.6.2. Impact Assessment on Air Quality due to Operation}

Emission to Air: - The main emissions to air from mining operations consist of wind-borne dust, process dust and the mineral transportation.
Modelling Methodology: - The fugitive dust emissions have been estimated using the methodologies outline in the AP-42 (USEPA) and National Pollutant Inventory (NPI)

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed

\section*{Emission Estimation Technique Manual (EET) for Mining Version 3.1 (January 2012, Australia).}

Air quality impacts of the proposed expansion have been assessed using the ISCST3 computer dispersion model, developed by USEPA. Using the model, 24 -hour maximum ground-level PM \(_{10}\) concentration at the nearest sensitive receiver to the site has been predicted. Other emissions are ignored.
ISCST3 model is designed to predict ground-level concentrations or dry deposition of pollutants emitted from one or more sources, which may be stacks, area sources, volume sources, open pits or any combination of these. ISC3 is essentially a statistical Gaussian plume model that requires a time series of both meteorological and source emission data.

\subsection*{4.6.3. ISCST3 Dispersion Model}

The Industrial Source Complex (ISC) Short Term model provides options to model emissions from a wide range of sources that might be present at a typical industrial source complex. ISCST3 is USEPA approved model to predict the air quality. The model uses urban dispersion and regulatory defaults options as per guidelines on air quality models (PROBES/70/1997-1998). Emission sources are categorized into four basic types of sources, i.e., point sources, volume sources, area sources, and open pit sources. The volume source option and the area source option may also be used to simulate line sources. The model assumes receptors on flat terrain. The ISC short term area source model is based on a numerical integration over the area in the upwind and cross wind directions of Gaussian plume formula. This can be applied to the Point, Area, and Line or Volume sources simultaneously and their resultant incremental concentration of the pollutant can be predicted.

\subsection*{4.6.4. Model Options used for Computation}

The options used for short-term computations are:
- The plume rise is estimated by Briggs formulae, but the final rise is always limited to that of the mixing layer.
- Exhaust tip down-wash is not considered.
- Calms processing routine is used by default.
- Flat terrain is used for computations.
- It is assumed that the pollutants do not undergo any physico-chemical transformation and that there is no pollutant removal by dry deposition.
- Meteorological inputs required are hourly wind speed and direction, ambient temperature, stability class, and mixing height.
- Washout by raîn is not considered; and
- Cartesian co-ordinate system has been used for computations with 200.0 m grid interval.

\subsection*{4.6.5. Emission of Fugitive Dust (PM10)}

Emission due to loading/unloading of Mining Mineral: The mineral will be transported to the destination via road through trucks/dumpers. The emission rate of \(\mathrm{PM}_{10}\) due to unloading/ loading of minerals is calculated using the equation as per AP-42 USEPA guidelines:

PROPONENT
CONSULTANT an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
\[
E=k X 0.0016 X\left(\frac{\left(\frac{u}{2.2}\right)^{1 / 3}}{\left(\frac{M}{2}\right)^{1 / 4}}\right)
\]

Where,
\[
\begin{aligned}
& E=\text { Emisslon Factor, } \mathrm{kg} / \text { ton } \\
& \mathrm{k}=\text { Particle size multiplier, } 0.74 \text { for TSP \& } 0.35 \text { for PM10 } \\
& M=\text { Moisture Content, } \% \\
& \mathrm{u}=\text { Mean wind speed, } \mathrm{m} / \mathrm{s}
\end{aligned}
\]

\subsection*{4.6.6. Summary of Calculated Emission Rate}

The details of source parameters, calculated emission rates from area sources and line sources are described in Table 4.6. As per the Collector Officer letter (Mining Officer) confirms that 2 more mines ( \(\mathrm{M} / \mathrm{s}\) Xandy Mines and Minerals \(-4.80 \mathrm{Ha} \& \mathrm{M} / \mathrm{s}\) Stone Field -7.46 Ha ) are available within 500 from lease to form the cluster of 12.26 Hectare.

Table 4-6: Emission Rate Estimation
\begin{tabular}{|c|c|c|}
\hline S. No. & Activity/Source & Emission Rate for PM \\
\hline \multicolumn{3}{|c|}{ Area Source Emission Rate from Mining Activity in \(\mathbf{g / s / \mathbf { m } ^ { \mathbf { 2 } }}\)} \\
\hline 1 & Total Area Excavated (Consider for lease period end) & \(3.81 \mathrm{E}-08\) \\
\hline 2 & Haul Road to Pakka Road* & \(1.59 \mathrm{E}-06\) \\
\hline 3 & Cluster Area (Consider 87\% of total cluster area) & \(2.45 \mathrm{E}-08\) \\
\hline \multicolumn{3}{|c|}{ Total Emission Rate } \\
\hline
\end{tabular}

Note: *Emission source has been estimated for the haul road only which has been converted into area source
As this is a stone mine with sand project which will be operated by fully mechanized. The source for the impact assessment was considered approach road, mining activities within mine lease and others surrounding sensitive areas. About 200 m length Kaccha road will be maintained or developed for using of transportation of mineral to destination. That road has also been considered in impact assessment from the approach road.

\subsection*{4.6.7. Mixing Height}

As site specific mixing heights were not available, mixing heights based on IMD Publication "Atlas of Hourly Mixing Height and Assimilative Capacity of Atmosphere in India", 2008 has been considered for Industrial Source Complex model to establish the worst-case scenario. The details of hourly mixing height are given in Table 4.7 which is used in modelling.

Table 4-7: Hourly Mixing Height for Pre-monsoon Season
\begin{tabular}{|c|c|c|c|}
\hline Hour of the Day & Mixing Height & Hour of the Day & Mixing Height \\
\hline 1 & 50.0 & 13 & 2100.0 \\
\hline 2 & 50.0 & 14 & 2350.0 \\
\hline 3 & 50.0 & 15 & 2550.0 \\
\hline 4 & 50.0 & 16 & 2650.0 \\
\hline 5 & 50.0 & 17 & 2750.0 \\
\hline 6 & 90.0 & 18 & 2200.0 \\
\hline 7 & 100.0 & 19 & 1350.0 \\
\hline 8 & 150.0 & 20 & 725.0 \\
\hline
\end{tabular}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|c|c|c|}
\hline Hour of the Day & Mixing Height & Hour of the Day & Mixing Height \\
\hline 9 & 300.0 & 21 & 50.0 \\
\hline 10 & 610.0 & 22 & 50.0 \\
\hline 11 & 1100.0 & 23 & 50.0 \\
\hline 12 & 1750.0 & 24 & 50.0 \\
\hline
\end{tabular}

\subsection*{4.6.8. Meteorological Data}

Micrometeorological and microclimatic data recorded at the continuous weather monitoring stations on wind speed, direction, temperature, and rainfall at one-hour interval for the monitoring period of Pre-Monsoon Season i.e., March to May 2023 was used as meteorological input. The distribution of stability classes during this period is given in Table 4.8.

Table 4-8: Hourly Mixing Height for Pre-monsoon Season
\begin{tabular}{|c|c|}
\hline Stability Class & Frequency of Occurrence \\
\hline A & 8.33 \\
\hline B & 37.50 \\
\hline C & 20.83 \\
\hline D & 16.67 \\
\hline F & 4.17 \\
\hline
\end{tabular}

\subsection*{4.6.9. Presentation of Results}

In the present case model stimulations have been carried using the hourly Triple Joint Frequency data. Short-term simulations were carried to estimate concentrations at the receptors to obtain an optimum description of variations in concentrations over the site in 10-km radius covering 16 directions. The incremental concentrations are estimated for the monitoring period. For each time scale, i.e., for 24 hr (short term) the model computes the highest concentrations observed during the period over all the measurement points.
The maximum/ highest predicted worst-case incremental GLC (24-hour average) of \(\mathrm{PM}_{10}\) due to operations at mine project, as predicted by ISCST3 model, will be \(0.019 \mu \mathrm{~g} / \mathrm{m}^{3}\) through area source which will be within the project premises or near to the project site. The predicted 24hourly GLC at baseline air quality monitoring locations are presented in Table 4.9.

Table 4-9: Emission Rate Estimation
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Location Name & \begin{tabular}{c} 
Location \\
Code
\end{tabular} & \begin{tabular}{c} 
Distance \\
\(\mathbf{( k m )}\)
\end{tabular} & Direction & \begin{tabular}{c} 
Baseline \\
Max. \\
\(\mathbf{( 9 8 \%})\)
\end{tabular} & \begin{tabular}{c} 
Incremental \\
GLC
\end{tabular} & \begin{tabular}{c} 
Predicted \\
GLC
\end{tabular} & Std. \\
\hline Near Project Site & AAQ-1 & 0.3 & NNE & 82.000 & 0.0001 & 82.000 & 100 \\
\hline Mina Ka Nangal & AAQ-2 & 1.4 & SW & 69.000 & 0.0040 & 69.004 & 100 \\
\hline Golwa & AAQ-3 & 1.7 & WNW & 71.000 & 0.0056 & 71.006 & 100 \\
\hline Donkhera Ki Dhani & AAQ-4 & 1.5 & NNE & 75.000 & 0.0037 & 75.004 & 100 \\
\hline Bhedanti & AAQ-5 & 2.3 & ENE & 81.000 & 0.0012 & 81.001 & 100 \\
\hline "Dilpura & AAQ-6 & 1.3 & SE & 78.000 & 0.0079 & 78.008 & 100 \\
\hline Rampura & AAQ-7 & 3.0 & SSE & 76.000 & 0.0007 & 76.001 & 100 \\
\hline
\end{tabular}

PROPONENT
CONSULTANT

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

Note: EIA Study conducted by Parivesh Environmental Engineering Services, Lucknow
It can be further observed from the isopleths that the concentrations rapidly decrease with increasing distance and beyond the boundary of project.
Overall, the incremental value of \(\mathrm{PM}_{10}\) due to mining activity will be very less in comparison of existing air pollution condition. Thus, the adverse impact of mining activities outside the ML area will be marginal and will not have any effect on health of human and animals and on flora of the area also.
The predicted additional value in the above table presents the worst-case scenario i.e., on the day of maximum predicted GLCs as done by the model from every day hourly input meteorological data. Concentration of the fugitive dust was calculated using the empirical equations for unpaved roads published by USEPA- AP42. For this, wind speed is assumed \(1.6 \mathrm{~m} / \mathrm{s}\) and height of source is 0 m . Modelling was done for an infinite line source assuming unpaved road. For conservative calculation wind was assumed to blow at a velocity of \(1.6 \mathrm{~m} / \mathrm{s}\) perpendicular to the road. The details related to the isopleths with onsite wind-rose are given as Figure 4.2 \& Figure 4.3.

Figure 4.2: Predicted Ground Level Concentration of PM


Figure 4.3: Predicted Ground Level Concentration of PM on Base Map
```

PROPONENT M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)

```

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed


\subsection*{4.6.10. Air Pollution Management}

Mitigative measures suggested for air pollution controls are based on the baseline ambient air quality of the area. From the point of view of maintenance of an acceptable ambient air quality in the region, it is desirable that air quality is monitored on a regular basis to check compliance of standards as prescribed by CPCB. In case of non-compliance, appropriate mitigation measures are needing to be taken.

\subsection*{4.6.11. Overall Impact due to the Mine}

As discussed above under each activity, there will be increase in terms of particulate load. However, it can be stated that these incremental contributions will be confined to the proposed mining area and its surroundings and will not have any adverse impact on the outside community.

\subsection*{4.6.12. Mitigation Measures for Air Quality}

Most of the particulate emissions due to mineral handling is restricted to the lease area only. Air pollution is caused mainly due to dust generation added with gaseous emission from transportation activities along with mining operation like drilling, blasting, loading, haulage etc. Proper mitigation measures will be practiced during mining activities to control air pollution load below the prescribed limits. Following measures shall be taken to mitigate the effect of mining operation over ambient air environment:
- Water sprinkling will be done on the haul roads twice in a day.
- Water spraying on mine faces to control dust emanating from loading and handling operations.
- Water spraying over the muck pile to be loaded to reduce dust generation during loading operations.
- Water sprinklers along the mine haulage roads to reduce dust generation during plying of dumpers on the haul road.
- Trucks transporting materials will be covered to reduce dust emission.
- Extensive plantation of trees of different variety.
- Dust masks to all workers working in dusty atmosphere.
- A good housekeeping and proper maintenance of vehicles and machineries, which will help in controlling pollution.
- Periodical monitoring of air samples at various locations.
- All over-burden dumps shall be stabilized with legumes and grass to prevent the erosion of soil and arrest the dust emission during windy days.

\subsection*{4.6.13. Biological Method for Dust Control}

Trees can act as efficient filters. The systematic and planned greenbelt development not only reduces the fugitive dust but also checks soil erosion and improves the aesthetic beauty of an area. It is essential that planning for greenbelt development should be done at the inception. It is a proven technology for waste dump stabilization and restoration of mined out areas. The developer is proposing the 4093-tree plantation on lease area and approach road during plan period. A budget of INR 9,00,000 has been proposed for the lease period.
Green belt of adequate width should be raised by planting native species around the mine lease area on both sides of haul road, near material handling plant, on external overburden dumps and backfilled quarry along undisturbed area.

\subsection*{4.7. Impact on Road due to Traffic Movement}

\subsection*{4.7.1. Traffic Projection after Implementation of Mining Project}

During proposed mining, there will be an increase in traffic flow on major road, which is running at about 1.85 km in NE direction due to movement of trucks/ dumpers carrying mined materials from the mine to destination. During the study period, traffic survey was done for one day i.e., 12 hours (8.0 AM to 8.0 PM ) with 15 -minute intervals at one location which is near to the project site or connect to the project. The extent of these impacts, at any given time, depends upon (i) the rate of vehicular emission within a given stretch of the road and (ii) the prevailing

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
meteorological conditions. The impacts have strong temporal dependence as both factors vary with time. The temporal dependence would have diurnal, seasonal as well as long term components.

Figure 4.4: Traffic Survey Sampling Location


The traffic due to the project mainly includes trucks/ dumpers, which will be used to transporting mined out ore from the mine project. Hence, only heavy traffic is considered in assessing the impact of traffic. The additional truck due to proposed project is considered in assessing the impact on nearby Nabgal Chaudhary road including surrounding mining activities also. The Average Annual Daily Traffic (AADT) and PCUs at sampling location is given in Table 4.10.

Table 4-10: Details of Average Annual Daily Traffic (AADT) and PCUs
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{2}{|l|}{Bus/ Trucks} & \multicolumn{2}{|l|}{Passenger cars} & \multicolumn{2}{|l|}{\begin{tabular}{l}
3 \\
wheelers
\end{tabular}} & \multicolumn{2}{|l|}{2 wheelers} & \multicolumn{2}{|c|}{LCV} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Truck: \\
Trailer/ Tractor
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 7 \\
& \stackrel{7}{0} \\
& 0 \\
& 0 \\
& \frac{1}{\pi} \\
& \stackrel{0}{0} \\
& 0
\end{aligned}
\]} \\
\hline & & & \[
\begin{aligned}
& 7 \\
& 0 \\
& 0 \\
& 0 \\
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& \text { 菅 } \\
& \text { S } \\
& 0.0
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& 0 \\
& 0 \\
& 0 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& \frac{3}{0} \\
& 3 \\
& 3 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& \stackrel{\rightharpoonup}{0} \\
& \stackrel{3}{0} \\
& \underset{0}{2}
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& \frac{\pi}{0} \\
& \frac{0}{2}
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& \stackrel{\rightharpoonup}{0} \\
& \underset{0}{2}
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& 0 \\
& 0 \\
& 0 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& \vec{i} \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& \text { iu } \\
& 2 \\
& 8 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& \stackrel{\rightharpoonup}{6} \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \\
\hline T1 & 1.85 & NE & 21 & 63 & 79 & 79 & 54 & 54 & 197 & 99 & 57 & 86 & 14 & 63 & 444 \\
\hline
\end{tabular}

Source: (PCU Factor: Buses-3, Trucks-3, Car-1, Two-Wheeler-0.5)

PROPONENT
CONSULTANT

M/S XANDY MINES AND MINERALS
PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT/EIA/2124/IA 0092(Rev.01)

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed

The vehicle classification system adopted for conducting the traffic volume counts along with respective Passenger Car Unit (PCU) factors, as recommended by India Road Congress in "Guidelines for Capacity of Rural Roads in Plan Areas" (IR:106-1990) are given in Table 4.11.

Table 4-11: Detail of PCUs Factor as per IRC
\begin{tabular}{|c|l|c|}
\hline Category & \multicolumn{1}{|c|}{ Vehicle Class } & Equivalent PCUs Factors \\
\hline \multirow{4}{*}{\begin{tabular}{c} 
Fast \\
Vehicles
\end{tabular}} & Motorcycle or scooter etc. & 0.50 \\
\cline { 2 - 3 } & Passenger car, pick-up van, or Auto-rickshaw & 1.00 \\
\cline { 2 - 3 } & Agricultural Tractor, Light Commercial Vehicle & 1.50 \\
\cline { 2 - 4 } & Truck or Bus & 3.00 \\
\cline { 2 - 3 } \multirow{4}{*}{\begin{tabular}{c} 
Slow \\
Vehicles
\end{tabular}} & Truck-trailer, Agricultural Tractor-Trailer & 4.50 \\
\cline { 2 - 3 } & Cycle & Cycle rickshaw \\
\cline { 2 - 3 } & Hand cart & 0.50 \\
\cline { 2 - 3 } & Horse-drawn Vehicle & 2.00 \\
\cline { 2 - 3 } & Bullock Cart* & 3.00 \\
\hline
\end{tabular}

Source- Guidelines for Capacity of Rural Roads in Plan Areas" (IR:106-1990)
The details V/C ratio and level of service as per IRC Guidelines is given in Table 4.12.
Table 4-12: V/C Ratio and Level of Service (LOS) as per IRC
\begin{tabular}{|c|c|l|l|}
\hline V/C Ratio & LOS & \multicolumn{1}{|c|}{ Performance } & \\
\hline \(0.0-0.2\) & A & Represents a condition of tree flow & \\
\hline \(0.2-0.4\) & B & Represents a zone of stable flow & \\
\hline \(0.4-0.6\) & C & \begin{tabular}{l} 
Represents zone of stable flow but with declining comfort and \\
convenience
\end{tabular} & \\
\hline \(0.6-0.8\) & D & Represents the limit of stable flow & \\
\hline \(0.8-1.0\) & E & \begin{tabular}{l} 
Represents operating conditions when traffic volumes are at or close to \\
the capacity level
\end{tabular} & \\
\hline \(1.0-1.2\) & F & Represents zone of forced or breakdown flow & \\
\hline
\end{tabular}

Source- Guidellines for Capacity of Rural Roads in Plan Areas" (IR:106-1990)
The existing traffic scenario and level of service is given in Table 4.13.
Table 4-13: Existing Traffic Scenario \& Level of Service (LOS)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& 5 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\]} & \multicolumn{7}{|c|}{Existing PCU per day} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { u } \\
& \text { ary } \\
& \vdots \\
& \ddot{y} \\
& n \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\]} \\
\hline &  & \[
\begin{aligned}
& \frac{0}{6} \\
& \frac{9}{6} \\
& 0 \\
& 0 \\
& \vdots \\
& \vdots \\
& i
\end{aligned}
\] &  &  & 3 &  & \[
\begin{aligned}
& \text { Z } \\
& \text { Q } \\
& \text { N0 } \\
& 0
\end{aligned}
\] & & & \\
\hline T1 & 99 & 54 & 79 & 63 & 86 & 63 & 444 & 6,000 & 0.07 & A \\
\hline
\end{tabular}

Source- Guidelines for Capacity of Rural Roads in Plan Areas" (IR:106-1990)
As per IRC guidelines, the Lével of Service (LOS) of existing road represents a condition of free flow (LOS Category" \(A^{\prime \prime}\) ) at all sampling locations. The impact on traffic is described in Table 4.14.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
Table 4-14: Traffic Scenario with Operation of Mine \& Level of Service (LOS)
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{ Year } & \begin{tabular}{c} 
Traffic Volume \\
(PCU/day)
\end{tabular} & V/C Ratio & \begin{tabular}{c} 
LOS as per \\
IRC
\end{tabular} \\
\cline { 2 - 4 } & T1 & T1 & T1 \\
\hline 2023 & & \(\mathbf{6 , 0 0 0}\) & \\
\hline \begin{tabular}{c} 
Addition due to project \((10\) \\
dumpers/ trucks)
\end{tabular} & 444 & 0.07 & A \\
\hline Total PCU 2023 & 261 & & \\
\hline 2024 & \(\mathbf{7 0 5}\) & \(\mathbf{0 . 1 2}\) & A \\
\hline 2025 & 754 & 0.13 & A \\
\hline 2026 & \(\mathbf{8 0 7}\) & \(\mathbf{0 . 1 3}\) & A \\
\hline 2027 & 863 & 0.14 & A \\
\hline 2028 & 923 & 0.15 & A \\
\hline 2029 & 988 & 0.16 & A \\
\hline \(\mathbf{2 0 3 0}\) & 1057 & 0.18 & A \\
\hline
\end{tabular}

Source- field Survey conducted during monitoring season.
After commencement of the project, the projected traffic represents conditions of free flow (LOS Category "A") and represents conditions of free flow (LOS Category "A") in 2030 also which is convenience at the location. From the above table, it can be concluded that the incremental load on the carrying capacity of the concerned road is not likely to have any adverse effect or impact.

\subsection*{4.7.2. Traffic Management and Mitigation Measures}
- Prohibiting on-street parking of vehicles, and simultaneously developing off-street parking facilities.
- Reduction of roadside friction through control of abutting land-use and roadside commercial activity.
- Provision of adequate facilities for pedestrians and cycles.
- Controlling the cross traffic and side-street traffic by regulating, particularly during peak hours.
- Improving traffic discipline such as proper lane uses and correct over-taking, through appropriate road markings, education, and publicity.
- Optimize use of roads at any time by planning vehicles movement.
- Road crossing to be used will be well marked.
\(\checkmark\) Information and warning signals will be retro reflective type provided, clearly visible in the night; and
\(\checkmark\) Marshals will be deployed to guide the vehicles and stop vehicles to avoid traffic jam.

\subsection*{4.8. Impact on Noise Level}

Noise generated at the mine is mainly due to truck movements within and outside the ML area. The truck movement inside the ML area will be from dumpers carrying \(O B /\) wastes from the pit to the dumps. The noise generated from these vehicles will dissipate within the mine. The dumpers travelling outside with ores will have an impact on the noise level on the settlements along the road.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Doiomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

There shall be noise pollution due to drilling and blasting also. This may go beyond the threshoid value i.e., \(115.0 \mathrm{~dB}(\mathrm{~A})\) but will be momentary. No major impact of blasting on the nearby villages is envisaged due to underground mine. The pronounced effect of noise will be felt only near the active working area. Other than this, as there is no involvement of major machinery, the impact of noise levels will be minimal.

\subsection*{4.8.1. Vibration Level due to Blasting}

Ground vibration may occur due to the blasting operations. The other effects may be fly rocks, air blast, noise, dust, and fumes. The blasting generates seismic waves in the ground which may cause significant damage to human and property in the area. When an explosive charge is fired in a hole, stress waves propagate radially in all directions and cause the rock particles to oscillate. The oscillation is felt as ground vibration. The ground vibration is measured as the peak particle velocity (PPV). To minimize the effect of blasting controlled blasting with optimum charge and proper stemming of holes will be done.

\subsection*{4.8.2. Health Effect of Noise}

Noise health effects are the health consequences of elevated sound levels. Elevated workplace or other noise can cause the following health effects, hearing impairment, hypertension, ischemic heart disease, annoyance, bowel movement and sleep disturbance. Noise exposure has also been known to induce tinnitus, hypertension, vasoconstriction, and other cardiovascular impacts. Elevated noise levels can create stress, increase workplace accident rates, and stimulate aggression.

\subsection*{4.8.3. Noise Pollution and Control Measures}

In the applied area as drilling and blasting will be done occasionally, there may be ground vibration and noise pollution within blasting danger zone. The workers employed will be provided with personal hearing protection equipment, like earmuffs in case of any high noise level generation. The following mitigation measures should be taken to control noise pollution from mining activities:
- Wherever the noise levels exceed 85 dBA , workers should be provided with earmuffs, ear plugs etc.
- All moving parts of machine will be properly lubricated.
- A thick tree belt will be provided in phased manner around the periphery of the mine to the extent possible and along haul roads outside the lease area to attenuate noise; and
- A barrier of overburden at mine boundaries will be made and three rows of trees are proposed to be planted to reduce propagation of noise.
- All the basic equipment and various machineries will be kept well maintained.

\subsection*{4.8.4. Precaution during Drilling \& Blasting}

Following precautions will be taken during blasting period.
- Preparation of charge and charging and stemming of holes will be done by a qualified blaster.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
- Before a shot is charged, stemmed, or fired, sufficient warning by signal is given over the entire area falling within the danger zone and ensure that all persons within such area have taken proper shelter.
- During blasting, controlled blasting will be done using delay detonator to prevent flying fragments which may cause injury to local inhabitants within danger zone.
- Proper inspection after shot firing will be done by the blaster.
- The number of shots which exploded shall be counted by the blaster to assess misfire.

Adopting shock tube (non-electrical) initiation system in blasting which allows short delay blasting using short delay detonators allowing in hole as well as surface delay and bottom initiation of blasted rock, and results reduction of fly rock, reductions in noise and ground vibration levels to within permissible limits. All necessary precautions as enumerated under 106(2)(b) of MMR 1961 will be followed.

\subsection*{4.9. Biological Environment}

Environmental Impact Assessment and Environmental Management Plan are widely used as tool for environmental appraisal and play an effective role in sustainable development. While discussing the biodiversity management of the area it is found that there has been a dedine trend in biodiversity on one hand and an increase in impoverishment of biodiversity dependent people. Though by the time the mines run, the persons from surrounding area may be engaged as labours but as soon as the activities are over the labours are without any job and resources on which they were depended then removal of trees would have done.
Biological environment is influenced by the activities like change in land use and method of working, noise generation, areal lighting, removal of vegetation, Discharge of effluent/ wastewater/surface runoff within ML and outside of ML, Diversion of nalla, disturbance to first order stream.
Improper and uncontrolled phenomena will have impact over crop production, flora, aquatic and terrestrial fauna of the area. Moreover, unsafe mining leads to loss of domestic animals also. Proper control measures for less noise generation, control of silt containing discharge, provision of green belt, safe mining practices will avoid such impact. The forest area adjoins the mining area. The forest crop is already being damaged by grazing, illicit felling, and fire. These incidents are prominent in the areas which are closer to habitation and labour camps. There is tendency of encroachments in the area where larger number of labours are working. The encroachments may be for construction of the hutments and temporary cultivation.
The concept supports the National Forest Policy 1988 which guided forest management in the country. The principles of local community participation and benefit sharing embodied in the policy have also provided the stimulus for the launch of joint forest management (JFM) program. The details of forest area coming in the buffer zone of the project site have been detailed under the paragraph forest and flora of the study area in Chapter 3.
The extensive survey of core and buffer areas showed no endangered species, no wildlife sanctuary, no national park, no biosphere reserve and no wildlife corridor in core and buffer zones. No migratory routes of birds were found in core and buffer zones. Hence, the proposed project will not have significant negative impact on ecology of flora and fauna of the area.

CONSULTANT

\subsection*{4.10. Impact on Socio-Economic Environment}

To assess the impacts on socioeconomic profile, the related information has been obtained through primary sources as well as secondary sources. Report has been prepared using a combination of methods, including Focus Groups Discussion (FGD) tools and techniques, site visit, community observations, and informal and formal surveys. Direct observation-based methods were implemented to help identifying current socioeconomic environmental Scenario and potential impacts of mining activities as experienced by the local people in the study area, and to rank socioeconomic activities based upon their contribution to household livelihood. This observation/ study reflected various socioeconomic variables and direct-indirect impacts between mining and non-mining communities.

Bad mining practices viz uncontrolled fugitive emission, uncontrolled dlscharge of runoff, uncontrolled vehicular emission, generation of higher noise level etc. will create adverse impact on the social segment in terms of ill health, reduced crop production, annoyance etc. Since the mine is already in operation, measures have been visualized during the survey.

The potential impact of proposed mining activities as experienced by the locals in the villages of the area under study was identified through survey to rank socioeconomic contribution ensuring development. In facts, People perceive that the project will bring handful gains by way of creating significant job opportunities along with development of social infrastructure. The impacts on the different components viz employment, housing, educational, and medical and transport facilities, fuel availability, economics, status, health agriculture is not significant because size of project is small. Some of these impacts reported by local people \& observed during the visit would be beneficial.

Impact of Mining on the Livelihoods of Local People: Since there are no villages and human settlement within the core zone, therefore there would be no displacement of the human population. The traffic intensity will not have any appreciable impact within buffer zone as the activity will be restricted within the core zone. Socio-economic status of the buffer zone is rural with dominant agriculture economy. The area is thinly populated. Expectation for local employment is observed.

\subsection*{4.11.1. Positive Impact}

The socio-economic status of the area in general is poor with the basic occupation being agricultural. There will be no adverse impact due to mining on socio-economic environment. The mining operations substantially increase gross economic production and infrastructure facilities. Therefore, Socio-economic prospects will improve to some extent. Also mining operations result in direct and indirect employment and consequently the population in nearby villages. Thus, project has a positive impact. The mining operations substantially increase gross economic production and infrastructure facilities. Therefore, Socio-economic prospects are improving to some extent. Also mining operations result in direct and indirect employment and consequently the population in nearby villages. Thus, this project has a positive impact.

\subsection*{4.11.2. Negative Impact}

The negative impact will be limited to some sporadic health problems, which may occur due to increase in fugitive emission near the mines. However, as the incremental dust due to mining

\section*{M/S XANDY MINES AND MINERALS PARIVESH ENVIRONMENTAL ENGINEERING SERVICES NABFT /EIA/2124/IA 0092(Rev.01)}
activities (Including 500.0 m buffer) will be about \(0.019 \mu \mathrm{~g} / \mathrm{m}^{3}\), there will be within the mining area and will be negligible impact on human health.

\subsection*{4.11.3. Occupational Health \& Safety}

External hazards involve injuries to human and cattle, which could occur during mining operations. These injuries could be due to flying stones during blasting and when ore transport vehicle loses control, internal hazards occur due to unhygienic work conditions or carelessness of the workers involved in mining operations. Internal hazards often show their affect after a long time. The mining operation is unlikely to cause any adverse impact due to the above factors in buffer zone.
The mine management will provide proper health care facilities near the mine area. This will be provided to the surrounding villages in case of emergencies. All measures to provide a safe environment will be taken by the management. The speed of dumpers/trucks will be regulated inside and outside the mines to ensure safety of employees as well as locals. Hence adverse impact on health and safety of the workers and the local population is not expected. No accident or injury due to fly rock is expected in the mine. There are no places of worship and monuments in the applied area.

Table 4-15: Work-related Health Hazards
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { S. } \\
\text { No. }
\end{gathered}
\] & Hazardous Activities & Type of Hazards & Severity of Injury \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{Drilling} & Exposed to high level of Noise & Hearing impairment \\
\hline & & Exposed to dusty
environment & Respiratory diseases \\
\hline \multirow[t]{4}{*}{2} & \multirow[t]{4}{*}{Blasting} & Struck by fly rock & Serious Physical injury \\
\hline & & Exposed to dusty
environment & Respiratory diseases \\
\hline & & Exposed to high level noise & Hearing impairment \\
\hline & & Exposed to excessive
vibration to & Cracks to permanent structures \\
\hline \multirow[t]{2}{*}{3} & \multirow[t]{2}{*}{Loading} & Struck by rolling big boulders & Serious injury, and equipment damage \\
\hline & & Struck by fall of objects & Serous Physical injury \\
\hline \multirow[t]{4}{*}{4} & \multirow[t]{4}{*}{Transportation} & Accidental runway of vehicle & \multirow[t]{2}{*}{Serious injury, and equipment damage} \\
\hline & & Fall of vehicle from height while reversing & \\
\hline & & Exposed to high level noise & Hearing impairment \\
\hline & & Fire in engine due to over heating & Serious Physical injury \\
\hline \multirow[t]{4}{*}{5} & \multirow[t]{4}{*}{Welding \({ }_{\text {g }}\) gas cutting} & Emission of gases \& fumes & Asphyxiation \\
\hline & & Release of radiation \& light & Eye injury \\
\hline & & Fire & Burns \\
\hline & & Release of heat & Skin problem, Burns \\
\hline
\end{tabular}

\footnotetext{
PROPONENT M/S XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)
}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|c|l|l|l|}
\hline \begin{tabular}{c} 
S. \\
No.
\end{tabular} & \begin{tabular}{c} 
Hazardous \\
Activities
\end{tabular} & \multicolumn{1}{|c|}{ Type of Hazards } & Severity of Injury \\
\hline 6 & \begin{tabular}{c} 
Storage of oil, \\
lubricant
\end{tabular} & Leaks and spills & \begin{tabular}{l} 
Fire \& vigorous \\
reaction
\end{tabular} & chemical \\
\hline 7 & \begin{tabular}{c} 
Battery \\
maintenance \\
handling
\end{tabular} & Acid spiliage & Acid burns & \\
\hline 8 & \begin{tabular}{c} 
Use/repair of \\
hydraulic jacks \& \\
pumps
\end{tabular} & High pressure operation & Oil spillage & Rupture of hydraulic hoses injury \\
\cline { 3 - 4 } & & & \\
\hline
\end{tabular}

Rehabilitation \& Resettlement Plan: There is no homestead land in the mine lease area. Thus, there will no displacement issue arising from the proposed mining project. Attempts will be made to ensure that the impacts of the project will be positive on the populations by way of generation of employment, increase in literacy rate, and accessibility to education and health dare facilities.

\subsection*{4.11. Mine Closure}

Adverse impacts due to mining e.g., impacts on water, air, noise, soil, ecology etc. \$hall diminish gradually as the mining activities will taper down. In lieu of present land use: a better land use with effective plantation shall come into view. The mining project will lead to some infrastructural development opportunity in this backward region. The details of the factors affected by various activities are given in the identification matrix.

\subsection*{4.12. Conclusion}

Mining operation brings pollutants addition to baseline, land-use change, and health hazards to the region. Plantation \& water sprinkling will reduce the additional pollutants and land-use change will convert in positive manner as a lake surrounded will be formed on abandoned pit at lease end. Health of labour / worker and nearby region will be monitored by six-monthly and safety measures will be taken in lease area as safety mask, earmuffs, helmets, and gloves for mining operation. Jobs will be introduced to the region which will socially \& economically upgrade the livelihood. So, the project will not raise negative impact to the region.

CHAPTER 5
ANALYSIS OF
ALTERNATIVES (TECHNOLOGY \& SITE)

\section*{5. Analysis of Alternatives (Technology \& Site)}

\subsection*{5.1. Introduction}

During the scoping process, alternatives to a proposal can be considered or refined, either directly or by reference to the key issues identified. A comparison of alternatives helps to determine the best method of achieving the project objectives with minimum environmental impacts or indicates the most environmentally friendly and cost-effective options.

\subsection*{5.2. Alternative of Mines}

The Ministry of Environment, Forest, and Climate Change (MoEF\&CC), Govt. of India through its notification of 14th September 2006 and its subsequent amendment under the Environment (Protection) Act, 1986 classifies the projects under Non-Coal Mining Category 'B' of Activity 1 (A) due to cluster. This is a project of minor mineral over an area of 4.80 ha which is \(<5 \mathrm{Ha}\) and complying to Cat B2 of activity \(1(A)\). But there are 2 more mines within 500 m from lease which is forming cluster of 12.26 Ha , so the project is complying to the Cat \(\mathbf{B - 1}\) of Activity \(\mathbf{1}\) (A).
It is an existing quarry lease which was got environment clearance under category B2 from concern authority of Haryana. The mineral is site specific, so no alternative site was identified. Lease approval from concerned authority has been obtained and enclosed in this report.

\subsection*{5.3. Alternative for Technology and Other Parameters}

The lease area is being worked since June 2016 i.e., after getting the environmental clearance from designated authority. Further, it is proposed to continue systematic and scientific mining for excavation of dolomite and road metal and masonry stone/building stone during the next plan period of Mining Scheme. It was proposed in the last mining plan to make benches of 6 mx 6 m but keeping in view the type of formation and boom height of Machines benches of \(10 \times 10 \mathrm{~m}\) are proposed to be made. During all these years only dolomite production was made, and no building stone is reported to mined.
At present fully mechanized method of mining of Dolomite by deploying heavy Earth moving machines and deep hole drilling and blasting by forming benches of \(10 \mathrm{~m} \times 10 \mathrm{~m}\) from top downward. Now it proposed to mine 325000 MT ( 250000 MT stone +75000 MT dolomite) per annum or \(1083 \mathrm{MT} / \mathrm{day}\). The production targets for dolomite as proposed the approved mining plan were followed. Necessary permission for mechanized mining under MMR'1961from competent Authority has already obtained. The same will continue in the next five-year plan also. The formation of benches shall be continued up to the ultimate pit limit after the drilling and blasting of the bench. The boulders shall be sized with the help of rock breaker, excavated, and loaded in the trucks/ dumpers by hydraulic Excavators. The mining operations will continue as were done during the last five years. It will comprise of following activities for excavation of mineral as were proposed in the approved mining plan.

\subsection*{5.3.1. Energy Conservation}

The required quantity of electricity will be sourced from Haryana State Electricity Board (HSEB) and diesel from nearby diesel filling stations.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
To cater for the same, the fuel used for producing this energy is proposed to be used following renewable source of energy.
\(\checkmark\) To install solar panels wherever it is feasible.
\(\checkmark\) To install solar based streetlights which will conserve energy up to an extent of \(30 \%\).

\section*{OTHER ENERGY CONSERVATION MEASURES}
\(\checkmark\) To use LED lamps in place of high-pressure discharge lamps for the streetlights.
\(\checkmark\) To use time-based circuits for streetlights to switch off part of the light during night hours.
\(\checkmark\) Using dimmer to reduce the illumination level to reduce the energy consumption.
\(\checkmark\) To use start rated high efficiency machinery for mining operation.

\subsection*{5.3.2. Awareness Programme}

To bring strict discipline to the end user, an awareness program will be conducted to educate all types of users to use.
\(\checkmark\) LED Lights wherever possible.
\(\checkmark\) To use dimmers and automation for all the lights.
\(\checkmark\) Using thermal insulation for building envelopes to reduce the heat input.
\(\checkmark\) To activate lights or any other equipment on an occupancy basis.

\subsection*{5.3.3. Environmental Attributes Management \& Mitigation Measures}

Adequate environmental management measures will be incorporated during operational stages of the project to minimize any adverse environmental impact and assure sustainable development of the area. The mitigation measures which have been suggested for the construction and operational stages of the proposed development will include the following elements:
\(\checkmark\) Mineral will be transported covered with tarpaulin.
\(\checkmark\) Water sprinkling shall be done on haul roads where dust generation is anticipated.
\(\checkmark\) Mineral \& OB storage and handling yard will be enclosed from all sides.
\(\checkmark\) To minimize the occupational health hazard, proper personal protective equipment's shall be provided to the workers working in the dust prone areas.
\(\checkmark\) Air Pollution Control and Management
\(\checkmark\) Noise Control and Management
\(\checkmark\) Water treatment and management
\(\checkmark\) Strom water management
\(\checkmark\) Hazardous and Solid Waste Management
\(\checkmark\) Plantation and Landscaping
\(\checkmark\) Environmental Management Plan

CHAPTER 6 ENVIRONMENT MONITORING PROGRAM

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

\section*{6. Environment Monitoring Plan}

\subsection*{6.1. Introduction}

Environmental monitoring program is an essential tool for sustainable development. An environmental monitoring program provides a delivery mechanism to address the adverse environmental impacts of a project during its execution, to enhance project benefits, and to introduce standards of good practice to be adopted for all projects works. An environmental monitoring program is important as it provides useful information and helps to:

Table 6-1: Environmental Management Plan, Activities \& Implementation

\section*{Environmental Management Plan Activities}

Assist in detecting the development of any unwanted environmental situation, and thus, provides opportunities for adopting appropriate control measures.
\(\checkmark\) Monitoring \& tracking the effectiveness of Environmental Management Plan \& implementation of mitigation measures planned.
\(\checkmark\) Define the responsibilities of the project proponents, contractors and environmental monitors and provides means of effectively communicating environmental issues among them.
\(\checkmark\) Define monitoring mechanism and identify monitoring parameters.
\(\checkmark\) Evaluate the performance and effectiveness of mitigation measures proposed in the Environment Management Plan (EMP) and suggest improvements in management plan, if required.
\(\checkmark\) Identify training requirement at various levels.
\(\checkmark\) Identification of any significant adverse transformation in environmental condition to Plan additional mitigation measures.

\subsection*{6.2. Environmental Management Cell}

Environmental Monitoring will be taken up for various environmental components as per conditions stipulated in Environmental Clearance Letter issued by MoEF\&CC and Consent to Operate issued by the State Pollution Control Board. Compliance of same will be submitted to respective authorities on regular basis.
To maintain the environmental quality within the stipulated standards, regular monitoring of various environmental components is necessary which will have complied as per conditions. Proponent has been formulated an Environment Policy of the mine and constitute an Environmental Management Cell and committed to operate the proposed mine with the objectives mentioned in approved Environment Policy. The system of reporting of Non-conformances /
violation of any Environmental Law/ Policy will be as per quality management system. The internal audit will be conducted on periodic basis and any Non-conformances/violation to Environmental Law/ Policy will be closed and discussed during Management Review Meetings of board of directors/ partners.

\subsection*{6.2.1. Hierarchy}

A Manager will be appointed to supervise to subordinates for all activities like mining, transportation, environmental pollution controls, workers safety and greenbelt development activity. An Assistant Manager (EHS) will be responsible for the environment, health and safety related issues and supervise to the subordinates like supervisor (who is working in mine site), environmental executive (responsible for regular environmental compliances and coordinate with local administrative body to regarding environmental issues) and horticulturist (responsible for plantation and green area development). Schematic diagrammatic representation of environmental management cell (EMC) is given in Figure 6.1.

Figure 6.1: Hierarchy of Environmental Management Cell


\subsection*{6.2.2. Responsibilities for Environmental Management Cell}

The responsibilities of the EMC include the following:
\(\checkmark\) Environmental Monitoring of the surrounding area.
\(\checkmark\) Developing the green belt/Plantation.
\(\checkmark\) Ensuring minimal use of water.
\(\checkmark\) Proper implementation of pollution control measures.
\(\checkmark\) Access the risk area.
\(\checkmark\) Implementation of QMS.
\(\checkmark\) Conducting Internal Audits.
\(\checkmark\) Closing of NCs and conduction Management Review Meetings.

\subsection*{6.3. Environmental Monitoring and Reporting Procedure}

Environmental Monitoring plan shall be decided considering the environmental impact likely to occur due to operation of the project as the main scope of monitoring program is to track timely and regular change in the environmental condition and to take timely action to protect the environment. This may take the form of direct measurement and recording of quantitative
```

PROPONENT

```

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral = Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
information, such as amounts and concentrations of discharges and wastes, for measurement against corporate or statutory standards, consent limits or targets. It may also require measurement of ambient environmental quality.
The key aims of environmental monitoring program are:
\(\checkmark\) To ensure that results/ conditions are as forecast during the planning stage, and where they are not, to pinpoint the cause and implement action to remedy the situation.
\(\checkmark\) To verify the evaluations made during the planning process, with risk and impact assessments and standards and target setting and to measure operational and process efficiency.
\(\checkmark\) Monitoring will also be required to meet compliance with statutory and corporate requirements.
\(\checkmark\) Finally, monitoring results provide the basis for auditing, i.e., to identify unexpected changes.

Table 6-2: Monitoring Methodologies and Parameters
\begin{tabular}{|c|c|c|c|c|}
\hline Attributes & Frequency \& Location & Measurement Method & Pursuing Agency & Responsibility \\
\hline \multicolumn{5}{|l|}{As Air Environment} \\
\hline \[
\begin{gathered}
\mathrm{PM}_{10}, \mathrm{PM}_{2.5}, \mathrm{SO}_{2}, \mathrm{NO}_{\times} \& \\
\mathrm{CO}
\end{gathered}
\] & Six Monthly (Within lease area, nearby habitat \& as per wind pattern \& Transportation) & \begin{tabular}{l}
National Ambient Air Quality Standards \\
(NAAQS) 2009 \& IS 5182
\end{tabular} & \begin{tabular}{l}
SPCB / \\
MoEF\&CC
\end{tabular} & \begin{tabular}{l}
Environment \\
Monitoring Cell
\end{tabular} \\
\hline \multicolumn{5}{|l|}{B. Water Environment} \\
\hline Drinking Water (Ground Water) \& Surface Water & Six Monthly (Nearby water body and habitat) & \[
\begin{gathered}
\hline \text { As per IS 10500- } \\
2012
\end{gathered}
\] & \begin{tabular}{l}
SPCB / \\
MoEF\&CC
\end{tabular} & \begin{tabular}{l}
Environment \\
Monitoring Cell
\end{tabular} \\
\hline \multicolumn{5}{|l|}{C. Nolse} \\
\hline Noise levels at Day and night - Leq \(d B(A)\) & Six Monthly (Lese Area \& nearby Habitat) & As per CPCB norms & \begin{tabular}{l}
SPCB / \\
MoEF\&CC
\end{tabular} & \begin{tabular}{l}
Environment \\
Monitoring Cell
\end{tabular} \\
\hline \multicolumn{5}{|l|}{D. Soll} \\
\hline \begin{tabular}{l}
Physical \& Chemical \\
Properties of Soil
\end{tabular} & Six Monthly (Nearby Region) & As per CPCB norms & \begin{tabular}{l}
SPCB / \\
MoEF\&CC
\end{tabular} & \begin{tabular}{l}
Environment \\
Monitoring Cell
\end{tabular} \\
\hline \multicolumn{5}{|l|}{E. Socioeconomic} \\
\hline Health status, Cultural \& aesthetic attributes, and Education & Yearly (Bases on consultation with panchayat) & Primary data collection through questionnaire & \begin{tabular}{l}
SPCB / \\
MoEF\&CC
\end{tabular} & Environment Monitoring Ceil (Mining In charge) \\
\hline \multicolumn{5}{|l|}{F. Ecological Impact} \\
\hline \begin{tabular}{l}
Green Belt \\
Development \& \\
Conservation of Wildlife
\end{tabular} & Yearly (Nearby sensitive receptor) & Primary data collection. & \begin{tabular}{l}
SPCB / \\
MoEF\&CC
\end{tabular} & Environment Monitoring Cell (Mining In charge) \\
\hline
\end{tabular}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed

\subsection*{6.3.1. Monitoring Schedule}

Regular Monitoring of ali the environmental parameters viz., air, water, noise, and soil as per the formulated program based on CPCB and MoEF\&CC guidelines will be carried out every year to detect any changes from the baseline status.

Table 6-3: Monitoring Schedule
\begin{tabular}{|c|l|l|l|}
\hline S. No. & Description & Schedule of Monitoring & \\
\hline 1 & Air Quality & Twice In a week (24 hr monitoring twice in a year) \\
\hline 2 & Water Quality (Surface and Ground) & Six Monthly & \\
\hline 3 & Noise Level & Six Monthly & \\
\hline 4 & Ecology and Biodiversity & Yearly & \\
\hline 5 & Soil Quality & Six Monthly & \\
\hline 6 & Socio-economic Condition & Yearly & \\
\hline 7 & Piantation Monitoring & Once in a season & \\
\hline
\end{tabular}

\subsection*{6.3.2. Reporting Schedule during Operation of Mine}

After completion of analysis, copies of all the analysis reports will be sent to MoEF\&CC Regional Office and SPCB. Copies of the reports will be maintained in the office and will be made available to the concerned inspecting authorities or for audit time.

\subsection*{6.3.3. Budget Allocation for Monitoring}

The cost of monitoring program as per proposed parameter INR 60,000 per year has been allocated under EMP head. Budget for environmental management shall be prepared and revised regularly up on requirement. The budget shall include provisions for:
- Environmental Monitoring Program.
- Laboratory works for environmental management activities.
- Greenbelt development.
- Social \& Environmental Welfare \& Awareness programs/training \& Health related issues.
- Annual Environmental Audit.

\subsection*{6.4. Conclusion}

To maintain the environmental quality within the stipulated standards, regular monitoring of various environmental components is necessary which will have complied as per conditions. An Environmental Management Cell will be prepared who will be committed to implementation of proposed objectives mentioned in approved Environment Policy. Regular Monitoring of all the environmental parameters viz., air, water, noise, and soil as per the formulated program based on CPCB and MOEF\&CC guidelines will be monitored through NABL/MOEF\&CC approved laboratory. A budget for such environmental monitoring will be about INR 60,000 per year to be incurred by the project proponent.

\title{
CHAPTER 7 ADDITIONAL STUDIES
}

\section*{7. Additional Studies}

\subsection*{7.1. General}

Mining operations are associated with several potential hazards that affect adversely the human health and environment. It would normally require the assistance of emergency services to handle it effectively. The mining operation will be taken up under the supervision and control of qualified staff including Mine Manager (Grade I). Similarly, mines also have impendlng dangers and risk which need to be addressed for which a disaster management plan has been prepared with an ailm of taking precautionary steps to avert disasters and to take such action after the disaster which limits the damage to the minimum. Nevertheless, the following natural/industrial problems may be encountered during the mining operation.
\(\checkmark\) Inundation due to flood.
\(\checkmark\) Accidents by heavy machinery.
\(\checkmark\) Slope failures at the mine faces etc.
In additional studies, we particularly discussed about the public consultation, risk analysis \& risk management and disaster management plan.

\subsection*{7.2. Public Hearing \& Consultation}

As per the conditions of the ToR and the EIA Notification 2006 and its amendment, public consultation will be held for the project. "Public Consultation" refers to the prodess by which the concerns of local affected persons and others who have plausible stake in the environmental impacts of the project or activity are ascertained with a view to considering all the material concerns in the project or activity design as appropriate. Public consultation process comprises of two parts, viz Public Hearing and written response from stakeholders.
The Public Hearing shall be arranged in a systematic, time bound and transparent manner ensuring widest possible public particlpation at the project site(s) or in its proximity District -wise, by the concerned State Pollution Control Board (SPCB). The EIA report will be submitted to the State Pollution Control Board along with other relevant documents and additional studies. The SPCB will process the application for Public Hearing and conduct the hearing within 45 days of the application.
For obtaining responses in writing from other concerned persons having a plausible stake in the environmental aspects of the project or activity, the concerned regulatory authority and the State Pollution Control Board (SPCB) or the Union Territory Pollution Control Committee (UTPCC) shall invite responses from such concemed persons by placing on their website the Summary EIA report along with a copy of the appllcation in the prescribed form, within seven days of the receipt of a written request for arranging the public hearing. Confidential information induding nondisclosable or legally privileged information involving Intellectual Property Right, source specified in the application shall not be placed on the web site. The regulatory authority concerned may also use other appropriate media for ensuring wide publicity about the project or activity. The regulatory authority shali, however, make available on a written request from any concerned person the Draft EIA report for inspection at a notified place during normal office hours till the
date of the public hearing. All the responses received as part of this public consultation process shall be forwarded to the applicant through the quickest available means.
After completion of the public consultation, the applicant shall address all the material environment concerns expressed during this process, and make appropriate changes in the draft EIA and EMP. The final EIA report, so prepared, shall be submitted by the applicant to the MPSEAC for appraisal. The applicant may alternatively submit a supplementary report to draft EIA and EMP addressing all the concerns expressed during the public consultation.
The Final EIA/EMP will include all the public issues/suggestion after conducting the public hearing.

\subsection*{7.3. Hazard Identification and Risk Assessment Methodology}

All types of industries face certain types of hazards which can disrupt normal activities abruptly. Similar stone mining also has risks which need to be addressed for which a disaster management plan has been formulated with an aim of taking precautionary steps to avert disasters and take such action after disaster which limits the damage to minimum. In the sections below, the identification of various hazards, probable risks during the operational phase of the mining, maximum credible accident analysis and consequences analysis are addressed either qualitatively or quantitatively.
Risk assessments will help mine operators to identify high, medium, and low risk levels. This is a requirement of the Occupational Health and Safety Act 2000 with further amendments as The Occupational Safety, Health, and Working Conditions Code, 2020. Risk assessments will help to priorities the risks and provide information on the need to safely control the risks. In this way, mine owners and operators will be able to implement safety improvements. The following natural/ industrial problem may be encountered during the mining operation.
\(\checkmark\) Inundation/Flooding
\(\checkmark\) Slope failure at the mine faces or stacks
\(\checkmark\) Quicksand Condition
\(\checkmark\) Accident due to vehicular movement
\(\checkmark\) Accident during Sand loading, transporting, and dumping.
\(\checkmark\) Occupational Health Hazar.
As per proposal made under the mining plan the area will be developed by means of opencast mining method. Extraction of minerals is to be carried out by manual mining means. Water table will not be touched during the mining process. No high-risk accidents like landslides, subsidence flood etc. have been apprehended.

\subsection*{7.3.1. Hazard Identification and Risk Assessment Methodology}

This is the reason of common accident into mines. Most of the accidents from blasting occur due to the projectiles and mainly due to overcharging of the shot holes because of certain special features of the local ground. Flying rocks are encountered during initial and final blasting operations. Noise and dust also generated during blasting.
Drilling and Blasting Parameter: Blasting will be carried out by controlled agency in accordance with the Explosive Act and MMR, 1961. Drilling is proposed to be done by wagon drill ( 38.0 mm Dia of holes). Secondary blasting is proposed as standby, but it will be minimized by deploying hydraulic rock breaker for breaking large size stone/boulders.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed

\subsection*{7.3.2. Vibration}

Whenever a blast is conducted the vibration is felt in the form of ground vibration. The ground motion is essentially a wave motion. The particles of the ground through which the blasting/sound wave travels, set themselves to oscillating motions with respect to their rest positions. These waves can affect buildings and structures by forming visible cracks on the surface, because of compression and tension waves and through vertical and horizontal shearing effects.
Proposed mining operations will be on moderate scale. Blasting is proposed, which will less occasionally affect the ground vibration in temporary.

\subsection*{7.3.3. Mitigation Measures and Disaster Management Pian}

High-risk accidents are not anticipated in the area because proposed mining is of small scale. In case of natural disaster such as earthquake, flood, storm etc., as per the situation, applicant will take the assistance from the local competent authority of Govt. and Non-govt. agency, similarly mines manager will be in touch of local people for immediate amelioration and in the case of flood in the nearby nala or river, he will take anticipatory care in coordination with State Government directives. Further the proper maintenance and replacement of required machineries of crusher unit will be taken care to avoid the any accident event.
Possible Risks due to Inundation \& Its Control: Mining will be done during the non-monsoon periods so there shall be no problem of inundation is likely to happen.
Possible Risks due to Soil Erosion \& Its Control: Mining shall be done as per approved mining plan to prevent such consequences.
Risks due to Failure of Pit Slope \& Its Control: To allay dangers due to open cast slope failure, final pit, slope stability estimations will be made for the existing mines. Determining the factor of safety, the slopes should be monitored at regular intervals to check for any possible failure.
Risks due to Handling of Over Burden and Heavy Machinery 8: Its Control: During the mining, most of the activities are done by the vehicles and the heavy machinery for mining and handing of the mineral.
Soil: There is a thin soil cover in the eastern part whereas the western and north western part of lease area contains soil varying from \(0.5-2.0 \mathrm{~m}\). Some amount of soil/powder is also generated from joints and cracks. Soil has been stacked at soil stockyard and shall be used for plantation /reclamation purpose only.
Rejects: No rejects generated during the plan period Further about \(2 \%\) mineral production will come under the category of rejects as there are thin, soft layers of calc schist within the bed rock which are not fit as road metal/crushed material. This reject/overburden/inter-burden shall be used for internal uses like making of haul road, parapet wall, boundary walls etc and rest of the waste shall be disposed-off/sold to open market as per Haryana Minerals Rules, 2012 after taking due permission from Mines \& Geology Department of Government of Haryana. All unsold rejects and soil will be finally used for reclamation of the mined-out area at the final closure of the mine. Risks of Accident due to Trucks and Dumpers \& Its Control: Identifying the hazards that come along with the presence of vehicles at the workplace (e.g., reversing operations, loading)
can cause harm if not properly handled. Among some of the factors that may make vehicle accidents more likely are:
- Rough access roads
- Time pressure
- Inadequate brakes (Possibly from lack of maintenance)
- Carelessly parked vehicles (e.g., being parked on a slope without being adequately secured)
- Unsafe coupling and uncoupling of trailers, and
- Untrained drivers
- Overturning vehicles

To avoid such instances, we will talk to the workers and their representatives and will involve them in the risk assessment process and tell them what to do, to reduce risk. All transportation within the mine lease area should be carried out directly under the supervision and control of management.
- The vehicles will be maintained in good working condition and checked thoroughly at least once a month by the competent person authorized for the purpose by the management.
- Road signs will be provided at each turning point up to the main road (wherever required).
- To avoid danger while reversing the vehicles especially at working place/loading points, stopper should be posted to properly guide reversing/spotting operating.
- Only trained drivers will be hired.

\subsection*{7.3.4. Storage and Use of Explosive Materials}
- Proper and safe storage of explosives in approved and Licensed Magazine.
- Proper, safe, and careful handling and use of explosives by competent Blasters having Blaster's Certificate of Competency issued by DGMS.
- Proper security system to prevent theft/ pilferage, unauthorized entry into Magazine area and checking authorized persons to prevent carrying of match box, lighter, mobile phones, smoking material etc.
- Conventional explosives shall be used in their original cartridge packing and such cartridge shall not be cut to remove explosive for making cartridge of different size.
- Explosives shali be conveyed in special containers.
- The holes which have been charged with explosives will not be left unattended till blasting is completed.
- Before starting charging, clear audible warning signals by Sirens will be given so that people nearby can take shelter.
The results of risk assessment are given in Table 7.1.

\section*{Table 7-1: Hazards Faced in Mining Operations}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { S. } \\
& \text { No. }
\end{aligned}
\]} & \multirow[b]{2}{*}{Activity} & \multirow[b]{2}{*}{Hazard Description (Risk)} & \multicolumn{3}{|c|}{Score} & & \\
\hline & & & Consequences & Exposure & Probability & \begin{tabular}{l}
Risk \\
Score
\end{tabular} & Level \\
\hline 1. & Site planning and layout & Travel in moving vehicle in uneven terrain & 1 & 2 & 1 & 2 & \[
\begin{array}{|c}
\hline \text { Level } \\
3
\end{array}
\] \\
\hline 2. & Storage of explosives & Unintended explosions (exposure to overpressure) & 1 & 5 & 3 & 15 & \[
\begin{array}{|c}
\hline \text { Level } \\
1
\end{array}
\] \\
\hline 3. & Charging of explosives & Unintended explosion or exposure (exposure to overpressure) & 1 & 3 & 1 & 3 & \[
\begin{array}{|c}
\hline \text { Level } \\
3
\end{array}
\] \\
\hline 4. & Blasting & Hit by fly rock (bodily
injuries) & 1 & 2 & 1 & 2 & \[
\begin{array}{|c|}
\hline \text { Level } \\
3 \\
\hline
\end{array}
\] \\
\hline 5. & Bench Formation & Rock falls or slide due to lack of bench face stability (bodily injuries) & 5 & 1.5 & 2 & 15 & \[
\begin{array}{|c}
\hline \text { Level } \\
1
\end{array}
\] \\
\hline 6. & Crushing and sizing of ROM & Hit by Machineries Electrical Equipment (bodily injuries) & 1 & 3 & 3 & 9 & \[
\begin{array}{|c|}
\hline \text { Level } \\
2
\end{array}
\] \\
\hline 7. & Transportation of minerals & Vehicle Accident (bodily injuries) & 5 & 5 & 2 & 50 & \[
\begin{array}{|c|}
\hline \text { Level } \\
\hline
\end{array}
\] \\
\hline 8. & Transportation of minerals & Accidental 1 fire in vehicle (bodily injuries, exposure to heat radiation) & 1 & 5 & 1 & 5 & \[
\begin{array}{|c|}
\hline \text { Level } \\
3
\end{array}
\] \\
\hline
\end{tabular}

By arranging the above hazards from highest to lowest, the hazards were re-arranged as per their risk levels. Ranking of Hazards based on risk levels are provided in Table 7.2.

Table 7-2: Hazards Ranked by Risk Level
\begin{tabular}{|c|c|c|c|c|}
\hline S. No. & Activity & Hazard Description (Risk) & \[
\begin{aligned}
& \text { Risk } \\
& \text { Score }
\end{aligned}
\] & Risk Level \\
\hline 1. & Site planning and layout & Travel in moving vehicle in uneven terrain & 2 & Level 3 \\
\hline 2. & Storage of explosives & \begin{tabular}{l}
\begin{tabular}{l} 
Unintended explosions (exposure to \\
overpressure)
\end{tabular} \\
\hline
\end{tabular} & 15 & Level 1 \\
\hline 3. & Charging of exp & Unintended explosion or Exposure
(exposure to overpressure) & 3 & Level 3 \\
\hline 4. & Blasting & Hit by fly rock (bodily injuries) & 2 & Level 3 \\
\hline 5. & Bench Formation & Rock falls or slide due to lack of bench face stability (bodily injuries) & 15 & Level 1 \\
\hline 6. & \[
\begin{aligned}
& \text { Crushing and sizing of } \\
& \text { ROM }
\end{aligned}
\] & Hit by Machineries - Electrical Equipment (bodily injuries) & 9 & Level 2 \\
\hline
\end{tabular}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|l|l|c|c|}
\hline S. No. & \multicolumn{1}{|c|}{ Activity } & Hazard Description (Risk) & \begin{tabular}{c} 
Risk \\
Score
\end{tabular} & \begin{tabular}{c} 
Risk \\
Level
\end{tabular} \\
\hline 7. & \begin{tabular}{l} 
Transportation \\
minserals
\end{tabular} & offehicle Accident (bodily injuries) & 50 & Level 1 \\
\hline 8. & \begin{tabular}{l} 
Transportation \\
minerals
\end{tabular} & \begin{tabular}{l} 
offacidental 1fire in vehicle (bodily injuries, \\
exposure to heat radiation)
\end{tabular} & 5 & Level 3 \\
\hline
\end{tabular}

\subsection*{7.3.5. Hazard Analysis}

Broadly, the hazards cover explosive material management, working at heights, slope and bench stability, mineral transport, mineral processing, and force majeure conditions (rainfall and flooding). The mechanisms due to which hazards (coming under Risk Levels 1 and 2) may occur are covered in Table 7.3.

Table 7-3: Cause Analysis for Level 1 and Level 2 Hazards
\begin{tabular}{|c|c|c|c|c|}
\hline S. No. & Hazard Description (Risk) & Risk Score & Risk Level & Cause Analysis \\
\hline 1 & Travel in moving vehicle in uneven terrain & 2 & Level 3 & \begin{tabular}{l}
- Poor visibility \\
- Incompetent driver \\
- Poorly maintained vehicles
\end{tabular} \\
\hline 2 & Unintended explosions
(exposure to overpressure) & 15 & Level 1 & \begin{tabular}{l}
- Defective explosives \\
- Improper storage explosives \\
- Force majeure conditions such as \\
- lightning strike \\
- Fire (can be caused by unsafe practices or as ignition) \\
- Sabotage
\end{tabular} \\
\hline 3 & \(\begin{array}{lll} \\ \text { Unintended } & \text { explosion } & \text { or } \\ \text { exposure } & \text { (exposure } & \text { to } \\ \text { overpressure) }\end{array}\) & 3 & Level 3 & \begin{tabular}{l}
- Defective explosives \\
- Outdated explosives \\
- Improper storage explosives \\
- Force majeure conditions such as \\
- lightning strike \\
- Fire (can be caused by unsafe \\
- practices or as arson) \\
- Sabotage
\end{tabular} \\
\hline 4 & Hit by fly rock (bodily injuries) & 2 & Level 3 & \begin{tabular}{l}
- Poor access control of blast area \\
- Poor blasting practices (leading to \\
- excessive fly rock)
\end{tabular} \\
\hline
\end{tabular}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\begin{tabular}{|c|l|c|c|c|}
\hline S. No. & \begin{tabular}{l} 
Hazard Description \\
(Risk)
\end{tabular} & Risk Score & Risk Leve] & Cause Analysis \\
\hline 5 & \begin{tabular}{l} 
Rock falls or slide due to lack \\
of bench face stability \\
(bodily \\
injuries)
\end{tabular} & 15 & Level 1 & \begin{tabular}{l} 
- Improper design of bench \\
- Force Majeure (such as heavy
\end{tabular} \\
\hline
\end{tabular}

\subsection*{7.4. Disaster Management Plan}

The Disaster Management Plan (DMP) is a guide, giving general considerations, difections, and procedures for handling emergencies likely to arise from planned operations. The DMP has been prepared for the TCL based on the Risk Assessment and related findings covered in the report.

\subsection*{7.4.1. Disaster Management Plan: Structure}

The Disaster Management Plan (DMP) is supposed to be a dynamic, changing document focusing on continual advantage of doing this is to have a system that is in synchronicity with commonly used SHE systems such as ISO 14001 and OHSAS 18001.

\subsection*{7.4.2. Policy}

The Safety Health and Environmental (SHE) policy is existing and accessible to dll at site and to other stakeholders. The policy has been framed considering legislative compliance, stakeholder involvement, continual improvement, and management by objectives.
The proponent is committed to contribute towards a clean and sustainable environment and continually enhancing our environmental performance as an integral part of our business philosophy and values. Towards this commitment, following key principles will be demonstrated:
- Integrate sound environmental management practices in all our activities by forming an Environmental Management Cell.
- Progressively adopt cleaner and energy efficient technologies.
- Conduct our operations in an environmentally responsible manner to comply with applicable legal and other requirements related to its environmental aspects and strive to go beyond.
- Biodiversity in and around our working areas and mines will be repeated and progressively enhanced for benefit of nature.
- Strive for continual improvement in our environmental performance by setting challenging targets, measuring progress, taking corrective action and communicating environmental information to all concerned.
- Enhance environmental awareness amongst employees working for and on behalf of us and the general populace around working areas and mines.
- Encourage our business associates to adopt similar approach for environmental protection.

\subsection*{7.4.3. Planning}

Identification and Prevention of Possible Emergency Situations, Possible emergency situations can broadly be classified into unintended explosions, vehicle collision, and inundation. Additional

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Minerai - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
emergency situations can be developed based on audit or other procedures prior to commencement of operations.

\subsection*{7.4.3.1. Emergency Prevention}

Some of the ways of preventing emergencies are as follows:
i. Preparation of a Preventive Maintenance Schedule Program and covering maintenance schedules for all critical equipment's and instruments as per recommendations of the manufacturer's user manuals,
ii. Importantly it is of great importance to collect and analyze information pertaining to minor incidents and accidents at the site, as well as for recording near-misses or emergencies that were averted. This information gives an indication of how likely or unlikely it is for the site to face actual emergency and what shall be further action to prevent them from occurring.
iii. Establishment of an ongoing training and evaluation program, incorporating the development of capabilities amongst employees about potential emergencies and ways and means of identifying and averting the same. Most emergencies do not occur without some incident or an abnormal situation. So, there is always sometime of few seconds to few minutes to arrest an incident of abnormal situation from turning in to an emergency. This is the role of the shift in-charge who is the incident controller (IC) along with his shift team.

\subsection*{7.4.3.2. Emergency Plan Objectives}

Specific objectives of the Emergency Response Plan are to be clearly listed with regards to the responses desired for successful management of the possible emergency situations. Suggested Objectives could include:
- To define and assess emergencies, including risk and environmental impact assessment.
- To control and contain incidents.
- To safeguard employees.
- To minimize damage to property or / and the environment.
- To inform employees, the public and the authority on the hazards / risks assessed.
- Safeguard provided residual risk if any and the role to be played by them in the event of emergency.
* To inform authorities like Safety and Fire Dept and Mutual Aid Centres to come up for help.
- For effective rescue and treatment of casualties and to count the injured.
- To identify and list fatal accidents if any.
- To secure the safe rehabilitation of affected areas and to restore normally.
- To provide authoritative information to the news media.
- To preserve records, equipment's etc. and to organize investigation into the cause of the emergency and preventive measures to stop its recurrence.
- To ensure safety of staff and patients and resume work.
- To work out a plan with all provisions to handle emergencies and to provide for emergency.
- Preparedness and the periodical rehearsal of the plan.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangai Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
The objectives are suggested in emergency preparedness plan of TCL. Responsibilities, resources, and timeframes require to be allocated for implementing the objectives.

\subsection*{7.4.3.3. Implementation}

\section*{Allocation of Resources}

Key Personnel are identified for carrying out specific and assigned duties in case of any kind of Emergency. All such key personnel shall be available on call on holidays and off duty also.
- Commander (Manager Quarries)
- Deputy commander (Personnel Officer)
- Site Incident Controller (Shift in charge)
- Deputy Incident Controller (Senior Mining Mate)
- Other key personnel
- Essential workers

\subsection*{7.4.3.4. Responsibilities of Commander/Deputy Commander}
- To take charge at the place of incident.
- To activate the Emergency Preparedness Plan according to severity of situation.
- Inform all the employees and relatives of the affected employees.
- Call all key personnel and inform Doctor to be ready for treatment.
- Commander shall deploy staff carry out following functions.
\(\checkmark\) To coordinate and reinforce Emergency Combat at Site along with Site Incident Controller.
\(\checkmark\) To liaise with other Departments and guide their personnel.
\(\checkmark\) To supervise Assembly and Evacuation at all points.
\(\checkmark\) To look after patients who are bed ridden and any Casualties and give psychological support.
- Activate Assembly and Evacuation Plan if required as per situation by ordering Site Incident Controller.
- Inform and liaise with Chief Operating Officer, Police department and Distriat Emergency Authority.
- Arrange for chronological records of emergency to be maintained.
- Issue authorized statements to News Media.
- Assign Medicare and Emergency Management tasks to all persons of management cadre.

\subsection*{7.4.3.5. Responsibilities of Mine Foreman}
- To take immediate charge at the site of incident.
- Ensure that immediate steps as per Emergency Preparedness Plan are taken and direct the worker staff.
- Inform Commander, Deputy Commander, and other key personnel.
- Shall blow the Siren / Hooter as per situation to declare Emergency.
- Supervise assembly and evacuation as per plan, if required.
- Ensure that Commander has been alerted.
- Take decisions for controlling the emergency till arrival by Commander.
- Ensure that casualties are receiving adequate attention and medical care.
- Ensure accounting for personnel and rescue of missing persons.
- Control traffic movement in Quarry premises.
- When emergency is prolonged arrange for relief of rescue workers and catering facilities.
- In the presence of same, he shall assist Site Incident Controller or take charge at another location, if emergency exists in more than one place.
- Responsibilities of Essential Workers
- A task of essential trained staff is made available to get done by Incident Controllers. Such work shall include-
- Firefighting and spill control till fire brigade takes the charge.
- To help the fire brigade if it is so required.
- Emergency engineering work e.g., isolating equipment, materials, urgent repairing or replacement, electrical work etc.
- Provision of emergency power, water, lighting, material, etc.
- Movement of equipment, special vehicle, and transport to or from the scene of the incident.
- Search, evacuation, rescue, and welfare. First - Aid and medical help.
- Manning of assembly points to record the arrival of evacuated personnel. Manning of outside shelters and welfare of evacuated persons there.
- Assistance at casualty's reception areas to record details of casualties.
- Assistance at communication centre to handle outgoing and incoming calls and to act as messengers if necessary.

\subsection*{7.4.4. Setting-up of Emergency Infrastructure}

To enable the key persons to implement the DMP, the following infrastructure will require to be set up:
Assembly Points: In case of emergency the site needs to be evacuated immediately. On evacuation people will go to pre- assigned assembly points. The charge will be taken by shift in charge and in his absence, person deployed by Commander will oversee respective assembly points and will supervise Assembly and Head Count. A Board indicating the Assembly Point having relevant information is placed at point for guidance.
Liaison with State Authorities: Government authorities, local hospital, police fire services, taluka mamlatdar, district collector will be kept informed about the occurrence and development of any incident by Commander and procure necessary help and guidance from these authorities.

\subsection*{7.4.4.1. Task Force of Essential Staff}

A task force of essential trained staff is made available to get work done by the Commander. Task Force personnel shall be trained to perform tasks as mentioned above.
Emergency Control Center: Manager-Mine Office will act as Emergency Control Center and provided with required communication facilities. The Control Center is situated in an area of minimum risk and close to the road to allow for ready access by a vehicle if other systems fail or extra communication facilities are needed to be set up. The Emergency control center should consist of following items:
- External telephones
- Internal telephones

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
- E-Mail facilities
- Emergency plan
- Stationeries
- Torches and emergency lights.

\subsection*{7.4.5. Fire Fighting}

Person noticing the fire shall immediately raise alarm and ask the nearest person to inform Matron and Manager-Quarry. Portable Fire Extinguisher shall be used to extinguish the fire, by the person at site. Matron shall assess the severity of fire and if likely to be severe shall take following steps.
- Call fire tenders and mobile trailer pump from nearby fire department.
- Call for assembly of all persons at assembly points
- Arrange for turning "OFF" main switch of electricity supply.
- Immediate Step in Case of Explosion

At first the concerned security guard should inform about it to the shift-in-charge and Mgr.Quarry. They will take the precaution described in the Work Instruction.

\subsection*{7.4.5.1. Further Steps in Case of Fire Spreading}

Commander shall continuously assess the situation and if it is not being controlled then ensure:
\(\checkmark\) Assembly of all persons at the assembly points.
\(\checkmark\) Arrival of fire tenders and / or Mobile Trailer Pump.
\(\checkmark\) Ensure evacuation in orderly fashion.
\(\checkmark\) Ensure that any vehicle parked near the Fire Site is taken away to safe area,
\(\checkmark\) Carry out responsibilities as detailed as above.

\subsection*{7.4.5.2. Emergency Preparedness for Electrical Shock/Accident}
- Source of power should be put off immediately in case of any electrical shock.
- Injured person should be shifted to safe place.
- Persons engaged in rescuing operation should use all PPEs and take appropriate precaution while removing the injured persons.
- Trained persons are engaged to give first-aid treatment to injured persons.
- In case of major injury, the injured is shifted to the Dispensary/Hospital.
- In case of electrical fire, only \(\mathrm{CO}_{2}\) type Fire Extinguisher is used.
- Accident report in prescribed form is sent to appropriate authority in case of reportable injury.
\(\checkmark\) All the persons engaged to carry out this operation should be equipped with appropriate PPEs (Personal Protective Equipment) like safety shoes, helmets, dust masks etc.

\subsection*{7.4.6. Natural Disasters}

Quarry being a single-story building, built on elevated base is structurally safe from effects of Natural Disasters. It affords shelter against cyclone and flood.

\subsection*{7.4.6.1. Cyclone and Flood}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
When warning of cyclone or heavy rains is received from Local Administration, the Commander shall alert Staff to be prepared.
- Matron shall withdraw the entire person from workplace and accumulate them in quarry building.
- All the equipment should be withdrawn from mine and kept in a higher site.
- The Quarry Manager may advise to leave the staff depending on security of situation.

\subsection*{7.4.6.2. Earthquake}
- When earthquake hits, all persons shall be encouraged to run out in the open areas designated as Assembly Points.
- All the electrical supply should be disconnected by the electrical department.
- All key personnel shall reach Quarry immediately and carry out designated responsibilities.
- All the electrical supply should be disconnected by the electrical department.
- Steps detailed in Emergency preparedness are to be carried out.
- As soon as earthquake tremor stops - Site Incident Controller (Matron) shall:
- Check all areas to ensure that all fires and doused.
- Check all areas for persons trapped inside.
- Search and Rescue Operation shall be launched with help of Workers if there is obvious damage to building.

\subsection*{7.4.6.3. First Aid}

Adequate first Aid facility will provide of mine site. Treatment of affected persons
- Injured / Affected persons shall be provided suitable first-aid treatment and sent to Co.'s Doctor for further treatment depending on injury.
- Patients requiring further treatment shall be sent in Ambulances to Hospitals.

\subsection*{7.4.7. Occupational Health Hazards}

Dry-pit mining by open cast method involves dust generation by excavation, loading and transportation of mineral. At site, during excavation and loading activity, dust is main pollutant which affects the health of workers whereas environmental and climatic conditions also generate the health problems. Addressing the occupational health hazard means gaining an understanding of the source (its location and magnitude or concentration), identifying an exposure pathway (e.g., a means to get it in contact with someone), and determination of likely a receptor (someone receiving the stuff that is migrating). Occupational hazard due to stone mining mainly comes under the physical hazards. Possible physical hazards are as below mentioned:

\subsection*{7.4.7.1. Physical Hazards due to Mining Operations}

Following health related hazards were identified due to mining operations to the workers:
a) Light: The workers may be exposed to the risk of poor illumination or excessive brightness. The effects are eye strain, headache, eye pain and lachrymator, congestion around the cornea and eye fatigue.
b) Heat and Humidity: The most common physical hazard is heat. The direct effects of heat exposure are burns, heat exhaustion, heat stroke and heat cramps; the indirect effects are decreased efficiency, increased fatigue, and enhanced accident rates. Heat

\footnotetext{
PROPONENT M/\$ XANDY MINES AND MINERALS
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)
}

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA ( 75,000 MTPA of Dolomite and \(2,50,000\) MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed and humidity are encountered in hot and humid condition when temperatures and air temperatures increase in summertime up to \(45^{\circ} \mathrm{C}\).
c) Eye Irritation: During the high windy days in summer the stone could be the problems for eyes like itching and watering of eyes.
d) Respiratory Problems: Large amounts of dust in air can be a health hazard, exacerbating respiratory disorders such as asthma and irritating the lungs and bronchial passages.
e) Noise Induced Hearing Loss: Drilling, Blasting and Machinery is the main source of noise pollution at the mine site.

\subsection*{7.4.7.2. Medical Examination Schedule}

To minimize the health impacts PPE like dust masks, ear plugs/ muffs and other equipment will be provided for use by the work personnel. All workers will be subjected to Initial Medical Examination as per Mines Rule 1955 at the time of appointment. Periodical Medical Examination will be conducted at least once in five years. Medical camps will be organized. The detail of health checkup and periodical medical examination schedule is given below.

Table 7-4: Medical Examination Schedule
\begin{tabular}{|c|c|c|c|c|}
\hline S. No & Activities & \(1^{\text {st }}\) Year & \(2^{\text {nd }}\) Year & \(3^{\text {rd }}\) Year \\
\hline 1. & \multicolumn{4}{|l|}{Initial Medical Examination (Mine Workers)} \\
\hline A. & Physical Check -up & \(\therefore \quad \%\) & - & - \\
\hline B. & Psychological Test & & - & - \\
\hline C. & Audiometric Test & & - & - \\
\hline D. & Respiratory Test & & & \\
\hline 2. & \multicolumn{4}{|l|}{Periodical Medical Examination (Mine Workers)} \\
\hline A. & Physical Check -up & - & & \\
\hline B. & Audiometric Test & - & & \\
\hline C. & Eye Check -up & - & & - \\
\hline D. & Respiratory Test & - & & \% \\
\hline 3. & Medical Camp (Mine Workers and Nearby
Villagers & - & ! & \(\because\) \\
\hline 4. & Training (Mine Workers) & & , \% \({ }^{\text {a }}\) & \(\pm\) \\
\hline
\end{tabular}

\subsection*{7.5. Summary}

Risk assessments will help mine operators to identify high, medium, and low risk levels. This is a requirement of the Occupational Health and Safety Act 2000. Risk assessments will help to priorities the risks and provide information on the need to safely control the risks. In this way, mine owners and operators will be able to implement safety improvements. Mining and allied activities are associated with several potential hazards to both the employees and the public at large. A worker in a mine will be able to work under conditions, which are adequately safe and healthy. At the same time the environmental conditions also will not impair his working efficiency. This is possible only when there is adequate safety in mines. Hence mine safety is one of the most es'sential aspects of any working mine. There is no displäcement of the population within the project area and adjacent nearby area.
```

PROPONENT
CONSULTANT

CHAPTER 8 PROJECT BENEFITS

8. Project Benefits

8.1. Introduction

The execution of the project brings overall improvement in the locality, neighbourhood, and the State by bringing up to industry, roads, infrastructure sectors and employment generation at local level. Hence it will be helpful for the economic growth and support to enhance quality of life through employment.

8.2. Physical Benefits

Following physical infrastructure facilities will be improved in the adjoining areas by the proposed project:

Table 8-1: Project Benefits in Respect to Different Aspects

Item	Detalls / Description			
Road Transport:	Construction of approach road and maintenance of existing transportation facility will be done for the proposed project. There is separate budget has been mentioned under the EMP head in chapter 10.			
Market:	By improving the economic status of local habitants through employments will attract market to develop their facilities and services near to the project site it's a part of indirect employment which will be developed due to the proposed project.			
Infrastructure:	Proposed project will provide the raw material for the infrastructure development like road, building etc.			
Green Cover:	As per the MoEF\&CC guideline any development activity should create green cover in proportion to the project area (33\% green belt). As this is a mining project having 4.80 ha quarry lease area. About 1.584 ha area for will be used			
for greenbelt. Plantation will be done in first three years for 2047 trees/ year				
its maintenance will be done in next 3 years. Remaining trees will be planted				
in nearby villages road or schools and others.		$	$	This project will enhance the opportunities of employment for the local
:---				
villagers due to which their economic status will become better. About 39				
direct jobs (as per mining plan) will be introduced to the region, and several				
other indlrect jobs as mechanic, general stores and Dhaba's also will be				
established in locals as well.				

8.3. Social Benefits

The mining activity in the region wlll have positive impact on the social economic condtion by way of providing employment to the local in-habitants. The project proponent is committed to provide following services to nearby community in the form of Corporate Environmental Responsibilities (CER). For details, refer to chapter 10.
A detailed program for socio economic development of the area has been framed. The salient features of the programme are as follows:

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA
(75,000 MTPA of Dolomite and $2,50,000$ MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed

- Social welfare program like provision of medical facilities educational facilities, water supply for the employees as well as for nearby villagers will be taken.
- A well laid plan for employment of the local people has been prepared by giving priority to local people.
- Supplementing Govt. efforts in health monitoring camps, social welfare, and various awareness programs among the rural population.
- Assisting social forestry program.
- Adoption of villages for general development.
- Supply of water to village nearby villages.
- Development of facilities within villages like roads, etc.

8.3.1. Corporate Environmental Responsibility (CER)

The project proponent is conscious of its social responsibility and as any good corporate citizen; it is proposed to undertake the need specific proposed CER activities in the surrounding areas of the mine. This Project will provide employment to local people directly and indirectly. Indirect employers are shopkeepers, mechanic, drivers, transporters etc. Apart from this, some activities as whitewash to the primary schools, supply of water filters and arrangements of benches and tables in local primary school will be done.
As this an existing mine and got environment clearance from SEIAA, Haryana under category B2 which was expired. The CER expenses were proposed by project proponent and committed the same which is mentioned in below Table 8.2. Due to cluster, the project is falling in B1 category and the proposed of activities under CER are detailed in Table 8.3.

Table 8-2: Corporate Environment Responsibility Budget (Previous Plan Period)

S. No.	Particular	Amount (in Lacs)
1	Health checkup camps	$\mathbf{1 . 5 0}$
2	Surveillance Programme of the workers	1.25
3	Assistance to local school i.e., water cooler, fan etc.	$\mathbf{1 . 8 5}$
4	Sanitations and drinking water facilities	1.80
5	Vocational training to persons for income generation	1.50
6	Assistance to self-help groups	2.25
	Total	$\mathbf{1 0 . 1 5}$

Table 8-3: Corporate Environment Responsibility Budget (Proposed Plan Period)

S. No.	Description	Annual Budget
$\mathbf{1}$	Health check-up camps	₹ 100000
2	Insurance cover of workers	$₹ 100000$
3	Assistance to local schools, scholarship to students at Govt. school in Donkhera Village	$₹ 100000$
4	Computer Lab for Govt. school in Donkhera Village	
5	Solar Street Lights on Panchayat \& Govt. school in Donkhera Village	$₹ 100000$
6	Sanitations (Toilets) and drinking water facility of Govt. school in Donkhera Village	" ₹ 100000

PROPONENT
CONSULTANT

M/S XANDY MINES AND MINERALS
Parivesh environmental engineering services
NABFT /EIA/2124/IA 0092(Rev.01)
PAGE. 171

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

S. No.	Description	Annual Budget
7	Vocational training to persons for income generation	$₹ 50000$
8	Assistance to self-help groups	₹ 50000

Source: = Approved Mining Plan

8.4. Ecological Benefits

Green belt is erected not from biodiversity conservation point of view, but it is basically developed as a screen to check the spread of dust pollution Plantation will be done in first two years for 2047 trees/ year (Within lease area- 1980 Plants \& Haul Road, Approach Road - 67 Plants) \& its maintenance will be done in next 3 years. Remaining trees will be planted in nearbyjvillages road or schools and others.

8.5. Summary

The management will recruit the semi-skilled and unskilled workers from the nearby villages as demanding employment is 33 direct and 20 indirect. The project activity and the management will support the local Panchayat and provide other form of assistance for the development of public amenities in this region. The company management will contribute to the local schools, dispensaries for the welfare of the villagers. A suitable combination of trees that dan grow fast and have good leaf cover will be adopted to develop the green belt.

CHAPTER 9 ENVIRONMENTAL COST BENEFIT ANALYSIS an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

9. Environmental Cost Benefit Analysis

As per ToR granted by SEIAA Haryana Cost Benefit Analysis study is not required for the proposed project.

CHAPTER 10 ENVIRONMENTAL MANAGEMENT PLAN

10. Environment Management Plan

10.1. Introduction

The mine development in the QL area needs to be intertwined with judicious utilization of natural resources within the limits of permissible assimilative capacity. The assimilative capacity of the study area is the maximum amount of pollution load that can be discharged in the environment without affecting the designated use and is governed by dilution, dispersion, and removal due to natural physicochemical and biological processes.
The design of EMP for operational phase has been aimed to achieve the following objectives.

- To ensure adoption of state of art technological environmental control measures and implementing them satisfactorily.
- Effectiveness of mitigation measures in mitigation of impacts.
- Description of monitoring program of the surrounding environment.
- Institution arrangements to monitor effectively and take suitable corrective steps for implementation of proper EMP.
- An Environmental Management Cell (EMC) should be set up to take care of all environment aspects and to maintain environmental quality in the project area.
The detailed hierarchy and responsibilities of Environment Management Cell is discussed in Chapter 6. Figure $\mathbf{1 0 . 1}$ is showing the flow chart of EMP for this mining project.

Figure 10.1: Process Flow Chart of Environmental Management

10.2. Land Use Environment

Deviation from planned mining procedure can lead to soil erosion/cutting and thereby degradation of land, causing loss of properties and degradation surrounding of landscape. Thus, for

```
PROPONENT
CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
PARIVESH ENVIRONMENTAL EN
```

environmentally friendly major mining the following control / abatement measures will be followed:
\checkmark Mineral will be mined out in from the mine lease area and sufficient safety barrier should be taken during mining.
\checkmark Land use plan of mine lease area should be prepared to encompass pre-operational, operational and post operation phases and submitted.

10.3. Air Environment Management

Mitigative measures suggested for air emission control will be based on the baseline ambient air quality monitoring data. From the point of view of maintenance of an acceptable ambient air quality in the region, it is desirable that the air quality needs to be monitored on a regular basis to check it with reference to the NAAQS 2009 prescribed by MOEF\&CC. To minimize impacts of mining on air and to maintain it within the prescribed limits of $\mathrm{CPCB} / \mathrm{SPCB}$, an Environmental Management Plan (EMP) has been prepared. This will help in resolving all environmental and ecological issues likely to cause due to mining in the area. During mining no, toxic substances are released into the atmosphere as such there seems to be no potential threat to health of human beings. In the mining activities, the source of gaseous emissions is engines of vehicles, Operation of mining machinery/ loading / unloading and transportation. The reasons may be quality of fuel, improper operation of the engine, etc.; proper maintenance of engines will improve combustion process and brings reduction in pollution.

10.3.1. Control of Gaseous Pollution

In mining activities, the only source of gaseous emissions is from blasting and the engines of Heavy earth moving machines (HEMM). Blasting of explosive results in increase of nitrogen oxides, which is dispersed by the wind. Controlled blasting and optimization of use of explosive energy will help in reducing the above emissions. The emissions from the diesel engines of the machinery can be controlled by proper maintenance and monitoring of machines.

10.3.2. Control of Dust Pollution

The main pollutant in air is (Particulate Matter) PM_{10}, which is generated due to various mining activities. However, to reduce the impact of dust pollution the following steps have been taken during various mining activities.

Table 10-1: Air Pollution, Management \& Monitoring

S. No.	Particular	Description / Management
$\mathbf{1}$	Control Gaseous of Pollution	\checkmark The only source of gaseous emissions is from engines of Heavy earth moving machines (HEMM). \checkmark The emissions from the diesel engines of the machinery can be controlled by proper maintenance and monitoring of machines.
2	Control of Dust Pollution	The main pollutant in air is Particulate Matter, which is generated due to various mining activities like, mineral loading, unloading \& transportation etc. However, to reduce the impact of dust pollution the following steps have been taken during various mining activities.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and $2,50,000$ MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

S. No.	Particular	Description / Management
		\checkmark Sharp drill bits will be used for drilling and regrinding is done periodically to reduce generation of dust. \checkmark The drill machines will be kept leakage free and equipped with wet drilling arrangements. \checkmark Drill operator and his helper will be equipped with personal protective equipment (ear plugs/earmuffs). \checkmark All essential steps will be taken to prevent any person entering in the mine site during blasting operations. The drill holes will be charged by certified blaster and in supervision of Mining Engineer/ Mines Manager. The holes will be blasted by certified blaster. Before blasting, the warning siren will be blown, and men and machinery will be taken out from the safety zone. During blasting all the statutory requirements as per MMR- 1961 will be strictly followed. \checkmark The use of 'water ampoules' will be done to arrest dust. \checkmark Blasting will be done in controlled manner with the use of latest technology like use of millisecond delay detonators, cord relay to control and prevent the dust to get air borne and tollimit the fly rocks within 50-60.0 m . \checkmark Overcharging of blast holes will be avoided. \checkmark Rock Breakers will be used to avoid secondary blasting. \checkmark With the good blasting system, dozing of broken rocks will be less and hence dust due to dozing will be less. \checkmark Competent persons carry out blasting and all the precautions lay under MMR; 1961 Act are followed. \checkmark Time to time scientific studies regarding ground vibration, noise level, flying rocks and other blasting hazards will be conducted through experts of the subjects. \checkmark The propagation of this dust is confined to loading point only and does not affect any person both the operators of excavator and dumpers who will sit in closed chamber and will be equipped with dust mask. \checkmark Skilled operators will operate excavators. \checkmark Avoid overloading of dumpers and consequent spillage on the roads. \checkmark The operators' cabin in the dumpers will be provided with dust free enclosure and persons working at high dust prone areas will be provided with dust mask. \checkmark All the haulage roads including the main ramp be kept wide, levelled, compacted, and properly maintained and watered regularly twice a day during the operation to prevent generation of dust due to movement of dumpers, and other vehicles. \checkmark Mineral carrying trucks will be effectively covered by Tarpaulin to avoid escape of fines to atmosphere. \checkmark Regular Compaction and grading of haul roads to clear accumulation of loose material.
	During Loading Operation	
	During Transport Operation	

District State Haryana proposed

S. No.	Particular	Description / Management
3	Plantation Work Carried Out	To reduce air pollution in the surroundings, green belt will be developed on both siderophile approach road and nearby villages.
4	Monitoring of Air Pollution	Air quality will be regularly monitored both in the core zone and the buffer zone. \checkmark Periodic air quality survey will be carried out to monitor the changes consequent upon mining activities as per the norms of State Pollution Control Board.

10.4. Noise Level Environment and Vibration

The ambient noise level monitoring carried out in and around the proposed mine lease area shows that ambient noise levels are well within the stipulated limits of MoEF\&CC. There is no drilling or blasting for mineral extraction. Noise pollution will only be due to loading and transporting equipment, which cause some problem to the inhabitants of this area because there is human settlement near the link roads in lease area. Effective steps will be taken to keep the noise level well below the DGMS prescribed limit of $85 \mathrm{~dB}(\mathrm{~A})$. That ambient noise levels are well within the stipulated limits of MoEF\&CC.

10.4.1. Noise Abatement and Control

- All the machineries including transport vehicles will be properly maintained to minimize generation of noise.
- Silencers in the machineries will be provided to reduce generation of noise.
- Drilling with sharp edges bits will minimize generation of noise.
- Control blasting will be done with proper charge of explosive to minimize noise during blasting.
- Attenuation between source and receive points will be increased.
- Dense plantation in mining area will also reduce propagation of noise outside the core zone. Rock breakers will be used instead of secondary blasting.
- Blasting will be avoided under unfavourable atmospheric conditions.
- Periodical monitoring of noise will be done to adopt corrective actions wherever needed.
- Plantation will be taken up along the approach roads. The plantation minimizes propagation of noise and arrests dust.

10.4.2. Vibration Abatement

The blasting operations in the proposed mine will be carried out by deep hole drilling and blasting using delay detonators, which reduce the ground vibrations. Further, the ground vibrations will be controlled by using shock tubes with nonelectric delay detonators. The measures that are generally followed and currently proposed for abatement of ground vibration, air blast and fly rocks are detailed below:

- To minimize the effect of blasting-controlled blasting with optimum charge and proper stemming of holes will be done.
- Blasting will be performed strictly as per the guidelines spécified under MMR, 1961.
- Proper design of blast with correct spacing, burden and optimum charge/delay.

[^0]DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and $2,50,000$ MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed

- Supervision of drilling and blasting operations to ensure blast design geometry as per planning.
- Sub-drilling will be kept adequate to eliminate toe formation.
- Blasting operations will be carried out only during daytime and once or twice in a week as per DGMS guidelines.
- Proper warning signals will be used, and information will be circulated on nearby village / panchayat.
- Adequate safe distance from habitation as per standards from centre of blasting will be maintained.
- Drilling parameters like burden, depth, diameter and spacing will be properly designed to ensure proper blast.
- Effective stemming of the explosives will be done in the drill holes.

10.5. Water Management

There will be no wastewater generation from the mining operations. Only wastewater generation will be sanitary /municipal wastewater, which will be treated in septic tank followed by subsurface dispersion.

Table 10-2: Water Pollution \& Management

S. No,	Particular	Description / Management		
1	Surface Water		Safety zone will be left on both riverbank and no generate in operation. Site office will be setup in ancillary area which riverbank and the waste generated from the site off contaminate the river stream.	wastewater are near to ffice will not
2	Ground Water	\checkmark	Mining will not intersect the ground water table of the will not disturb water environment. Mining will not be operational in rainy season. At the end of mining, no pit will be available on site as area will be automatically replenished in monsoon sea	area. So, it s mined-out ason.
3	Wastewater	\checkmark	A smail amount of wastewater 0.198 KLD will be ger domestic demand of water which will be stored in within lease area.	erated from septic tanks \qquad
4	Water Conservation		The project does not consume any process water drinking, dust suppression and plantation. Plantation is which will increase the water holding capacity recharging of ground water.	except for is proposed, and help in

10.6. Solid Waste Management

Waste management is an important facet of environment management. Thus, solid waste management is important from both aesthetics and environment viewpoints.
Generated food waste or any other domestic waste will be collected in dustbins and will be properly disposed-off. There are no toxic elements present in the mineral, which may contaminate the soil water,

10.7. Green Belt Development

The mined-out areas will be backfilled and reclaimed with dense poly-culture plantation of the local species. Water reservoirs will be created in the abandoned mine pit that shall increase the water availabllity to surrounding area for longer periods of time. Plantation will be done in 1.584 ha by growing fruits which will be of commercial utility to the local community. The species to be grown in the areas should be dust tolerant, fast growing and fruit yielding species so that a permanent green belt is created.
As envisaged in the National Forest Policy 1988 that one third of the total area should be under green cover to maintain ecological balance in the country. Therefore, to attain the target as envisaged under State Forest Policy and National Forest Policy, the provision of green belts/ avenue plantations is made under developmental projects. The species proposed should be long rotation, ornamental, evergreen, hardy, wind firm. The species proposed should be long rotation, ornamental, evergreen, hardy, wind firm. The species suitable for urban areas should have capacity to combat pollution.
As this is a mining project having 4.80 ha quarry lease area. About 1.584 ha area will be used for greenbelt. Plantation will be done in first two years for 2047 trees/ year (Within lease area- 1980 Plants \& Haul Road, Approach Road - 67 Plants) \& its maintenance will be done in next 3 years. Remaining trees will be planted in nearby villages road or schools and others. The plantation details are given in Table 10.3.

Table 10-3: Plantation Details

Year	Plantation Proposed	$\begin{gathered} \text { Survival } \\ 80 \% \end{gathered}$	Gap Plantation	Budget/Remark	Species	Place of Plantation
I	2047	1637	-	Plantation 2047 trees/ year (Within lease area- 1980 Plants \& Haul Road, Approach Road 67 Plants)	Neem, Peepal, Ber, Shisham, Sirish, Babool, Gulmohar and other local fruity plants	Along theroads, inbarren area,surroundingoffice \& restshelter andother socialforestryprogramme.
II	2047	1637	410			
III	-	-	410			
IV	-	-	-			
V	${ }^{-}$	${ }^{-}$	${ }^{-}$			
Total	4094	3274	820	₹ 9,00,000		

The location and plantation species has been detailed below.

- Plantation in the Barrier Zone includes Neem, Peepal, Ber, Shisham, Sirish, Babool, Gulmohar and other local fruity plants. The distance between plants and plants is 3 m . And the distance from row to row is 2.5 m . And the size of the pit is $0.60 \mathrm{~m} . \times 0.60 \mathrm{~m}, \times 0.60$ m . And the pit will be filled with dung manure and the rest of the soil.
- Plantation of trees on the traffic road Neem, Peepal, Ber, Shisham, Sirish, Gulmohar and other local fruity plants. The distance between plants and plants is 3 m . And the distance from row to row is 2.5 m . And the size of the pit is $0.70 \mathrm{~m} . \times 0.70 \mathrm{~m} . \times 0.70 \mathrm{~m}$. And the pit will be filled with dung manure and the rest of the soil.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

- Plantation of trees up to Donkhera School and Gram Panchayat and acces\$ road to the village is Neem, Ber, Shisham, Gulmohar and other local fruity plants. The size of the pit is $0.70 \mathrm{~m} . \times 0.70 \mathrm{~m} . \times 0.70 \mathrm{~m}$. And the pit will be filled with dung manure and the rest of the soil.
- Distribution of plants to the villagers of Donkhera, Neem, Peepal, Ber, Shisham, Sirish, Babool, Gulmohar and other local fruity plants, and local species etc.

10.7.1. Types of Trees

The following characteristics as well as CPCB Guidelines will be taken into consideration while selecting plant species for green belt development and tree plantation.

- They should be local indigenous and drought resistant species.
- They should be fast growing and tall trees.
- They should be perennial and evergreen.
- They should have thick canopy cover.
- Planting should be in appropriate rows around site to prevent lateral pollution dispersion.
- The trees should maintain regional ecological balance and confirm to soil and hydrological conditions. Indigenous species should be preferred.

10.7.2. Post Plantation Care

The post plantation care will be an important aspect to be taken care of for better|survival rate of plantation. The following care will be taken in below table:

Table 10-4: Post Plantation Care

| Particular | Description / Management |
| :--- | :--- | :--- |
| Protection from
 Grazing and Fire | Fencing will be provided around the area where mass plantation has been
 proposed. This will help in preventing catte from entering such area and
 will protect unauthorized entry of out-side person. Due to care will be taken
 to protect plantation as well as the fencing by the guards. |
| Watering During
 Dry Season | During dry spell, water will be sprinkled using private water tanker provided
 with hose pipes. |
| Manuring | Initially fertilizer/ manure will be given to the plants before and after
 plantation. Thereafter, manuring will be continued on reduced scale till the
 plant attains growth of 2 to $3 m$ height. Provision of utilizing biormanure will
 also be made within the lease area. |
| Weeding and Soil
 Working | Man, power will be engaged in mulching the soil frequently along with
 removal of weeds and other unwanted species. |

10.8. Socio-economic Assurance

The socio-economic status of the area in general is poor with the basic occupation being agricultural. There will be no adverse impact due to mining on socio-economic environment. The mining operations substantially increase gross economic production and infrastructure facilities. Therefore, Socio-economic prospects will improve to some extent. Also mining operations result in direct and indirect employment and consequently the population in nearby villages. Thus, project has a positive impact. The mining operations substantially increase gross economic production and infrastructure facilities. Therefore, Socio-economic prospects are improving to
some extent. Also mining operations result in direct and indirect employment and consequently the population in nearby villages. Thus, this project has a positive impact.

- In general, socio-economic environment will have positive impact due to the mining project in the area.
- The deployed laborers will be from nearby villages only as these people are mainly dependent upon such mining activities.
- To further improve the socio-economic conditions of the area, the management will contribute for development works in consultation with local bodies.

10.8.1. Corporate Responsibilities for Environment Protection

The Project Proponent (PP) is committed to complying with all applicable regulatory and other requirements regarding the environment and preventing pollution and in line with Corporate Responsibility for Environmental Protection (CREP) as published by CPCB. The company will regularly evaluate the aspects of company operations that impact the environment. Opencast areas targeted for improvement are selected based on several factors, including changes in the regulatory environment, breadth of impact, impact on our customers and other stakeholders, and financial considerations. Management periodically reviews proponent's progress towards mitigating adverse environmental impacts, appropriate actions will be taken that are designed to ensure the success of our proposed project. A budget for annual 1,26,000 has been assessed for the plan period. The budget details activity wise is given in Table 8.2.

10.8.2. Litigations against the Project Proponent

No tree cutting will be proposed in the proposed mining project. Lease is allotted by state govt, and no litigation is pending toward project proponent.

10.8.3. Occupational Health and Safety

Occupational Health and Safety professionals develop and coordinate safety and health systems and strategies within organizations. They identify workplace hazards, assess risks to employee health and safety, and recommend solutions. Increasingly, Health and Safety Professionals are also responsible for many of the environmental aspects of their workplace. As this profession matures there is an increased emphasis on risk management strategy and on the development of workplace culture.
Occupational Health and Safety professionals in the minerals industry may perform the following tasks:
\checkmark The collection of minor minerals does not cause any occupational ill effects.
\checkmark Except fugitive dust generation there is no source which can show a probability for healthrelated diseases and proper dust suppression will control dust generation and dispersion.
\checkmark Dust masks will be provided to the workers working in the dust prone areas as additional personal protective equipment.
\checkmark Awareness program will be conducted about likely occupational health hazards to have preventive action in place.
\checkmark Any workers heaith related problem will be properly addressed.
\checkmark Periodical medical checkup will be conducted.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
\checkmark Promote occupational health and safety within their organization and develop safer and healthier ways of working.
\checkmark Help supervise the investigation of accidents and unsafe working conditions, study possible causes and recommend remedial action.
\checkmark Develop and implement training sessions for management, supervisors and workers on health and safety practices and legislation.
\checkmark Coordinate emergency procedures, mine rescues, firefighting and first aid crews.
\checkmark Communicate frequently with management to report on the status of the health and safety strategy and risk management strategy, and develop occupational health and safety strategies and systems, including policies, procedures, and manuals.
\checkmark Project Proponent shall appoint an Occupational Health Specialist for Regular and Periodical medical examination of the workers engaged in the Project and records maintained for silicosis and other occupational diseases.

10.9. Environment Management \& Protection Plan

As this an existing mine and got environment clearance from SEIAA, Haryana under category B2 which was expired. The EMP expenses were proposed by project proponent and committed the same which is mentioned in below Table 10.5. Due to cluster, the project is falling in B1 category and the proposed of activities under EMP are detailed in Table 10.6.

Table 10-5: Environment Cost Analysis (Previous Mine Plan)

S. No.	Particulars	Total (Lacs)
1	Air Pollution Control	4.15
2	Road Maintenance	5.25
3	Greenbelt	3.75
	Total	13.15

A budget for Environmental Monitoring Plan, Environmental Management Plan \& Occupational Health and Safety also has been proposed, which is estimated as ₹ $\mathbf{1 4 , 0 0 , 0 0 0}$ as a Capital cost for plan period and $₹ \mathbf{4 , 8 0 , 0 0 0}$ as a Recurring annual cost per year. The details of activity wise estimated cost are given in in Table 10.6.

Table 10-6: Environment Cost Analysis (Proposed Plan Period)

S. No.	Particulars	Capltal	Recurring	Total					
1	Pollution monitoring - Alr, Water, Noise	$₹ 0$	$₹ 60,000$	$₹ 3,00,000$					
2	Pollution Control - Water sprinkling	$₹ 5,00,000$	$₹ 2,00,000$	$₹ 15,00,000$					
3	Wire fencing at plantation sites	$₹ 2,00,000$	$₹ 50,000$	$₹ 4,50,000$					
4	Plantation including maintenance	$₹ 4,00,000$	$₹ 1,00,000$	$₹ 9,00,000$					
$\mathbf{5}$	Rainwater harvesting	$₹ 2,00,000$	$₹ 20,000$	$₹ 3,00,000$					
6	Haul road and other roads repair and maintenance	$₹ 1,00,000$	$₹ 50,000$	$₹ 3,50,000$					
Total							$₹ \mathbf{1 4 , 0 0 , 0 0 0}$	$₹ \mathbf{4 , 8 0 , 0 0 0}$	$₹ \mathbf{3 8 , 0 0 , 0 0 0}$

Source: Approved Mining Plan

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and $2,50,000$ MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

10.10. Rehabilitation and Resettlement (R\&R)

There is no displacement of the population within the project area and adjacent nearby area and the complete lease area is Gram Panchayat land. However Social development of village will be considered as per social activities.

10.11. Summary

As per above discussion there is no measure impact on the environment due to mining except fugitive emission in the form of dust generated during handling of mineral. The adequate preventive measures will be adopted to contain the various pollutants within permissible limits. As this is a mining project having 4.80 ha mine lease area. About 1.584 ha area will be used for greenbelt. Plantation will be done in first three years for 2047 trees/ year (Within lease area1980 Plants \& Haul Road, Approach Road $=67$ Plants) \& its maintenance will be done in next 2 years. Remaining trees will be planted in nearby villages road or schools and others. It will prove an effective pollution mitigate technique and help avoid soil erosion during monsoon season. Employment opportunities will be provided to the locals only as providing extraction of minerals from the mine site is the only prevailing occupation for them for their livelihood. A budget for Environmental Monitoring Plan, Environmental Management Plan \& Occupational Health and Safety also has been proposed, which is estimated as ₹ $\mathbf{1 4 , 0 0 , 0 0 0}$ as a Capital cost and ₹ $4,80,000$ as a Recurring annual cost for plan period. An annual budget for corporate environmental activities also has been assessed of 1,26,000 per year.

CHAPTER 11
 SUMMARY \& CONCLUSION

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed

11. Summary \& Conclusion

11.1. General

Sh. Satveer Singh S/o Sh. Bani Singh village Kalwari, P.O. Dongra Ahir, Tehsil \& District Mahendragarh has been granted mining lease of Bartyes and Dolomite by State Government of Haryana over an area of 24.30 ha of land in village Donkhera, District Mahendragarh w.e.f. 29.08.2001 for a period of 20 years. Now this lease has been transferred to M / s Xandy Mine and Minerals, GH 18A, Celebrity Homes, Palam Vihar, Gurgaon. As per the information received from the Department of Mines \& Geology and the State Forest Department part of only one Khasra no. namely 109 min is free from the forest/Aravali plantation. The applicant has selected this Khasra numbers 109 min comprising an area of $\mathbf{4 . 8 0}$ ha which is free from restrictions. Rest of the Khasra nos. 103, 108 and 109 min comprising 19.50 ha are which was said to be in Aravali/plantation has been surrendered to the department of Mines \& Geology, Haryana.

Table 11-1: Approvals / Permissions from Concerned Authorities

Item	Permission / Approval Details
LOI	The Letter of Intent has been issued to M/s Xandy Mine and Minerals, R/O GH- 18, Celebrity Homes, Palam Vihar, Gurgaon by Director Mines \& Geology, State of Haryana Govt., Chandigarh vide memo no. GIg/ HY/ E-2612/ 3912, Panchkula Dated 28-08-2014 for Mining of Miner Mineral (Dolomite and Stone) in Donkhera village over an area of 4.80 hectares in Nangal Chaudhary Tehsil of District Mahendragarh, Haryana for a period of 51 years.
Approved Mining Plan	As per sub-rule 8 of rule 70 of Haryana Minor Mineral Concession, Stocking, Transportation of Minerals \& Presentation of Illegal Mining Rule, 2012, the mining plan was approved vide memo no. DMG/ HY/ MP/ DONEKHEDA/ Dolomite/2022/ 2736-2739 Panchkula Dated 19.05.2023.
Cluster Letter	Department of Mines and Geology, Narnaul confirms one more mine (M/s Stone Field) is available within 500m radius from lease for form cluster vide letter Memo No./1794 dated 01.06.2023.
Forest NOC	The lease area land Is owned by gram panchayat as no forest land involved in lease area. The NOC has been issued from forest department of Mahendragarh vide no. 6397 Dated: 20/03/2014. The copy of same is enclosed.
Previous EC	
Letter	As this is an old case which has been got the environment clearance from SEIAA, Haryana under category B2 vide no. SEIAA/HR/2016/465 dated $27.06 .2016 . ~ T h e ~ s a m e ~ h a s ~ b e e n ~ e n c l o s e d . ~$
CTE	As per EC condition, the consent of establish (CTE) was issued on 06.05.2014 vide no. HSPCB/Consent/2811914MACTE1039375 which is enclosed.
CTO	As per EC condition, the consent of operate (CTO) was issued on 14.09.2022 vide no. HSPCB/Consent/313100422MACTO26737457 which is valid upto 30.09.2024. The same is enclosed.
EC	As EC condition, the compliance report was submitted to concerned department timely which is enclosed.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and $2,50,000$ MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

Item	Permission / Approval Details	
Lab Report	As per EC condition, the lab report was submitted to concerned department with EC compliance report timely. The same is enclosed.	
Panchayat NOC	The NOC from Dokhera Gram Panchayat has been obtained 29.06 .2023 for the mining oprations which is enclosed.	vide dated
Approved DSR Report	District Survey Report (DSR) was approved by Department of Mines \& Geology, Namaul on 26.06 .2023 which is enclosed.	
Water Supply	Water will be supplied via hired private water tankers for dust suppression, plantation, and domestic use.	Electral Electricity Supply

Table 11-2: Salient Features of Mine

S. No.	Parameters	Description			
1.	Name of the project	Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine by M/s Xandy Mines and Mineral.			
2.	Nature \& category of Mine	Non-Coal Mining Category 'B' of Activity 1(a)			
3.	Project Proponent	M/s Xandy Mines and Mineral			
4.	Khasra No.	109 Min			
5.	Total Lease area	4.80 Ha (Gram Panchayat Land)			
6.	Location of the project	Village- Donkhera, Tehsil- Nangal Chaudhary, DistrictMahendragarh, Haryana			
7.	Toposheet No.	G43E1 - Project Site G43D13, G43D14, G43E1 \& G43E2 - Study Area.			
8.	Maximum Production Capacity	3,25,000 MTPA (75,000 MTPA of Dolomite and 2,25,000 MTPA of Stone (Road Metal \& Masonry Stone))			
9.	Geological Mineral Reserve	77,93,482 MT ($30,53,472$ MT of Stone \& 47,40,010 MT of Dolomite)			
10.	Mineable Reserve	$\begin{aligned} & 24,11,900 \text { MT } \\ & (18,28,340 \mathrm{MT} \text { of Stone } \& 5,83,560 \mathrm{MT} \text { of Dolomite }) \end{aligned}$			
11.	Geographical co-ordinates	Point	Longltude		atitude
		1	27*50'17.70"N	76°	2'44.10"E
		2	$27^{\circ} 50^{\prime} 21.10^{\prime \prime} \mathrm{N}$	76°	2’47.00"E
		3	$27^{\circ} 50^{\prime} 24.30^{\prime \prime} \mathrm{N}$	76°	2'46.50"E
		4	$27^{\circ} 50^{\prime} 26.20^{\prime \prime} \mathrm{N}$	76°	2'48.90"E
		5	$27^{\circ} 50^{\prime} 25.40^{\prime \prime} \mathrm{N}$	76°	2'48.90"E
		6	$27^{\circ} 50^{\prime 26.10 " N}$	76°	2'51.50"E
		7	$27^{\circ} 50^{\prime 28.70 " N}$	$76{ }^{\circ}$	2'51.50"E
		8	$27^{\circ} 50^{\prime} 29.80^{\prime \prime} \mathrm{N}$	76°	2'53.00"E
		9	$27^{\circ} 50^{\prime} 31.20^{\prime \prime} \mathrm{N}$	76°	2'52.30"E
		10	27050'31.70"N	76°	2'53.40"E
		11	$27^{\circ} 50^{\prime} 30.90^{\prime \prime} \mathrm{N}$	76°	2'54.60"E
		12	27*50'31.70"N	76°	2'55.50"E

M/S XANDY MINES AND MINERALS
PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
NABFT /EIA/2124/IA 0092(Rev.01)

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity $3,25,000$ MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

PAGE. 186

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

S. No.	Parameters	Description
		water body. There are dry nalas in which water flows during rains for a short duration, otherwise they remain dry for the rest of the months. The rainwater from these nalas drains either into local johars or in agrieulture fields.
15.	Mining Method \& Technology	Proposed Method of Mining: The lease area is being worked since June 2016 i.e., after getting the environmental clearance from designed authority. Further, it is proposed to continue systematic and scientific mining for excavation of Dolomite and road metal and masonry stone/building stone during the next plan period of Mining Scheme. It was proposed in the last mining plan to take benches of $10 \times 10 \mathrm{~m}$ are proposed to be made. During ali these years only dolomite production was made, and no building stone was reported to mined. At present fully mechanized method of mining of Dolomite by deploying heavy Earth moving machines and deep hole drilling and blasting by forming benches of $10 \times 10 \mathrm{~m}$ from top downward. Now it proposed to mine $3,25,000$ MT ($2,50,000 \mathrm{MT}$ of Stone $+75,000$ MT of Dolomite) per annum or $1083 \mathrm{MT} /$ day. The production targets for Dolomite as proposed the approved mining plan were followed. Necessary permission for mechainized mining under MMR 1961 from competent authority has already obtained. The same will continue in the next five-year plan also. The formation of benches shall be continued up to the ultimate pit limit after the drilling and blasting of the bench. The boulders shall be sized with the help of rock breaker, excavated, and loaded in the truck $\$ /$ dumpers by hydraulic excavators. The mining operations will continue as were done during the last five years. It is proposed to be adopted mechanized opencast mining method for exploitation of the mineral. Drilling and blasting shall be required to distodge the mineral The mining method involves breaking the rocks with explosives, loading the material with excavators and haulage with dumpers.
16.	Ulitimate depth of Mining	92.0 m BGL
17.	Ground water level	The ultimate depth of the mining will be 92.0 m at the end of plan period. The general water table around the lease area is at 80.100 m BGL.
18.	GWT intersection	Mining will be done above ground water level. So, ground water table will not be intersected.
19.	Drainage pattern/ water courses	The areal is mainly sloping west, north, and south direction. Mining shall be mainly below the general ground level with only one side of the pit having slope along hill

PROPONENT M/S XANDY MINES AND MINERALS
 CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
 NABFT /EIA/2124/IA 0092(Rev.01)

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metai \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

S. No.	Parameters	Description		
		and other side will remain open. Such situation does not warrant any water accumulation as natural drainage will be available from the other open side of the pir. However, as the mine progresses and mining continue below the general ground level as envisaged during lease period, the mining area will become a depression, which may warrant accumulation of water during rainy season. A scheme is proposed to prevent the accumulation of such water.		
20.	Water requirement \& source	The source of water is private water tankers. The break up of water requirement is as follows:		
		S. No.	Description	Demand
		1	Drinking \& domestic	1.0
		2	Green Belt/Plantation	4.1
		3	Dust Suppression	5.3
			Total	10.3 KLD
21.	Cost of project	The capital cost for the project will be Rs. 10.85 Crores including proposed lease area and machinery will be hired on contract bases.		

Source: Approved Mining Plan

11.2. Description of Project

The lease area is being worked since June 2016 i.e., after getting the environmental clearance from designated authority. Further, it is proposed to continue systematic and scientific mining for excavation of dolomite and road metal and masonry stone/building stone during the next plan period of mining scheme. It was proposed in the last mining plan to make benches of $6 \mathrm{~m} \times 6 \mathrm{~m}$ but keeping in view the type of formation and boom height of Machines benches of $10 \times 10 \mathrm{~m}$ are proposed to be made. During all these years only dolomite production was made, and no building stone was reported to mined.
At present fully mechanized method of mining of Dolomite by deploying heavy earth moving machines and deep hole drilling and blasting by forming benches of $10 \mathrm{~m} \times 10 \mathrm{~m}$ from top downward. Now it proposed to mine 325000 MT (250000 MT of Stone +75000 MT of Dolomite) per annum or $1083 \mathrm{MT} /$ day. The production targets for Dolomite as proposed the approved mining plan were foliowed. Necessary permission for mechanized mining under MMR 1961 from competent Authority has already obtained. The same will continue in the next five-year plan also. The formation of benches shall be continued up to the ultimate pit limit after the drilling and blasting of the bench. The boulders shall be sized with the help of rock breaker, excavated, and loaded in the trucks/dumpers by hydraulic excavators. The mining operations will continue as were done during the last five years.
There was only a little quantity of soil was generated during the plan period which was used for reclamation/plantation purpose.
In addition to, it, entire mineral produced was saleable. Therefore, no overburden/waste was stacked during the plan period.

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
No rejects generated during the plan period. Further about 2% mineral production will come under the category of rejects as there are thin, soft layers of calc schist within the bed rock which are not fit as road metal/crushed material.

Table 11-3: Second Five Year Production Details (in MT)

| Year | Bench level mRL | Production
 of Dolomite | Production of Stone

 Masonry Stone) | Total
 Production in
 MT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $6^{\text {th }}$ Year | $352,333,310,300,290$ | 75000 | 250000 | 325000 |
| $7^{\text {th }}$ Year | $310,300,290$ | 75000 | 250000 | 325000 |
| $8^{\text {th }}$ Year | $310,300,290,280$ | 75000 | 250000 | 325000 |
| $9^{\text {th }}$ Year | $310,300,290,280 \& 270$ | 75000 | 250000 | 325000 |
| $10^{\text {th }}$ Year | $310,300,290,280,270 \& 260$ | 75000 | 250000 | 325000 |

Source: Approved Mining Plan

11.3. Description of Baseline Environment

Environmental data has been collected during pre-monsoon season i.e., March to May 2023 in accordance with the guidelines for preparation of EIA studies.

Table 11-4: Baseline Status

Parameters	Baseline Status
Ambient Air Quality	PM_{10} particulate matter 10 varies from $42 \mu \mathrm{~g} / \mathrm{m}^{3}$ to $82 \mu \mathrm{~g} / \mathrm{m}^{3}$. PM $\mathrm{P}_{2.5}$ was observed between $15 \mu \mathrm{~g} / \mathrm{m}^{3}$ to $34 \mu \mathrm{~g} / \mathrm{m}^{3}$. SO_{2} was varying from $5.8 \mu \mathrm{~g} / \mathrm{m}^{3}$ to $11.6 \mu \mathrm{~g} / \mathrm{m}^{3}$. NOX was observed from 10.1 $\mu \mathrm{g} / \mathrm{m}^{3}$ to $16.0 \mu \mathrm{~g} / \mathrm{m}^{3}$ in the study area. CO was observed from $0.41 \mathrm{mg} / \mathrm{m}^{3}$ to $1.12 \mathrm{mg} / \mathrm{m}^{3}$ in study area.
Noise Level	The Sound Pressure Level recorded during the daytime on all locations varies from $38.6 \mathrm{~dB}(\mathrm{~A})$ to $56.4 \mathrm{~dB}(\mathrm{~A})$ \& in time it varies between $29.3 \mathrm{~dB}(\mathrm{~A})$ to 40.2 $d B(A)$.
Ground Water	All the parameters were observed well within permissible limits for drinking water standard 10500:2012. $\mathrm{pH}(7.2$ to 7.7), TDS ($723 \mathrm{mg} / \mathrm{l}$ to $1361 \mathrm{mg} / \mathrm{I}$), alkalinity ($160.0 \mathrm{mg} / \mathrm{l}$ to $360.0 \mathrm{mg} / \mathrm{l}$), Total Hardness ($295.7 \mathrm{mg} / \mathrm{l}$ to 472.8 mg / l), Calcium as Ca ($62.4 \mathrm{mg} / \mathrm{I}$ to $89.3 \mathrm{mg} / \mathrm{l}$), Magnesium as $\mathrm{Mg}(34.0 \mathrm{mg} / \mathrm{l}$ to $60.8 \mathrm{mg} / \mathrm{I}$), Chloride ($209.3 \mathrm{mg} / \mathrm{I}$ to $451.0 \mathrm{mg} / \mathrm{I}$) \& Sulphate $(54.0 \mathrm{mg} / \mathrm{l}$ to $120.0 \mathrm{mg} / \mathrm{l}$) parameters were analysed.
Surface Water	The pH was varying between 7.2 to 7.8 . Dissolved Oxygen of the sources was varying between 6.2 to 7.1. Total Coliform is meeting to Class B which denotes as Outdoor bathing (Organized).
Soil Quality	The soil was predominantly Loamy in the study area. The pH was ranges 7.2 to 8.0 . The conductivity was varying from $319 \mu \mathrm{mhos} / \mathrm{cm}$ to $418 \mu \mathrm{mhos} / \mathrm{cm}$. Organic Carbon was varying from 0.3% to 0.51%. Nitrogen was varying from $138 \mathrm{~kg} / \mathrm{ha}$ to $193 \mathrm{~kg} / \mathrm{ha}$. Phosphorous was varying from $15 \mathrm{~kg} / \mathrm{ha}$ to $21 \mathrm{~kg} / \mathrm{ha}$. Potassium was varying from $109 \mathrm{~kg} / \mathrm{ha}$ to $124 \mathrm{~kg} / \mathrm{ha}$.
Meteorology	The maximum temperature recorded during the study period was $43.1^{\circ} \mathrm{C}$ in the month of May and the minimum temperature was $14.6^{\circ} \mathrm{C}$ in the month of March. The average wind speed recorded was $3.0 \mathrm{~m} / \mathrm{sec}$. Predominant wind direction during the study period was mainly North-West to South-East followed by west to east.

11.4. Anticipated Environmental Impact and Mitigation
 Measures

The proposed mining operations are not anticipated to raise the concentration of the pollutants beyond prescribed limits. However, the measures are suggested to mitigate any harmful impacts of pollutants like plantation of trees along haul roads, especially near settlements, to help to reduce the impact of dust on the nearby villages; planning transportation routes of mined material to reach the nearest paved roads by shortest route; regular water sprinkling on unpaved roads to avoid dust generation during transportation etc. Summarized key points are given below.
\checkmark Transportation of mineral should be minimized in the morning and evening and cannot be done in night.
\checkmark The impact on the present noise levels due to mining operations will be restricted to the work zone areas only.
\checkmark The impact on the ambient noise levels will not be felt at the settlement areas due to masking effect with the existing noise levels.
\checkmark There will be no impact on water environment due to mining and there is no intersection of water table due to mining activity.
\checkmark There will be no wastewater generation from the proposed mining activity except sanitary wastewater generation that will be treated in septic tanks and will be used for plantation purpose.
\checkmark No mining will be carried out during the rainy season to minimize impact on aquatic life. The local people have been provided with either direct employments or indirect employment such as business, contract works and development work like roads, etc. and other welfare amenities such as medical facilities, conveyance, free education, drinking water supply etc. Except dust generation, there is no source which can show a probability for health-related diseases.
\checkmark Regular water sprinkling will be done with sprinkle mounted tankers and dust masks will be provided to the workers.
\checkmark Medical camps will be organized for this activity. Insurance of all employees as per the rules will also be carried out.

11.5. Analysis of Alternative

The Ministry of Environment, Forest, and Climate Change (MOEF\&CC), Govt. of India through its notification of 14th September 2006 and its subsequent amendment under the Environment (Protection) Act, 1986 classifies the projects under Non-Coal Mining Category 'B' of Activity 1(A). This is a project of minor mineral over an area of 4.80 ha which is $<5 \mathrm{Ha}$ and complying to Cat B2 of activity $1(A)$. But there are 2 more mines within 500 m from lease which is forming cluster of 12.26 Ha , so the project is complying to the Cat B-1 of Activity $\mathbf{1}(\mathbf{A})$.
It is an existing mine which was got environment clearance from SEIAA, Haryana under category B2. As now, cluster is available, and 2 mines are in cluster covering 12.26 ha. The mineral is site specific, so no alternative site was identified.

11.6. Environmental Monitoring Program

To maintain the environmental quality within the stipulated standards, regular monitoring of various environmental components is necessary which will have complied as per conditions. For this the lessee has taken decision to formulate an Environment Policy of the mine and constitute an Environmental Management Cell and committed to operate the proposed mine with the objectives mentioned in approved Environment Policy. A budget for monitoring of Air, water, Noise and Soil will be Rs. $\mathbf{0 . 6 0}$ Lakhs per annum which is to be incurred by the project proponent for undertaking pollution prevention measures during the mining activity.

11.7. Additional Studies

Risk assessments will help mine operators to identify high, medium, and low risk levels. This is a requirement of the Occupational Health and Safety Act 2000. Risk assessments will help to priorities the risks and provide information on the need to safely control the risks. In this way, mine owners and operators will be able to implement safety improvements. Mining and allied activities are assoclated with several potential hazards to both the employees and the public at large. A worker in a mine will be able to work under conditions, which are adequately safe and heaithy. At the same time the environmental conditions also will not impair his working efficiency. This is possible only when there is adequate safety in mines. Hence mine safety is one of the most essential aspects of any working mine. This plantation will be done at selected places only and only local species will be used in the plantation. This mining project has positive impact on social and economic wellbeing of the community because this project provides employment opportunities to local people and many social welfares works done by project proponent.

11.8. Project Benefit

The management will recruit the semi-skilled and unskilled workers from the nearby villages. The project activity and the management will support the local Panchayat and provide other form of assistance for the development of public amenities in this area. The company management will contribute to the local schools, dispensaries for the welfare of the villagers.
\checkmark About 1.584 ha area will be used for greenbelt. Plantation will be done in first two years for 2047 trees/ year (Within lease area- 1980 Plants \& Haul Road, Approach Road - 67 Plants) \& its maintenance will be done in next 3 years. Remaining trees will be planted in nearby villages road or schools and others. It will prove an effective pollution mitigate technique and help avoid soil erosion during monsoon season.
\checkmark Employment opportunities will be provided to the locals only as providing extraction of minerals from the mine site is the only prevailing occupation for them for their livelihood.
\checkmark An annual budget for corporate environmental activities also has been assessed of 1,26,000 per year.
\checkmark The mining activities as proposed are the backbone of all construction and infrastructure projects as the raw material for construction is made available only from such mining.

11.9. Environment Management Plan

As per Above discussion there is no measure impact on the environment due to mining except fugitive emission in the form of dust generated during handling of mineral. The adequate

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and $2,50,000$ MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
preventive measures will be adopted to contain the various pollutants within permissible limits. Plantation development will be carried out along the approach roads, around Govt. buildings etc. It will prove an effective pollution mitigate technique and help avoid soil erosion during monsoon season. Employment opportunities will be provided to the locals only as providing extraction of minerals from the mine site is the only prevailing occupation for them for their livelihood.
A budget for Environmental Monitoring Plan, Environmental Management Plan \& Occupational Health and Safety also has been proposed, which is estimated as $₹ \mathbf{1 4 , 0 0 , 0 0 0}$ as a Capital cost and $₹ \mathbf{4}, \mathbf{8 0 , 0 0 0}$ as a Recurring annual cost for plan period.

11.10. Conclusion

From the baseline study and various discussion on probable impacts of all the operational activity, it has been concluded that this project will more positively impact and will generate the revenue and employment in the area. On the above facts and baseline study, the proposed activity is recommended for the commencement with proper mitigation measure as suggested.

CHAPTER 12

DISCLOSURE OF THE CONSULTANT

12. Disclosure of Consultant

12.1. Organizational Profile

PARIVESH ENVIRONMENTAL ENGINEERING SERVICES (PEES), is a NABET accredited firm at 5/916, Viram Khand, Gomti Nagar, Lucknow, Uttar Pradesh-226010.
PEES is accredited by QCI/ NABET as Category-A EIA consultancy organization. The objective of PEES is to revive, support, strengthen and promote the traditional and unconventional technologies, which have survived through ages. These technologies meet our target of achieving the eco-friendly environment in this modern age. For the same cause we, at PEES, take initiatives in associating with national and international institutions, working for the same cause.
PEES is also dedicated to collect, analyze, and disseminate the scientific, technical, and socioeconomic information and knowledge for the benefit of the masses. The advance technology like the Information Technology tools is positively used for a better perspective. In achieving the desired objective in each project, the vital factor of socioeconomic information collation and analysis always plays an indispensable role. PEES have always stood in the front lines in this important area.
To summarize PEES is a group which is inspired and guided by the nature and finds immense pleasure in working on scientific lines with a role of activator between the decision makers and the locals. The active participation of locals through the development of self-help groups is always on top of the main agenda. PEES is dedicated to work in the field of research, development and exploration of traditional technologies and unconventional energy resources. The benefit of these activities is propagated to the end users.
PEES is associated with Asia Enviro Lab, which is NABL Accredited, and MoEF\&CC recognized covering vast scope of environmental testing.

12.2. Consultancy Services

- Environmental Impact Assessment
- HAZOP Study
- Air Quality Assessment and Control Measures
- EHS \& Occupational Safety Management

Water and Wastewater Quality Assessment, Treatment and Management

- Sôl Quality Assessment
- Remediation Construction \& Site
- Solid Waste Management Services

Restoration

- Source apportionment Study
- Carrying Capacity Study
- Environmental Management Plan Consulting
- Socioeconomic \& Impact Assessment
- Consent Management

Training and Skill Development

- Environmental Legal Advice
- ETP \& STP Establishment and Operation
- Natural resource management
- Environmental Research and Development

12.3. Disclosure of Consultants Engaged

Declaration by Experts contributing to the EIA of Proposed M/s Xandy Mines and Minerals proposed a mining project of Minor Mineral (Dolomite and Road Metal \& Masonry Stone) from
Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite

[^1]DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and $2,50,000$ MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed. I hereby, certify that I was a part of the EIA team in the following capacity that developed the above EIA.

Table 12-1: EIA Co-ordinator Details

| EIA Coordinator | Vikas Tripathi | Signature \& Date |
| :--- | :--- | :--- | :--- |
| EIA Coordinator | ViN1. 11.01 .2023 | |
| Period of Involvement | March 2023 to till date | |
| Contact Information | $9990156652 / 9819893405$ | |

Table 12-2: List of Functional Experts

$\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$	Functional Areas	Name of Expert/s	Involvement (Period \& Task**)	Signature \& Date
1	AP	Vikas Tripathi	Selection of AAQ stations in compliance with CPCB/ MoEF\&CC guidelines > Interpretation of baseline data w.r.t CPCB standards $>$ Identification of sources of pollution and its Inventorization. > Preparation of Management plan with budgetary provision for all the sources of pollution. $>$ Suggestion of Operational monitoring program to verify and keep the levels well within the norms from time to time.	Ving
2	WP	Ram Sushil Mishra	$>$ Selection of water monitoring locations in line with CPCB norms > Interpretation of baseline data w.r.t to CPCB standards $>$ Identification of pollution sources with relevant Inventorization. > Preparation of Water Balance. $>$ Prediction of water pollution and its management plan.	
3	SHW	Ashish Kumar Vikas Tripathi	Identification of nature of waste, categorization, and quantity of generated waste. $>$ Predlction of waste pollution and preparation of its management.	w^{0}
4	SE	Kripna Shukla	Collection of Secondary data (Census of India \& District Handbook)	
PROPONENT M/S XANDY MINES AND MINERALS CONSULTANT PARIVESH ENVIRONMENTAL ENGINEERING SERVICES NABFT/EIA/2124/IA 0092(Rev.01)				

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Maryana proposed

$\begin{array}{\|c} \hline \text { S. } \\ \text { No. } \\ \hline \end{array}$	Functional Areas	Name of Expert/s	Involvement (Period \& Task*)	Signature \& Date
			$>$ Collection of primary data of the study area through Questionnaire method > Compilation and analysis of primary \& secondary data to identify the various activities required on need basis. > Identification and prediction of Socio-economic impacts > Enumerating the benefits of the project in terms of employment, development, etc. > Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in compliance with Companies act and MoEF\&CC guidelines	
5	EB	$\begin{aligned} & \text { Shilpi Anand } \\ & \text { Ram Sushil } \\ & \text { Mishra } \end{aligned}$	Identification of samples and its size based on the present land use and land cover pattern. > Collection of primary data of flora and fauna for the study area with standard methodology and guidelines > Collection of secondary data for cross verification of the primary data > Inventorization and compilation of biological aspects of the study area > Identification and prediction of various impacts on Ecological and biodiversity > Preparation of management plan including greenbelt development plan with budgetary allocation	
6	HG	Ravindra K. Verma	$>$ Collection of secondary data (Ground water Authority) - Interpretation of Water resource evaluation of the area. > Interpretation of Pre-monsoon \& Post-monsoon water levels \& quality data.	Rocosvers

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

$\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$	Functional Areas	Name of Expert/s	Involvement (Period \& Task**)	Signature \& Date
7	GEO	Ravindra K. Verma	Colfection of secondary data with respect to regional and local geology from Ground water Department. Interpretation of collected data in the report	- Roquveral
8	AQ	Vikas Tripathi	Collection of primary data Quantification of Air pollution sources (point and line sources) Impact prediction using AERMOD View Modelling and its interpretation. > Delineating the Incremental load on the existing scenario > Suggesting management plan with budgetary provision > Suggestion of Operational monitoring program to verify and follow up to keep the levels well within the norms from time to time	vichs
9	NV	Om Krishna Tarun Saharan	Identification and selection of NAAQ monitoring locations. Collection of primary data (noise quality of the study area) Identification of Noise pollution sources. $>$ Impact prediction of noise pollution sources and its interpretation $>$ Preparation of management plan with budgetary provision $>$ Suggestion of Operational monitoring program to verify and follow up to keep the levels well within the norms from time to time	
10	LU	Debarati Ghosh	$>$ Collection of Primary and secondary data (Topo sheet, satellite imaginary, coordinates of known vectors, etc.) $>$ Geo-referencing the primary data with secondary data using AutoCad, ERDAS, GIS software. > Preparation of Land use and Land cover map .	Debaint: phote

DRAFT ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

$\begin{gathered} \mathrm{S} . \\ \mathrm{No} . \end{gathered}$	Functional Areas	Name of Expert/s	Involvement (Period \& Task**)	Signature \& Date
			Identification and its Impact prediction (if any)	
11	RH	Ram Sushil Mishra	$>$ Identification of risk and hazards $>$ QRA study and prediction of risks involved. > Management of Hazard controls due to chemical storage > Preparation of Disaster Management Plan with Onsite and Offsite Emergency Plan > Delineating firefighting facilities and system > Preparation of Occupational Health and Safety Management Plan with budgetary allocations.	x,
12	SC	Shilpi Anand Ram Sushil Mishra*	Collection of primary data Interpretation of existing quality of soil. Prediction of Impact and its management (if any).	

12.4. Declaration by the Head of the Accredited Consultant Organization

I, Vikas Tripathi, hereby, confirm that the above-mentioned experts prepared the EIA of M/s Xandy Mines and Minerals proposed a mining project of Minor Mineral (Dolomite and Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed.
I also confirm that I shall be fully accountable for any misleading information mentioned in this statement.

Signature:

Name: Vikas Tripathi
Designation: Managing Partner
Name of the EIA Consultant Organization. PARIVESH ENVIRONMENTAL ENGINEERING SERVICES, Lucknow
NABET Certificate No. \& Issue Date: NABET/EIA/2124/1A 0092(Rev.01) Validity: - 11-112024

ANNEXURES

ANNEXURES - 1.1 LETTER OF INTENT

4"

Themered

1;

oused thantgarn, tiat 200c 2014

 Nothenticum

n b \& 中

 4 ©

0atad 28.082012

F\%m:

ANNEXURES - 1.2
 APPROVED MINING PLAN OF STONE FIELD

Registered Post
 From

The firestom:
Mines athe cisclogy Haryam,

Pancbiala

M/S Xanofy Mnes and Moncrats.
Througis She Ashwamkhtana,
Riog Gh lon delebrity iome.
Pakani Vihat furugram (Haryana)

Subject: Submission of Mining Scheme including Progressive Mine Closure Pian of Donkhera Dotomite Mine along with isssociated Minor Minerals of Raad Metal \& Masonary stone in Distrit Mahendergarh comprising an area of 4.80 bectates of M/S Xandy Mines and Minerals . Gurugram (Haryana) .

Reference tonn later dated obor 2023 un the subject noted dove.

 apprevat.
? In exurche of the pewers conterred by Rule 69 of the Itaryana Minor Minetal Conessmon.

 without arefuctice to any bher laws applicable to the miref, area frem timst to fime whether made by the Central Government on State fovernment or any other authority:
(ii) That thes approval of the "Mining Seheme atong with Progressive Minc Gosure ptan" of Mining thes not in any way imply the approval of the State Government in terms of any other provisions of the Mines and Mmerals (Development \& Regulation) Act 1957 ar Iarzana Minor Mineral Concession, Streking Transportation of Minerals and Prevantion of Hegat Mong kites, 2012 or any orbey law inchuing Forest (Gonservatun) Act. 1980 and Envirombent Protection Act, l986 and rutes framed there under;
(iat) That this "Mining scheme along with Irogrossive Nine Chosure flan" is being approved on the basis of daia movided by you. In case at any point of time any momiguty in the same is found, che approval will be revoked with suspension of the mining operations and will be allowed fo irsume operation only aftes modincathon/rectification of the same if so requrens.

 is for a perint of fwe yoas only and shat not be nake you entited for any extension of the lease poriod：
 anitug the wathorgolme and

 of of dedys．
4.
 Analyamation of the both areas．

Frut：Mining Soheme fergressive
Stare

Haryana．

Bedicteted Past

Daled：

A copy akng with a comy the duty amponet Minny Schme and progressme bine thosure

bict Minma Scheme \＆orgressive
Mine Closutu Man
State（xenkogest
for Dinctur Mines and Goblegy．
Haryana

Dated：

A ropy along with a copy of the duly approved Minnge Shame and Frogressive Mine thosure
 texessary metion．
$-5 d$.
Eat：告ming Soheme \＆frogressive
State Ciediogist．
Mine Clusure Pun
far Divector，Mines and Geology，

 wht his lenter dated 06．os． 2 t 2 m for anformation．

Pated：

State Cemlogist．
for Ditedor，Mintes and Geology．
Hary学初标。

MINING SCHEME AND PROGRESSIVE MINE CLOSURE PLAN Of DONKHERA DOLOMITE MINE
 ALONG WITH ASSOCLATED MINOR MINERALS
 IN VILLAGE: Donkhera
 ¿Prepared under sub-rule 8 of Rule 70 of Haryana Minor Mineral Concession, Stocking, Transportation of Minerals \& Prevention of Alegal Mining Rules, 2012.)

APPLICANT-
M / s XandY Mines and minerals G.H.18-A, Celebrity Homes, Palam Vihar Gurgaon
PREPARED BY
D.C.Yadav RQP/DMG/HRY/2018/03
\# 282 Sector 11 -D Faridabad (Haryana)
Mobile No.-9416214247;Email-dcyadav747@gmail.com
SUBMITTED TO
DIRECTOR GENERAL MINES AND GEOLOGY HARYANA

S.NO	DESCRIPTION	PAGE NO
1.	Introduction	1-7
2.	Location and Accessibility	8-12
3.	Geology and Reserves	13-22
4.	Mining	23-39
5.	Blasting	40-45
6.	Mine Drainage	46-49
7.	Stacking of Mineral Rejects and Disposal of waste	50-51
8.	Use Of Mineral	52-53
9.	Mineral Beneficiation	54
10.	Surface Transport	55
11.	Site Services	55-57
12.	Employment Potential	58-59
13.	Environment Impact Assessment \& Environment Management Plan	60-64
14.	Progressive Mine Closure Plan	48.76

List of annexure

LIST OF PLATES

 Mohindergarh (Haryana)

PART $\cdot 1$
 CHAPTER-I
 review of mining plan

Introduction

Sh. Satveer Singh S/o Sh.Bani Singh Village Kalwari, P.O. DongraAhir, Teh. \& Dist. Mohindergarh has been granted mining lease of Bartyes and Dolomite by State Government of Haryana over an area of 24.30 Hecares of land in village Donkhera, Dist. Mahendergarhw.e.f. 29.8.2001 for a period of 20 years. Now this lease has been transferred to M / s Xandy Mine and minerals G.H.18-A, Celebrity Homes, PalamVihar Gurgaon. As per the information received from the Department of Mines \& Geology and the State Forest Department part of only one khasra no. namely 109 min is free from the forest/ Arawalli plantation. The applicant has selected this khasra numbers 109 min comprising an area of 4.80 hectares which is free from restrictions. Rest of the of khasra nos. 103,108 and 109 min comprising 19.50 hectares area which was said to be in Aravalli/plantation has been surrendered to the department of Mines \& Geology, Haryana.

While working for dolomite in the lease areait was noticed that this area contains good quality Road Metal \& Masonry Stone. Therefore applicant approached the State Government to grant the associated Minor Minerals over the lease hold area of Major Minerals in Village Donkhera under Rule 10 of Haryana MiorMneral Concession Rles 2012. Director Mines \& Geology Hacuana vide letter no.Glg/HY/E-2612/3912 dated 28-08-2014 accorded the sanction for grant modngease of associated minor minerals for the period Co-Terminus with Major Minerals.

The Central Government made amendment in the Mines and Minerals (D\&R) Amendment Act, 1957 vide Ordinance dated $\mathbf{1 5 . 0 1 . 2 0 1 5}$ which became an Act on 27.03.2015, has provided that the period of lease for minerals other than coal, lignite and atomic minerals, on and from the date of commencement of Mines and Minerals (D\&R) Amendment Act, 2015, shall be 50 years، So in this case also now the lease period shall be 50 vears. l.e.29-08-2001 to 28-08-2051. Therefore mining leases granted before the commencement of the Mines and Minerals (Development and Regulation) Amendment Ordinance, 2015 shall be deemed to have been granted for a period of fifty years in Village-Donkhera, District : Mahendergarh, State-Haryana, for extraction of Quart, dolomite, and Quartzite (Road metal \& Masonry stone).

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)
the safety point of view, It is necessary to work the common lease boundary systematitally with due permission from Competent Authority. A copy of consent for working of common buffer zone $(7.5 \mathrm{~m}+7.5 \mathrm{~m})$) to keep the mines safe as well as optimum utilization of available resources is in the interest of both the lessees. Consent enclosed as annexure-4.
1.0 REView of Mining plan
1.1. Name of the mine: Donkheradolomiteandstone mines Distt. Mohindergarh (Harya

12 Particulars of approval of mining plan (under MCR or MCDR, indicate approval letter No. and date:Thelast mining plan was prepared and was approved vide letter No.MemoNo.GIg./Hy/E-2612/0767 dated 20-12-2015 by DMG Haryana. On the basis of revised mining plan, proponent approached the Authority for environment clearance which was duly accorded vide letter no.SEIAA/HR/2016/465 dated 27-06-2016.
1.3 Date of commencement of mining operations:Mining started on28-06-2016 after approval of EIA and EMP vide letter no.SEIAA/HR/2016/465 dated 27-06-2016 and since then the workings are continued..
1.4 A review of compliance position of salient features of the mining plan including conditions and stipulations imposed, if any, on year wise basis.

During all these years the mining and other allied activities were undertaken as per the approved mining plan/scheme of mining. No specific conditions were imposed while approving the first mining plan. The mining plan was followed in the field as per the approval by the Director General Department of Mines \& Geology Haryana.
1.5.0 Important chapters of the approved mining plan/ Mining scheme are reviewed and deviation and justification area as follows:-
1.5.1. Mine Development

As per detailed proposal under approved mining plah \& modified mining plan, the development work was to be carried out to produce targeted year wise production of dolomite and
associated minor minerals/Stone mineral. The mining and development works were proposed by developing the mine from top downward by forming proper benches. The mine was feveloped by mining from top downwards. It was proposed to develop the mine fully mechanized system of miming by deploying Heavy Earth Moving Machines and deep hole drilling and blasting by forming benches of $9 \mathrm{~m} \times 10 \mathrm{~m}$. A latest surface and geological plan plate no. 3 shows the type of working done by lessee. The av. Depth of benches is variabie and kept $\mathbf{1 0}-\mathbf{2 0 m}$, width varies from $10-15 \mathrm{~m}$. and height varies from 10 to 25 m on the western edge of the lease boundry. A barrier of 7.5 m was proposed all along the lease boundary \& the same is adhered in three directions namely eastern, northern and southern side of lease area. This could not be adhered in the western flank of the lease boundy as detailed under.A fresh Geological plan and sections prepared which shows that the mine has neached up to about 316 mRL as shown in plate no. 3 Geological plan and sections plate no. 4 .

Section line	PitNo.	Top RL	Bottom RL	No of Benches	
A-A'	P-3	355	335	2	
B- B^{\prime}	P-3	355	335	2	
C-C	P-2	355	320	3	
D-D'	P-1	360	320	3	
E-E'	P-1	360	316	3	

The above section shows that the bench height is more than as was proposed in the last mining plan.
In the year 2020 During the working of this mine some joins/cracks/fissures developed atong the lease boundry. While working this mine it was noticed that deep crevices and fissurles developed alongside the pillars installed at the boundary of the mining lease. As the dip of the formation is high, almost ner to veriticle water seems to have percolated through joint plains in the host rock and resutted in to some danger on the western edge of the lease. Proponent vide letter dated 16-032020 informed \& requested to Director General Mines Geology about the development of fissures and crecks along the lease boundry even beyond the lease boundry. Director General Mines \&Geology vide letter no.KC/Glg/Hy/g-2612/2148 dated 15-07-2020 (onnexure. 5) advised proponent that in view of the possible danger and considering sofety of all including focal persons proponent was advised to remove the same.Keeping in view it is fikely that in the process of the

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)
same/ removal of danger just near the lease boundry,it is likely that the loose material/hanging mineral may foll from the from area outside the lease area. In this way due to incidental ativity some breaking of rock may occur outside the lease hold area. To ensure that no uncalled for controversy may arise at later date the danger be removed in the presence of AME Narnoul and Tehsildar Concerned under the supervision of First-class Mines Manager with controlled blasting using minimum quantity of explosive. The same was done and danger was removed. Due to this operation land was broke outside the lease boundry and the same was estored/ refilled by using blasted/broken material.

Deputy Commissioner Narnaul Constituted a committee vide letter no.2618-19/DA dated 10-082020 (Annexure -6) and directed the concerned officers to supervise the and also get NOC from grom Gram Ponchayat Donkhera in this respect . Copy of report of the committee is enclosed as (onnexure-7)

A photograph showing the developed crack beyond the lease boudry enclosed as (annexure-8).
The lease holder produced and dispatched the following quantities of mineral from the mine during the plan period.

	Proposed in the last mining plan			Actual production during plan period		
Year	Dolomite (MT)	Associated RM \& MS Quartzite ? MT)	Total	Dolomite (MT)	Associated RM \& MS Quartzite (MT)	Total in MT
1 t	1,21,650	2,00,000	3,21,650	125906	0	125906
${ }^{\text {rex }}$	1,25,250	2,00,000	3,25,250	607	0	607
3^{178}	1,25,500	2,00,000	3,25,500	0	0	0
4^{-17}	1,25,100	2,00,000	3,25,100	92153	0	92153
5	1,25,100	2,00,000	3,25,100	46650	0	46550
Grant Total	6,22,600	10,00,000	16,22,600	265316	0	265316

The average yearly production for the last 5 years comes out to be about 53530 MT

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

1,5.2 Generation of soil and overburden during plan period
The following quantities of soil and $O B /$ Interburdan was handied during plan period

Year	Top Soil
$1^{\text {st }}$	
	0
$2^{\text {na }}$	
	0
3^{17}	
	0
4	0
$5^{\text {mis }}$	
	0

Minor quantity of Soil generated is used for plantation. Some quantity of reject/waste generated during plan period is stacked on the near eastern lease boundary. The same shatl be disposed off with due permission from Competent Authority.

1.5.3 A forestation

It was proposed in the last approved mining Plan to plant 300 No of plants annually. The applicant has planted 1500 nos. of plants but due to the scarcity of water/low rain fall and tough environmental conditions(the survival rate is only 70%)) only 1750 plants are surviving in the area,

The year wise plantation proposed in the scheme of mining and actually planted is as follows:-

Year	No. of plants proposed in the mining plan	No. of plants actually planted	Plants actual surviving
I	300	300	150
II	300	300	150
II	300	300	150
IV	300	300	150
V	300	300	150
Total	1500	1500	750

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4,80 ha). District Mohindergarh (Haryana)

1.5.3 Prohibitory orders under Metalliferous Mines sub Rule 22(3) of Regulation, 1952 or any other

 Regulations by DGMS, Ghaziabad Region if any.The applicant has worked the mine in systematic manner and no such prohibitory orders were ever imposed during the plan period by Authorlty
1.5.4 CSR activities proposed in the approved Mining plan and actually done are as under:

It was proposed in the approved mining plan to spent Rs. 23 lakhs/year as CSR for this project

Description	Amount (in lacs)
Health check up camps	1.0
Surveillance programme of the workers	1.0
Insurance cover of workers	2.5
Assistance to local schools, scholarship to students	2.5
Sanitations and drinking water facilities	3.0
Vocational training to persons for income generation	2.5
Assistance to self help groups	2.5
Total	15.00

Proponent has spent the following amounts against this head as detailed below:

$5 r$. No.	Description	Ist year	$2{ }^{\text {ajem year }}$	3 year	$4^{\text {mix }}$ year	$5^{\text {th }}$ year
1	Health check up camps	1.50	1.0	1.0	1.0	0.75
2	i Surveillance programme of the workers	0.50	0.75	0.75	1.0	1.0
3	Insurance cover of workers	2.50	2.0	2.5	2.5	2.5
4	Assistance to local schools, scholarship to students	3.0	3.0	5.0	3.0	3.50
5	Sanitations and drinking water facilities	5.0	5.0	50	4.50	5.0
6	Vocational training to persons for income generation	1.0	1.0	11.0	1.50	1.0
7	Assistance to self help groups.	0	0	0	0	2.00
Total		13.5	1275	15.25	13.5	15.75

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

CHAPTER-2

PROPOSAL UNDER SCHEME OF MINING FOR THE NEXT FIVE YEARS

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

2.7	Date of Expiry of 5 years period for whith approved on the last occasion	Approved vide letter no.6lg/HY/E-2612/0763 Dated $30-12-2015$. Mining started on 27-06-2016.Therefore 5 years period expired on $26-06-2021$.	
2.8	Date of approval Environment clearance(EIA/EMP)	$27-06-2016$	

The mine is located in the revenue estates of Villages Donkhera inDistt. Mohindergarh, Haryana and is about 10 Kms from Nangal Chaudhary and 32 km from Narnaul, District Mohindergarh, The lease area lies between the latitudinal parallei failing in the survey of India Topo Sheet $\mathrm{No} .54-\mathrm{A} / 1$. The lease area is located on the katcha road and then a metalled road connecting Nangal Chaudhary to Patan via Donkhera and is easily approachable from Nangal Chaudhary, Narnaul, Neemkathana and other important towns.

A generallocation and vicinity map are attached as Plate no. 1

Key plan: key plan on 1: 50,000 scale covering an area in a radius of 5 km showing salient features as per Rule $28(5)$ (a) of MCDR, 1988 has been prepared on Toposheet no. $54 \mathrm{~A} / 1$ (Plate no. 2) The area is marked on the enclosed key map. The deposit lies betweenlatitudes $N 27^{\circ} 50^{\prime} 15^{\prime \prime}$ to $27^{\circ} 50^{\prime} 36^{\prime \prime}$ and Longitudes E $76^{\circ} 02^{\prime} 42^{\prime \prime}$ to $76^{\circ} 02^{\prime} 58^{\prime \prime}$ (Plate no. 2)

Infrastructure facilities are as detailed below

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolamite mine (4.80 ha). District Mohindergarh (Haryana)

| Mode of
 transportation
 mineral | of
 Mineral stone will be transported by tippers/ trucks. Loaded trucks will
 travel on Kuccha road made for plying of trucks up to the crushers in
 the nearby area. Village Donkhera and the lease area is connected
 with metaled road which further joins the Nangal Chaudhary -Patan
 and nearby cities. |
| :--- | :--- | :--- |

Infrastructure developed in the mine is as under.

Mine office, Rest shelter and first aid station and secustity Guard Rooms	Mine office is developed near the mine in PVT land.first aid station and security guard room Developed near boundary in northwest side
Weigh bridge	Instailed out of lease boundary on the connecting road near village Donkhera.
Store room/ servicing and repair/maintenance of vehictes	Developed near the mine in private land
Medical facilities	First aid room setup in Managers office. A doctor visits the site as and when required
Electricity	Connection available in the mine office
Water	Masonry water tank as well as Syntex tanks provided near mine office

Proposal for joint amalgamation plan for working the common lease boundryis proposed as under:

It is informed by lessee that they have got a mining contract for stone in Donkhera village which happens to be in immediate vicinity of the existing dolomite and stone mine. The management of these both mlnes has decided to work the common 7.5 m buffer one on earh side of leases. Therefore in view of the common consent of both the mines, they are planning to obtain the permission to mine the common lease boundary of $7.5 \mathrm{~m}+7.5 \mathrm{~m}=15.0 \mathrm{~m}$ of both

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)
the leases from the Directorate of mines safety. The same is very necessary and safer to amalgamate the common boundary of the both the leases. To make the mine safe from the safety point of view, it is necessary to work the common lease boundary systematically with due permission from Competent Authority. A copy of consent for working of common buffer zone($7.5 m+7.5 \mathrm{~m}$) to keep the mines safe as well as optimum utilization of avallable resources is in the interest of both the lessees. Consent enclosed as annexure-4.

Year wise joint workings and development plans and section are enclosed with the report as plate no.5to9. Now it is proposed to work the mine in by making proper benches of 10 m height and 10 m width so that the mine takes a regular and proper shope.

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

CHAPTER 3

GEOLOGY\& Reserves

3.0 GEOLOGY \& RESERVES:

3.1.1 Physiographic, Drâinage and Climate

The general slope of the fand of southern most part of the districted Mohindergarh is from south to north. The Krishnawatl River which passing through the district is originated from the hillocks of Sikar district of Rajasthan This is a seasonal river which remains dry except during rainy days. Physiographicaly the district consists of flat and level plain interrupted from place to place by clusters of sand dunes, isolated hillocks and rocky ridges. A few isolated rocky ridges elevated sharply from the plain occur in the southern mostl portion of the district.

The lease area is consists of Hilly terrain. The highest point in the lease area is recorded to be 375 mRL in east side near lease boundryand the lowest point recorded is 312 mRL bottom pit level.

The lease area does not have any water body. There are dry nalas in which water flows during rains for a short duration, otherwise they remain dry for the rest of the months. The rain water from these nalas drains either into local Johars or in agriculture fields.

3.1.2 Hydrogeology

The geological formation met with in the district arephyllites, mica schist and quartzite of Dethi system. Ground water occurs in alluvium and Aeolian sands and under lying jointed and fractured hard rock formations also form the aquifers, in alluvium, sands, silt, and hard bed rock, In-shallow aquifers zones, ground water occurs under water table conditions where as in the deeper zones, confined/semi - confined condition exist, hard rocks comprising of Aravalli group of rocks, Malani suite of volcanics and Alwar Quartzite's of Delhi system are water bearing but have yet not been explored thoroughly. The depth of water table varies from 80 to 100 m in the district. The water table is deeper in the south part of the district where as it is shallow in the north of the district.

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

However the water table is reported more than 100 mtrs in rocky terrain of southern Part of Nan gal Chaudhary Tehsil..

3.1.3 Climate \&Rainfall:

The climate of Mohindergarh district can be classified as tropical steppe, semi -atid and hot which is mainly dry with very hot summer and cold winter except during monscon season when moist air of oceanic origin penetrates into the district. There are four seasons in a year. The hot weather season starts from mid-March to last week of the June followed by the south west monsoon which lasts up to September. The transit ion period from September to October forms the post -monsoon season. The winter season storts late in November and remains up to first week of March. The normal annual rainfall of the district is 420 mm which is unevenly distributed over the area 22 days. The south west monsoon sets in from last week of June and withdraws in end of September, contributed about 85% of annual rainfall, July and August are the wet test months. Rest 15% rainfall is received during non-monsoon period in the wake of western disturbances and thunder storms. Generally rainfall in the district increases from southwest to northeast.

Normal Annual Rainfall: 420 mm
Normalmonsoon Rainfall: 355 mm
Temperature
Mean Maximum: 410C (May \& June)
Normal Rain days: 22
(Source: Meteorological Department, Govt. of Haryana)

3.2 REGIONAL GEOLOGY OF THE AREA

Regionally the area belongs to the Alwar Sertes of Delhi Super Group, The regional stratigraphic sequence in Mohindergarh District is as follows:

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

| Ajabgarh
 series | Biotite-schist, phyllites, quartzite and impure biotitic
 limestones and calciphyres. | |
| :--- | :--- | :--- | :--- |
| Delhi
 System | Alwar series | Quartzites, arkose, conglomerates and mica-schists with
 bedded lavas. |
| | Rialo series | Rialo limestone and Rialo marble, quartzit |

Out of the above sequence of formations, Dolomit\&quartzite belongs to Alwar series of Delhi system are exposed in the area under reference.

3.3 LOCAI GEOLOGY:

3.3 The area was surveyed geologically. A geological plan and sections are prepared as plate No. 3 The description of different formation found in the area have been as under

Soil
Quartzite (Road Metal \& Masonry stone) Dolomite

The foot hill of quartzite and the nallahs are covered by blown soil. The thickness varies from a few centimeters to about 2 mtr . in the lease area.
(i) Quartzite (Road Metal\& Masonry Stone)

It is light gray to white in colour metamorphosed hard and fine grained in nature. The extreme western part all along lease boundary comprises of quartzites. The average length is 800 mtrs. And average width is 50 mtrs . The strike of quartzite's formation varies from $\mathrm{N} 25-30^{\circ} \mathrm{E}$ to $525-30^{\circ} \mathrm{w}$ dip 85 to 89° due west. The quartzite in the area is highly jointed and can be used as a very good building material. However at present there is no mining of quartzites.
(ii) Low grade Dolomite with thin quartzite intercalations is out cropped all along the eastern edge of the lease boundry. The average length 800 mtrs , and average width is 40 mtrs. The general strike of the formation is $\mathrm{N} 25^{\circ}-30^{\circ} \mathrm{ES} 25^{\circ} \cdot 30^{\circ} \mathrm{W}$ with dip $85-89^{\circ}$ due west.

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

STRUCTURE

The lease area is consists of Hilly terrain. The highest point in the lease area is recorded 375 mRL in east side and the lowest point recorded is 312 mRL bottom pit level. The general strike of quartzite \& dolomite is $\mathrm{N} 25^{\circ}-30^{\circ} \mathrm{E}$ to $525^{\circ}-30^{\circ} \mathrm{W}$ with dips of 85° to 89° due wests.

3.4 (a) CHEMICAL CHARACTERISTICS OF DOLOMITE

S. No.	Chemical Characteristics	Percentage Composition
1	SiO_{2}	2.60
2	$\mathrm{AL}_{2} \mathrm{O}_{3}$	0.50
3	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	0.20
4	CaO	29.63
5	MgO	21.00
6	LOI	43.40

3.4 GEOLOGICAL SECTIONS

5 nos of geological Cross sections ($A-A^{\prime}$ to $E E^{\prime \prime}$) have been drawn across the lease area as shown in plate in plate no. 3.

3.5 DETAILS OF EXPLORATION

3.5.1 The area is prominently marked by outcrops of dolomite as well as quartzite as seen in workingpits. Moreover, the area has undergone dolomite mining in the past; therefore, no fresh exploration to prove the geological reserves was required as a numbet of pits of dolomite mining have prominently exposed the formation.
Detailed surface geological mapping was carried out in order to evolve an ovefall picture in respect of reserves and grade of Building stone. Mapping on $1: 1000$ scales was done for the entire proposed area comprising of 4.8 hectares. Geological cross sections on 1:1000 scales are drawn to ascertain the nature of the deposit. No Furtherexploration to prove the reserves of dolomite as well as Quartzite (Road Metal \& masonry stone) is needed as booth the minerals are very well exposed and continued in the working pits to ascertain the reserves further downwards.

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine $(4.80$ ha $)$. District Mohindergarh (Haryana)

3.6 RESERVES (Estimated in last approved mining plan)

Methods of estimation of reserves:-
For estimating the reserve of dolomite as well as associated Minor Minerals the following Parameters were considered are as follows:

1. The reserves are calculated on the basis of established width, thickness and strike length/influence of the mineralized formation in the area where good pits are available such area in put under proved category.
2. The entire reserves of dolomite are put under proved category up to 20 mbelow valley level, Next 10 meters are considered as probable and further 10 meters as possible.
3. The bulk density of dolomite \& RM and MS is considered 2.5
4. The section wise reserves for dolomite and Road metal \& masonry stone are summarized here below: -

TABLE SHOWING COMBINED RESERVES OF DOLOMITE \& ASSOCIATED MINERLS

ection line	Cross sectional area M^{2}	Influence length (m)	Bulk Density	Proved MT	Probable MT	Possible MT
$A A^{\prime}$	4090	115	2.5	1175875	787750	
	2740	115				
	2740	115				787750
$8 B^{3}$	3250	115	2.5	934375	546250	
	1900	115				
	1900	115				546250
				2110250	1334000	1334000
Total Reserves				47,78,250 MT		

3.7.0 Methods of estimation of reserves in MinIng Scheme:-

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

Calculation/ estimation of up dated geological reserves based on the fresh geological mapping. 5 Nos of geological cross -Section are drawn and section wise reserves are calculated. For estimating the reserve of dolomite as well as associated Minor Minerals the following Parameters are considered are as follows:
i) The reserves are calculated on the basis of established width, thickness and strike length/influence of the mineralized formation in the area where good pits ate avalable such area in put under proved category. The entire reserves of dolomite and stone up to and above 315 mRL are put under proved category. Next 30 metersi.e.between 315 and 285 mRL are considered as probable and further 20 meters i.e. between 285 mRL and 270 mRL are considered as possible.
ii) The bulk density of dolomite \& RM and MS is considered 2.5
iii) The section wise reserves for dolomite and Road metal \& masonry stone are summarized here below: - ($C A=$ Cross Section Area,$B D=$ Bulk density)

Reserve of Stone

Section line	cross sectional area Stone	Influence Lengith Stone	B.D. Stone	Proved stone in MT	Probable stone MT	Possible stone NT
$A-A^{\prime}$	738	118	2.5	217710	0	0
	890	118	2.5	0	262550	0
	370	118	2.5	0	0	109150
B-B'	552	95	2.5	131100	0	0
	562	95	2.5	0	133475	0
	226	95	2.5	0	0	53675
$\mathrm{C}-\mathrm{C}^{\circ}$	2242	95	2.5	532475	0	d
	2422	95	2.5	0	575225	c
	1112	95	2.5	0	0	264100
D-D	630	85	2.5	133875	0	0
	1114	85	2.5	0	236725	0
	504	85	2.5	0		1107100
E-E'	1185	55	2.5	162937	0	d

Mining Scheme and Progressive Mine Closure plän for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

	700	55	2.5	0	96250	0
+	270	55	2.5	0	0	37125
Total				1178097	1304225	571150
				Total Geological reserves $=3053472 \mathrm{MT}$		

Geological Reserve of Dolomite

Section	Cross sectional area Dolomite	influence Length dolomite	8.0 . Dolomite	Proved dolomite in MT	Probable Dolomite MT	Possible Dolomite MT
A-A ${ }^{\prime \prime}$	840	168	2.5	352800	0	0
	1270	168	2.5	0.	533400	0
	710	168	2.5	0	0	298200
$8-\mathrm{B}^{i}$	1196	95	2.5	284050	0	0
	1688	95	2.5	0	400900	0
	898	95	2.5	0	0	213275
C-C	1272	95	2.5	302100	0	0
	2388	95	2.5	0	567150	0
	1292	95	2.5	\bigcirc	0	306850
D-D'	920	35	2.5	195500	0	0
	1658	85	2.5	0	352325	
	880	85	2.5	0	0	187000
E-E E^{\prime}	538	78	2.5	104910	0	0
	2140	78	2.5	0	417300	0
	1150	78	2.5	0	0	224250
				1239360	2271075	1229575
				Total Geological Reserves=4740010 MT		

Total Geological Reserves of stone and dolomite $=3053472+4740010=7793482 \mathrm{MT}$
About 60% of the total reserves of dolomite which is about 2844006 MT is of very poor grade due to intercalations of quartzite \& is considered as stone. Rest 40% dolomite which comes out t $18,96,004 \mathrm{MT}$ will be of good grade. Total Blocked reserves of dolomite 7.5 m area= $=819500 \mathrm{MT}$ Total Blocked reserves of stone in 7.5 m area $=752600 \mathrm{MT}$;Dolomite blocked In making safe benches $=2461610 \mathrm{MT}(60 \%$ building stone/poor grade i.e. 1476966 MT and about 40% good grade about 984644 MT. Stone blocked in making safe benches=1347872 MT

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

Total Blocked Dolomite $=3281110$ MT;Total Stone blocked $=2100472$ MT
Mineable Balance reserves of Dolomite $=583560 \mathrm{MT}(40 \%$ of 1458900 MT)
Mineable reserves of stone $=953000+875340 \mathrm{MT}$ (low grade dolomite) $=18,28,340$
Total Mineable Mineral $=583560+18,28,340=24,11,900 \mathrm{MT}$
Life of the mine $=@ 325000 \mathrm{MT} /$ year $=7.5$ years or say 8 years.

3.7.1 Categorization of reserves as per UNFC codes:

Resources	Geologital Mr	7.5 m barrier MT	Other barrier MT(End benches)	Infrastructure barrier MT	Mineable MT
111	2417457			Nil	2411900
121	3575300	1572100	3809482	NiI	
122	1800725			Nil	
211	1572100	Nil	Nil	Ni	Nil
221	3809482	Nis	Ni	Ni	Nil
222	Nil	Ni	NiH	Nil	Nil
331	Nil	Nil	Nil	Nil	Nil
332	Nif	Nil	Nil	Nil	Nil
333	Nil	Nil	NiI	Nil	Nil
334	Nil	Ni	Nil	Nil	Ni

C. Details of UNFC classification

UNFC is a three digit code based system. The economic viability axis is representing flye first digit, the feasibility axis the second digit and the geological axis the third digit. Each digit provided Codes 1, 2 and 3 in decreasing order. The highest category of resources under UNFC system has code (111) and for lowest category the code is (334).
Code (111): This code is provided for the economically mineable part of the measured mineral resources (proved category reserves).
Code (121): This code is provided for the economically mineable part of the indicated mineral resources (probable category reserves).
Code (211): The part of the measured mineral resources (proved category), which as per feasibility study has not found economically mineable. The reserves blocked in 7.5 m buffer zone and 45 m from permanent structure.
Code (222): The part of the indicated mineral resources (probable category) which as per feasibility study has not been found economically mineable. The reserves blocked in 7.5 m buffer zone and 45 m from permanent structure.

Code (333): Tonnage, Grade and mineral contents are to be estimated with low level of confidence and resources are also inferred from geological reserves.

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

Depletion of reserves since the operation of mine, in last 5 years is as under :

3.7 Grade and use Minerai:-

Grade of dolomite is of average quality and the Chemical Composition of Dolomite is as follows:-

A typical Dolomite contains $\mathrm{CaO}-29.6 \% \mathrm{MgO} 21 \% \mathrm{LOI}-44 \%, \mathrm{SiO}_{x}-3.7 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Fe}_{2} \mathrm{O}_{3}-1.4 \%$
RM \& MS/ Building stone available in the area are useful as road metal and masonry stone. This stone is having very good strength. The raw/lumps stone of the area is crushed in the nearby stone crushers. This material is finally used as road metal and for RCC material in building industry.

3.8.1 Use of Dolomite:-

Dolomite is double carbonating of calcium and magnesium (CaMg) Co3 containing 54.25%, $\mathrm{CaCo3}$ and $45.65 \% \mathrm{MgCo} 3$.

A typical Dolomite contains $\mathrm{CaO}-29.6 \% \mathrm{MgO} 21 \% \mathrm{LOI}-44 \%, \mathrm{SiO}_{2}-3.7 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Fe}_{2} \mathrm{O}_{3}-1.4 \%$
The hardness varies between 3.5 to 4 and specific gravity 2.8 to 2.9 . Color gray white, medium fine grained.
ning Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

3.8.2 Specification of Dolomite:-

Refractory	$\mathrm{Sio} 23 \%$ Maximum
	$\mathrm{MgO} 20 \%$ Maximum
	$\mathrm{CaO}+\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{MgO} 20 \%$

Glass Industry $<0.2 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{MgO} 20 \%$
As a flux in steel $\quad\{(\mathrm{CaO}+\mathrm{Mgo})+90 \%$
\&Feero Alloys $\left(\mathrm{SiO} 2+\mathrm{Al}_{2} \mathrm{O}_{3}\right)<5 \%$

Dolomite is mainly used for manufacturing of refractories and as a flux in iron and steel industry, also used for high magnesia lime and used as soil conditioner to neutralise the doidic soils. Dolomite Can be used in manufacturing of papers, glass work, as a chemicals and fertilizers. Also used for making animal feed for animal.

Most of the dolomite produced in distt. Mohindergrah is crushed and grinded by the local industries and sent to various industries. Also dolomite being white coloured, it can be used for making for mossaic tiles and flooring. The present dolomite deposit meets out the specifications for various industries and can be used accordingly.

Grade and use of $\& M S$ Miner Minerals
RA \& MS/Building stone available in the area are usefut as road metal and masonry stone. This stone is having very good strength. The raw/tumps stone of the area is crushed in the nearby stone crushers. This material is finally used as road metal and for RCC material in building industry.
3.9 Year wise exploration proposed to be carried out during the ensuing 5 years period.

No further exploration is required as the mineral is very well exposed laterally as well as depth wise. No deviation of mineral is noticed. Reserves are sufficient to cater to the need of the proponent. Therefore no further exploration is needed/proposed:

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

CHPATER 4

MINING

The lease area is being worked since June 2016 i.e. after getting the environmental clearance from designated authority. Further, it is proposed to continue systematic and scientific mining for excavation of dolomite and road metal and masonry stone/building stone during the next plan period of Mining Scheme. It was proposed in the last mining pian to make benches of $6 \mathrm{~m} \times 6 \mathrm{~m}$ but keeping in view the type of formation and boom height of Machines benches of $10 \times 10 \mathrm{~m}$ are proposed to be made. During all these years only dolomite production was made and no building stone was is reported to mined.

At present fully mechanized method of mining of Dolomite by deploying heavy Earth moving machines and deep hole drilling and blasting by forming benches of $10 \mathrm{~m} \times 10 \mathrm{~m}$ from top downward . Now It proposed to mine 325000 MT (250000 MT stone +75000 MT dolomite) per annurn or 1083 MT/day. The production targets for dolomite as proposed the approved mining plan were followed. Necessary permission for mechanized mining under MMR'1961from competent Authority has already obtained. The same will continue in the next five year plan also. The formation of benches shall be continued up to the ultimate pit limit after the drilling and blasting of the bench. The boulders shall be sized with the help of rock breaker, excavated and loaded in the trucks/dumpers by hydraulic Excavators. The mining operations will continue as were done during the last five years. It will comprise of following activities for excavation of mineral as were proposed in the approved mining plan detailed as under.
a) Drilling of "Down-the-Hole" holes as per specified pattern.
b) Blasting of holes

1) Primary Blasting
II) Secondary Blasting
c) Loading of blasted material by deploying hydrajlic excavators
d) Transportation of material to Crusher

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha$)$. District Mohindergarh (Haryana)

Drilling and blasting operations required to blast / dislodge the host rock as well as stone will be undertaken with the help of 110 mm dia crawler mounted drill machine with following driling and blasting pattern :-

Sr.no	Particulars	Dimensions with unit
1	Bench Height and width	$10 \mathrm{~m} \times 10 \mathrm{~m}$
2	Working Bench Width	15-20m
3	Overall Ulimate pit slope	49°
4	Sench Alignment and bench slope	Parallel to each other; 80°
5	Face length	All along the strike length
6	Depth of pit (Below General Ground)	100 m at the end of $5^{\text {th }}$ year
7	Blast hole diameter.	$100-110 \mathrm{~mm}$
8	Inclination of blast hole	Vertical
9	Width of Haul Road	12 m
10	Gradient of haul Road	1 in 16

Our experts (Mining Engineer, Geologist and Surveyor) visited the Donkhera dolomite Stone Mine lease area during March-2022. A fresh survey was undertaken by deploying total station to assess the working mine bench levels for preparation of the mining scheme and plans/maps for the next five years.

The highest level in the lease area is 375 mRL near east lease boundry and the lowest is 312 mRL at the end of plan period in the working area.

It is proposed to continue the mechanized opencast mining method for exploitation of the mineral. Systematic \& scientific mining shall be undertaken by drilling down the holes,

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)
conducting blasting with the use of high explosives loading the material with excavators and transportation with dumpers.

Present breakup of land use in the lease area

Sr.no	Details	Area in hectares
1	Pits	3.88
2	Road	0.0
3	Infrastructure	0
4	Dump	0
5	Plantation	0
6	Reclamation plantation	0
7	Unused	0.92
	Total	4.80

4.1 Pit Design Parameters:-

In view of the geological formation of the deposit and available mineral reserves and development of pit/mine it is proposed to continue the mine by mechanized open cast method using shovel and dumper combination. The planned production is proposed $3,25,000 \mathrm{MT} /$ year by the following mentioned parameters so that not only the production is achieved but mine also takes a proper / regular shape and size .

It is proposed to work the mine by Hydraulic Shovel and 25 tones dumpers with following mine design parameters:

Sr.no	Particulars	
1	Final Bench Height and width	$10 \mathrm{mx10m}$
2	Working Bench Width	$15-20 \mathrm{~m}$

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha), District Mohindergarh (Haryana)

3	Overall ulitimate pit slope	49°
4	Bench Alignment and bench slope	Parallel to each other; 80°
5	Face length	Alf along the strike length
6	Depth of pit (Below General Ground)s	80 m at the end of $5^{\text {th }}$ year
7	Blast hole diameter	$100-110 \mathrm{~mm}$
8	Inclination of blast hole	Vertical
9	Width of Haul Road	12m
10	Gradient of haul Road	1 in 16

The rate of production is proposed $3,25,000 \mathrm{MT} /$ year (max) by the following mentioned parameters.

1) Ultimate Pit slope
ii) Bench Height and width
III) Face length
IV) Bench Alignment
v) Direction of face advance
VI) Depth of pit.

4.1.i Ultimate pit depth \& slope:

Dolomite \&Stone(Quartzite rock) is hard and compact: Qnce the pit reaches the yitimate limit which is proposed 220 MRL , it is necessary that it does not start collapsing due to weathering and other effects. This can be achieved by planning ultimate pit slope at a

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)
maximum of 50 degree to avoid collapse of the pit sides. There is no overburden except a thin sol cover. Entire mineral produced will be usefut.

4.1.ii Bench height and width

Since the dolomite \&quartzite is hard and compact, the same parameters are considered for making benches. In view of mechanized method of mining to be adopted, the bench height is proposed 10.0 mtrsm trs and bench width 10 mtrs . with intermediate safety berm of 15 m . Formation of benches in this manner will resuit in an overall safe slope of 49° or less in the uftimate pit position.

4.1.iii Face length :-

The following parameters have been followed to arrive at the face length to facilitate the required production of $3,25,000 \mathrm{MT}$ mineral

The optimum face length available along the strike length is sufficient to cater to the optimum production required. The face length has been attained during the working of last five years.

4.1. iv Bench alignment: -

The benches are gradually aligned to give a regular shape. In general the benches will advance in all directions parallel to each other. Since geological formation in the area is of simple nature, there will not be difficulty in maintaining the proposed bench alignment.

4.1.V Depth of pit:

Mining is permissible up to the level 2 meter above the ground water table of the area. The general ground water table is reported to be at the depth 260 mRL .

The reserves up to 80 m below the valley level are proposed to be worked. The surface level reserves will not be depleted during the next plan period. The workings will continue/start

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)
at 360 MRL and will reach up to 280 MRL at the end of 5 th year as detalled in the year wise plans Plate no.5-9 and Sections plate no. 10 .

4.3 Development during the next five years:

The construction of garland parapet, wire fencing etc, shall be provided year wise and will be shifted along with the development of pit. A mineral, soil and dump stack yard (0.40 hectares) area ts ear marked. Soll stack yard is aiready developed to stack the soll generated during the mining and shall be used for plantation purpose.

For making stacking yard, ground is almost level. A boundary wall around soil stack yard shall be made. The position of fencing, drain, toe wall, dump yard size and soil stack yard size, plantation etc are shown in year wise Plans (plate no. 5 to 9) for next 5 years.

Working area occupied at the end of 5th year is about 4.18 ha.

Approach road from mine to mineral stack yard, soil stack yard and dump yard and site services has already been completed in previous plan period.

4.4.1 Year wise Production \& Development for the next five years

It is proposed to work the mine from top down ward. Some of the benches are proposed to align them properly so that the pit takes a proper shape in all directions. The position of benches and the production from individual benches year wise is shown in plate nos 5-9 and is as under:-

Sr.No	Year	Bench Level mRL	Production dolomite	Production stone	Production MT
1	$6^{\text {th }}$	352,333,310,300,290	75000	250000	3,25,000
2	$7{ }^{\text {7\% }}$	310,300,290	75000	250000	3,25,000
3	$8^{\text {\% }}$	310,300,290,280	75000	250000	3,25,000
4	$9^{\text {b }}$	310,300,290,280\&270	75000	250000	3,25, 000
5	$10^{-8{ }^{\text {m }}}$	$310,300,290,280,270 \& 260$	79000	250000	3,25,000

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha), District Mohindergarh (Haryana)

During the mining scheme period i.e five years, the benches will be advanced as shown in plat No. 5-9 and sections plate no. 10 to achieve the targeted production.

4.4.2 Proposed rate of production when the mine fully developed

The proposed rate of production of $3,25,000 \mathrm{MT} /$ year could not be achieved due to reasons beyond the control of lessee. It is proposed to continue mining as detailed above during next five years of mining scheme.

4.4.3 Mine able Reserves and Anticipated Life of the mines

Total Geological Reserves of stone and dolomite $=3053472+4740010=7793482$ MT
About 60% of the total reserves of dolomite which is about 2844006 MT is of very poor grade due to intercalations of quartzite \& is considered as stone: Rest 40% dolomite which comes out about $\mathbf{1 8 9 6 0 0 4}$ MT will be of good grade.

Total Blocked reserves of dolomite 7.5 m area $=819500 \mathrm{MT}$;Total Blocked reserves of stone in 7.5 m area $=752600 \mathrm{MT}$

Dolomite blocked In making safe benches=2461610 MT (60% building stone/poor grade i.e. 1476966 MT and about 40% good grade about 984644 MT.Stone blocked in making safe benches=1347872 MT Total Blocked Dolomite $=3281110 \mathrm{MT}$;Total Stone blocked $=2100472$ MT Mineable Balance reserves of Dolomite $=583560 \mathrm{MT}(40 \%$ of 1458900 MT$)$ Mineable reserves of stone $=953000+875340 \mathrm{MT}$ (fow grade dolomite) $=18,28,340$ Total Mineable Mineral $=583560+18,28,340=24,11,900 \mathrm{MT}$ Life of the mine $=@ 325000 \mathrm{MT} /$ year $=7.5$ years or say 8 years.

4.4.4 Proposed Method of Mining and precautions during mining

The operations were designed to be carried out by mechanized open cast mining method, The entire mining operations proposed were mechanized. Apart of mining, the loading and transportation up to stack yard were proposed in the original Mining plan. The same will be continued mechanically. it is proposed to loace in the trucks/dumpers directly to the destinations and mineral is not usually put in in this stack yard to avoid the double handing. The same practice will continue during the next plan period also. In the present operation the bench height shall be 10 mtrs. Each bench will advance one by one. While

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha) District Mohindergarh (Haryana)
carrying out the mining operations in accordance with the above provision the overall pit slope shall be maintained the 49° the mineral bearing rocks being hard and compact.
(Refer Chapter 4 of last mining plan Details of Mining Method, working days, per day proposed production, Requirement of excavator- dupers, drilling machine\$, blasting method etc and other allied machineries are elaborated in the last mining plan, The same procedure is proposed to be followed to do scientific mining of mineral.

As per MMR 1961, following precautions shall be undertaken during operations of HEMM.

Shovel/ excavator: -

1. Excavators will be provided with efficient warning devices, front \& rear lights and efficient brakes.
2. Excavator will be under the charge of a competent person authorized in writing by the manager designated as operator.
3. No person other than the operator or his helper if any will ride on the excavator or even enter the excavator's cabin.
4. No person will be permitted to ride in the bucket of a Shovel/ excavator.
5. No inflammable material will be stored in the excavator housing or cab.
6. Shovel/ excavator dippers will be lowered to the ground during greasing operation.
7. When a Shovel/ excavator is to be moved from one point to another its boom shall be kept in strict alignment with difection of travel while the bucket/dipper shall be held m above the ground.
8. No Shovel/ excavator will be operated in the position where any part of the machines, suspended loads or lines are brought cloper than 3 m to the exposed high voltage line.
9. Every movement of a Shovel/ excavator shall be preceded by warning signals.
10. When not in use, the Shovel/ excavator will be moved to and stood on stable ground, the bucket shall be kept resting on stable ground and will never be left hanging.

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)
11. The Shovel/ excavator will be so spaced that there will be no danger of accident from flying \& falling objects.
12. Safety appliances, booms will be examined thoroughly once in a year.
13. Emergency switches, safety limit switches will be examined and tested once in four months.
14. All brakes will be tested for their operation worthiness once in a week.
15. The rollowing signboards will be carried in and around the machine: -
(i)
(ii) "Lubricating Prohibited While the Machine in Running Condition".
"Warning- Do Not Enter The WorkingRange Of The Machine".

Duties of Shovel/ excavator operator: -

1. At the commencement of every shift the operator will personally inspect and test the machine, paying special attention to the following details: -
(i) The brakes and every warning device are in working order.
(ii) Lights are in working order.
(iii) The operator will neither take out the machine for work nor will he work the machine unless he is satisfied that it is mechanically shown and in efficient working order.
(iv)

The operator will maintained a record of every inspection made in a bond paged book, kept for the purpose and shall sign every entry made there in.
(v)

The operator will keep the cab window clean so as to ensure clear vision at all times.
(vi) The operator will not operate the machine when persons are in such proximity as to be endangered.
(vii) Before leaving the machine, the operator will lower the bucket to the ground.
(viii) The operator will not leave his machine during the shift. Whenever, he finishes his work, he will hand over the machine to his relief or lock the excavators cab.
(ix) The operator will not allow any unauthorized person to ride on the machine.

Dumper: -

1. Every dumper will be provided with efficient brakes.
2. Efficient audible warning devices will be provided with the dumpers.
3. The dumper, if required to work after daylight hours, efficient headlights and taillights will be used.
4. Every dumper will be under the charge of a competent person, authorized in writing by the manager.
5. No person, other than the driver or his helper, if any, will ride on a dumper.
6. No person will be permitted to ride in the running board of a dumper.
7. The loaded dumpers will not be reversed on gradients.
8. Sufficient stop blocks will be provided at every tipping point and these will be used on every occasion when material is dumped.
9. Standard traffic rules shall be adopted and followed during movement of all dumpers, They shall be prominently displayed at relevant places in the opencast workings and haulm roads.
10. When not in use, every dumper will be moved to and stood on proper parking places.
11. No person will be permitted to work on a chassis of a dumper with the bddy in rest position, until after the dumper body has beensecurely blocked in position.
12. The mechanical wised mechanism will not be depended upon to whole the body of a dumper in a rest position.
13. No unauthorized person will be permitted to enter or remain many turning points.
14. While inflating tyres, suitable protective cages shall be used.
15. Tyres will never be inflated by sitting either in the front or on the top of the same.

32
(a) Service Brake test: - The brake will be tested on a specified gradient and speed when the vehicie is fully ioaded. The venicle should stop within the specificd distance when the brake is applied.
(b) Parking brake test: - The parking brake shall be capable to hoid the vehicle when it is fully loaded and placed at the maximum gradient. Maximum gradient of the roadway which is permitted only for a period of at least 10 minutes.
(c) A record of such test will be maintained in a bound paged book and will be signed by the competent person carrying out the test. These records will be countered signed by the engineer and manager.
(d) All vehicles shall be tested and examined once at least in every 6 months.
(e) A notice shall be displayed outside every vehicle that "No Unauthorized Travelling allowed".

Duties of dumper operators: -

l. At the commencement of every shift, the operator shall personally inspect and test the machine, paying special attention to the following details: -
(i) Tyre pressure, brakes, horn and the Lights are in working order.
(ii) The driver will neither take out the machine for work nor will he work the machine unless he is satisfied that it is mechanically shown and in efficient working order.
(iii) The driver will maintained a record of every inspection made in a bound paged book, kept for the purpose and shall sign every entry made there in.
(iv) The driver will keep the cab window clean so to ensure clear vision at all times,
(v) Driver will ensure that the gear is in neutral position before stopping the engine. He will park the vehicle: -
(a) In reverse gear, on level roads and down gradients.

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

S. No.	Av Length $(\mathrm{in} \mathrm{m})$	Av Width(in m)	Max Depth (in m)
1.	515	80	130 m from ground level

Proposed ultimate pit angle is 49° as the rock is hard $\&$ compact enough to make the slope stable. Excavated part will be developed as water reservoir, which will recharge the ground water table. Excavated part will be fenced and secured to stop the inadvertent entry. Accumulated rainwater will also be useful to supply the drinking water to the nearby residents \& for agricultural purposes.

The detailed mining plan was prepared with a project life of 7 Years. The mining is conceived as one tong open mine pit. The opencast mining method has been considered feasible for exploitation of the deposit.

The aspects of geotechnical behavior of quarry rocks have also been taken into consideration to ascertain the suitable mine pit slopes. The major rock of the quarry is quartzite with clay intercalations and could be classified in the category of harder rock strata. The conceptualized mine pits are based on appropriate overall slope angle broadly confirming to prevailing norms of mine safety department for harder rock strata. The broad details are as follows -

- Overall Slope - 49 degree
- Bench Height -10 meters
- Bench Width - Operating width $15-20 \mathrm{~m}$ which will finally reduce to $\mathbf{1 0}$ meters.
- Individual Bench Slope-80 degree

Land use at the the start and at the end of mining will be as uder:

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

4.	Backfilled area	0		0	
5.	Area under plantation	0.59	0	0	0.5
6.	Reclamation plantation	0	0	1.41	
7.	Water body	0	0	2.80	
8.	Undisturbed	0.30	0	0	
	Total	4.80	4.80	4.8	

4.5.1 Drilling

It is proposed to use drill machines of $100 \mathrm{~mm} \cdot 110 \mathrm{~mm}$ dia. As per the production target of about 1083 (433 $\mathrm{M}^{3} \mathrm{per}$ day)
a) Tonnage of mineral excavated per hole $=\quad 9 \mathrm{~m} \times 4 \mathrm{~m} \times 5 \mathrm{~m} \times 2.5=450 \mathrm{~T}$
b) No. of holes required per day=
c) Total meter age of drilling/day=
$1083 \mathrm{~T} / 450 \mathrm{~T}=2.40$ or say 3 Nos
d) Capacity of each drill machine=

10 m per hour or 80 m per shift or 160 m per day
e) Hence no of drill machines $=\quad$ Drilling required per day/capacity of drilling per day $=28.5 \mathrm{~m}$. Therefore at least 1 drill machines of higher drilling rate with availability of 75% of time as well and 80% utilization hours will be required

The details of machinery and performance will be as under

Sr.no	Details	
1	A machine can drill total of meters in a shift	$100-110 \mathrm{~m}$
2	Total drill meters required per day	28.5 m
3	Total no of machines required per day	1
4	Stand by drill machine	1
5	Total no of machines required	2

Mining Stheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

4.5.2 Loading Equipment, Haulage and Other Mining Machinery

The productivity of excavator is decided based on the following consideration i.e. two shifts per day working and 300 days in a year

	Excavator Category	Capacity
A	Diesel Hydrautic shovel	2.8 to 3.5 m
B	Fill Factor	85%
Tonnage Factor	Avallability of excavator	2.50
E	Utilization of excavator	80%

The requirement of HEMM i.e. shovels, dumpers, drill machines and dozers have been estimated based on the adopted productivity norms and workload determined by the calendar plan. For calculation of number of dumpers, it is the lead from the mine to the destination which will determine the no of dumpers. Based on calculation, it is established that total 10 Nos of 25 MT capacity dumpers would be sufficient to execute the rated production at an average lead of 10 Km . However, including the standby equipment, țotal requirement of dumper works out to be 12 Nos. of 25 MT capacity.

The productivity of excavator is decided based on the following consideration i.e. two shifts per day working and 300 days in a year

	Excavator Category	Capacity
A	Diesel Hydraulic shovel	
B	Fill Factor	85\%
C	Tonnage Factor	2.50
D	Availability of extavator	80\%
E	Utilization of excavator	80\%

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha), District Mohindergarh (Haryana)

The requirement of HEMM i.e. shovel, dumpers, drill machines and dozers have been estimated based on the adopted productivity norms and workload determined by the caidndar plan. For calculation of number of dumpers, it is the lead from the mine to the destination which will determine the no of dumpers. Based on calculation, it is established that total 10 Nos of 25 MT capacity dumpers would be sufficient to execute the rated productionat an average lead of 10 Km . However, including the standby equipment, total requirement of dumper works out to be 12 Nos. of 25 MT capacity.

Hauling Equipment:

For calculation of number of dumpers, it is the lead from the mine to the destination which will determine the no of dumpers. Based on calculations, it is estimated that total 10 Nos of 25 MT capacity dumpers would be sufficient to execute the rated production at an average lead of 10 km (one way with average speed of dumper 20 Kmph) However, including the standby equipment; total requirement of dumper works out to be 12 Nos. of 25 MT capacities.

Hydraulic Rock Breaker: To minimize the secondary blasting and to contain the accidents due to fly rocks, it was proposed to deploy Hydraulic rock breakers and Jaw breaker for breaking of big boudders generated consequently upon primary blasting, at working face site. The same arrangement will continue during the next five years.

Considering 1083 MT production per day it proposed to deploy 1 hydraulic shovel in conjunction with 10 no. of 25 T dumpers. In addition 1 back hoes Hydraulic excavators shall be used as rock breaker. Thus the total population of equipment required will be as under

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

5	Water sprinkler	10 KL	1	
6	Maintenance van 7	Tractor		1

Requirement of Diesel for operations of Heavy Earth Moving Machines and ancillary

 equipment:Quantity of Diesel / Energy fuel Consumption per day: -

S.No,	Equipment	Size	Nos	Total fuel consumtion in Itrs
1	Diesel hydraulic shovel	$3.5 \mathrm{cu} . \mathrm{m}$	1	200
2	Rear dumpers	25 T	10	200
3	Drill with compressor	110 mm	1	180
4	Water sprinkler	10 KL	1	65
5	Maintenance van		1	30
6	Tractor	50 hp	1	25
	Total			700

Any change in the proposed method of mining, drilling and b/asting and development of machinery, if so, give details.

The mining is undergoing with mechanized methods of miming and the same will be continued during the next 5 years. No other changes proposed for drilling and blasting.

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha), District Mohindergarh (Haryana)

CHAPTER 5
 BLASTING

5.1 Drilling and blasting Parameters:-

5.1 Blasting Parameters:-

For mining of building stone drilling and blasting is required. The job of drilling and blasting is of continues nature. Considering the time frame of mining and total requirement of material, the daily mineral production works out to be $12,000 \mathrm{MT}(4,000 \mathrm{cum})$ The above target will be utilized to frame the pattern and size of blast. The blasting parameters are described as below.

Regulation160. Blasters -

1. The preparation of charges and the charging and stemming of holes shall be carried out by or under the personal supervision of a competent person, in these regulations referred to as a "blaster". The blaster shall fire the shots himself.
2. No person shall be appointed to be a blaster unless he is the holder of Manager's, Foreman's Mate's or Blaster's certificate.
3. The manger shall fix, from time to time, the maximum number of shots that a blaster may fire in any one shift; and such number shall not unless the Regional Inspector by an order in writing and subject to such conditions as he may specify therein otherwise permits, exceed 80 in case they are fired electrically or by means of an igniter cord and 50 in other cases, and shall be based upon -

- the time normally require to prepare and fire a shot in accordance with the provisions of these regulations;
- the time required for that blaster to move between places where shots are fired;
- the assistance, if any, avaitable to him in the performance of his said duties; and
- any other duties assigned to him, whether statutory or otherwise :

Provided that the Director General of Mine Safety may, by an order in writing and subject to such conditions as he may specify, permit the manager to fix the maximum number of shots to be fired by a blaster differently from the limits specified in this sub-regulation.
4 The number of detonators issued to, and in the possession of, a blaster during his shift shall not exceed the maximum number of shots that he is permitted to fire under sub-regulation (5).

Regulation: 161, Shot firing tools -
1 Every blaster on duty shall be provided with -
a suitable electric lamp or torch;
b a tool, made entirely of wood, suitable for charging and stemming shot holes;
c a scraper made of brass or wood suitable for cleaning out shot holes;
d where fuses are used, a knife for cutting off fuses an, unless machine capped fuses are provided, also a pair of suitable crimpers for crimping detonators; and
e where detonators are used, a pricker made of wood or a non ferrous metal for priming cartridges.

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

2 No tool or appliance other than that provided as above shall be used by ablaster. Regulation 162 - Drilling, charging, stemming and firing of shot holes -

1 No drill shail be used for boring a shot hole unless it allows a clearance of at least 0.3 centimeter over the diameter of the cartridge of explosive which it is intended to use.
2 No shot hole shall be charged before it is thoroughly cleaned.
3 Before any shot hole is charged, the direction of the hole shail, where practicable, be distinctly marked on the roof or other convenient place.
4 No detonator shall be inserted into a priming cartridge until immediately before it is to be use. Detonators once inserted into a priming cartridge shall not be taken out.
Untess otherwise permitted by the Chief inspector by an order in writing and subject to such conditions as he may specify therein, the charge in any shot hole shall consist of one or more complete cartridges of the same diameter and the same type of explosive.
6 The blaster shall, to the best of his judgment, ensure that no charge in a shot hole is over. charged of under-charged, having regard to the task to be performed.
7 No shot hole shall be fired by a fuse less than 1.2 meters in length.
8 Every shot hole shall be stemmed with sufficient an suitable non-inflammable stemming so as to prevent the shot from blowing out. Only sand loosely filled in, or soft clay lightly pressed home, or a compact but not hard mixture of sand and clay or water shall be used as stemming.

9 In charging or stemming a shot hole, no metallic tool, scraper or rod shall be used; an no explosive shall be forcibly pressed into a hole of insufficient size.
10 No shot shall be fired except in a properly drilled, charged and stemmed shot hole.
12 All surplus explosives shall be removed from the vicinity of a shot hole before a light is brought near it for the purpose of lighting the fuse.
13 As far as practicable, a shot shall be fired by the same blaster who charged it.
14 In any mine in which explosives other than gunpowder are used, everyshot shall, if so required by the Regional inspector, be fired electrically.

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha) District Mohindergarh (Haryana)

15 No more than 10 holes shall be fired in one round unless they are fired electrically or by means of an igniter cord.

16 No shot hole shall be charged except those which are to be fired in that round; and all shot holes which have be charged shall be fired in one round.

17 Where a large number of shots has to be fired, a shot firing shall, as far as practicable, be carried out between shifts.

18 No person shall remove any stemming otherwise than by means of water or an approved device, or pull out nay detonator lead or remove any explosive fram any charged shot hole.

Regulation 163 Electric Shot firing.- Where shots are fired electrically, the following provisions shall have effect, namely :-

1
A No shot shall be fired except by means of a suitable shot firing apparatus; and the number of shots fired at any one time by the apparatus shall not exceed the number for which it is designed.

B Every electrical shot firing apparatus shall be so constructed and used that i it can only be operated by a removable handle or plug. This handle or plug shall not be placed in position until a shot is about to be fired and shall be removed as soon as a shot has-been fired; and
ii the firing circuit is made an broken either automatically or by means of a push-button switch.
c
(i) No apparatus shall be used which is defective; an every apparatus shall m once at least in every three months, be cleaned an thoroughly overhauled by a competent person.

2 No current from a signaling, lighting or power circuit shall be used for firing shots.
3 The blaster shall -
(a) retain the key of the firing apparatus in his possession throughout his shift:

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)
(b) use a well- insulated cable of sufficient length to permit him to take proper shelter, and in no case, shall this cable be less than 20 meters in length;
(c) Before coupling the cable to the firing apparatus, couple up the cable himself to the detonator leads;
(d) Take care to prevent the cable from coming into contact with any power or lighting cable or other electrical apparatus;
(e) Take adequate precautions to protect electrical conductors and apparatus from injury;
(f) Himself couple the cable to the firing apparatus; an before doing so, see that alf persons in the vicinity have taken proper shelter as provided under regulation 164; and
(g) After firing the shots and before entering the place of firing, disconnect the cable from the firing apparatus

Where more than one shot are to be fired at the same time:-
(a) care shall be taken that all connections are properly made;
(b) afl shots if fired belowground shall be connected in series;
(c) the circsit shall be tested either for electrical resistance or for continuity before connecting it to the firing apparatus. Such a test shall be made with an apparatus specifically designed for the purpose and after the provisions of regulation 164 have been complied with; and
(d) the cable to the shot-firing apparatus shall be connected last. Mohindergarh (Haryana)

CHAPTER 6
 mine drainage

6.1 GENERAL:

Open cast mining projects requires effective arrangements for drainage and provision of adequate dewatering capacity in the pits under mining, In the area under mining:water can reach the workings from surface drainage, rainwater and due to seepage through joints and fissures. Therefore, the problem can be solved by preventing drainage water from entering the pits on one hand and pumping out the percolated and direct rain water from the pits on the other hand. The general water table around the lease area is at about 100 m below the general ground level of 360 meters below ground and the same is going down yearly. As reported by lessee and the nearby villagers the water table is receding by about $\$-3$ meters annually. It is therefore estimated that the same may be about 110 m below the general ground level at the end of $5 y e a r s$. The project proponent shall ensure that the mining operations shall not intersect groundwater table and the mining operations should be restricted at least 3 m above the ground water table.

Regular monitoring of ground water level and quality shall be carried out in and pround the mine lease area. The monitoring shall be carried out as per the conditions of EC dated 27 . 06-2016.

6.2 Drainage Around and Within Mine:

The lease area is mainly sloping west, north and south direction. Mining shall be mainly below the general ground level with only one side of the plt having slope along hill and other side will remain open. Such situation do not warrant any water accumulation as natural drainage will be available from the other open side of the pit.

However, as the mine progresses and mining continue below the general ground level as envisaged during later part of lease period, the mining area will become a depression, which may warrant accumulation of water during rainy season. A scheme is proposed to prevent the accumulation of such water

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

1) Garland drainage as shown in the mine plan (Plate no 5-9)(Original mining plan) shall be made all round the pit to prevent the entry of surface/rain water inside the pits.
2) All the benches will be provided with mild inward slope to keep the benches in drained condition. Provision of sumps is provided as shown in Plate No S-9. The lowest bench shall be slightly sloped towards the sump so that the entire drain water goes to the sump.
3) The working faces will be advanced with a mitd upward gradient to facilitate the drainage. The water shall be gradually drained from the upper most bench to the lowest bench and then ultimately to the sump.
4) Similarly in the ultimate pit position, large sump will be provided at the pit bottom to accumulate drained water as well as direct rain water.
5) A few bore wells (4 Nos) are proposed to be drilled up to 150 m deep and 10 inches diameter are proposed to be drilled in the bottom most levels of the pit to facilitate the faster recharging of water table during the monsoon period when the water is accumulated in the mine. The locations of bore wells are shown in the progressive mine closure plan plate no.11. Necessary filters will be provided to stop the chacking of the bore wells. Specialized designs will be erected around the bores to stop the clogging due to silt and clay material in to the bore well.
6) Following measures shall be taken to prevent fall of side as per mine statute.

Provisions under MMR 1961 regarding Mine Workings (Slope angle, fall of sides, overhangs etc)
Regulation 106. Opencast workings In opencast workings, the following precautions shall be observed, namely:-
1
in alluvial soil, morum gravel, clay, debris or other similar ground -
(a)
(i) the sides shall be sloped at an angle of safety not exceeding 45 degrees from the horizontal or such other angle as the Regional Inspector may permit by an order in writing and subject to such conditions as he may specify therein; or
(ii) the sides shall be kept benched and the height of any bench shall not exceed 10.0 mtrs meters and the breadth thereof shall not be less than the height:

Provided that the Regional Inspector may, by an order In writing and subject to such conditions as he may specify therein, exempt from the operation of this clause any working in the case of which special difficulties exist, which in his opinion make compliance with the provisions thereof not reasonably practicable; and
(2)
(a) Where 'float' or other similar deposit is worked by manual means on a sloping face, the face shall be benched and the sides shall be sloped at an angle of not more than 60 degrees from the horizontal. The height of any bench shatl not exceed six meters and the breadth thereof shall not be less than the height: Provided that where the ore-body konsists of comparatively hard and compact rock, the Regional inspector may, by an order in writing an subject to such conditions as he may specify therein, permit the height of the bench to be increased up to 7.5 meters while its width is not less than six metres: Provided further that in case of a mine or part where special difficulties exist, the Chief Inspector may, by an order in writing an subject to such conditions as he may specify therein, relax the provisions of this sub-regulation.
(b) Where in any mine or part it is proposed to work by a system of deep-hole blasting and/or with the help of heavy machinery for its digging, excavation and removal in suct manner as would not permit of compliance with the requirement of sub-regulation (1) the owner, agent or manager shall, not less than 60days before starting such work, give notice in writing of the method of working to the Chief Inspector and the Regional Inspector; and no such work shall be commenced or carried out except in accordance with such conditions as the Chief Inspector may specify by an order in writing. Every such notice shall be induplicate, and shall glve the details of the method of worlowincluding the precautions that are proposed to be taken against the anger from fatls ofides and material. In an excavation in any hard and compact ground or in prospecting trenches or pits, the sides shall be adequately benched, slopped or secured so as to prevent danger from fall of sides.

No tree, loose stone or debris shall unless otherwise permitted in writing by the Chief inspector be allowed to remain within a distance of three metres from the edge or side of the excavation,

5
No person shall undercut any face or side or cause or permit such undercutting as to cause any overhanging.
6.3

DEWATERING:

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

Since the depth of mining proposed is below the valley level and water table is about 100 m below the general ground surface, there will be no chance of encountering the ground water table during the mining operations. Hence normal-pumping operations will be required during the monsoon season only. The water accumulates within the pits will be due to direct rainfall over the pit and seepage from adjolning areas, if any. No dewatering will be done except in extreme conditions. Water accumulated if any in the pit will be allowed to recharge the water table through recharging wells. Further if need arises for dewatering in the mine it will be done after obtaining the permission from the competent authority.

The average rainfall of the district during all these years is $\mathbf{4 2 0} \mathrm{mm}$ only.
6.4.1 An examination of the above reveals that the rainy season extends from June to September Although in the above period under consideration there has been rainfall in other months also, but it can be considered as stray occurrence and will not after all proposed pumping scheme.
6.4.2 The water to be pumped out from the open pits will be contributed both by direct precipitation over the open pits and seepage. The water due to direct precipitation will depend upon the rainfall and the area of the pit.
6.4.3 Based on the rainfall records, the sumps of the sizes as shown plates No. 5-9 shall be provided at the bottom most bench. During the monsoon period a continuous process of dewatering the sumps shall be there to facilitate the mining at the lower benches.
6.4.5 Based on the Rainfall data it is proposed to have two diesel engine operated water pumps of $20+1 . P$ which may dewater $50 \mathrm{~m}^{3} /$ hour from the pit. The water will be sent to the drain of 0.5 mtr depth as shown in the year wise plans Plate No. 5-9. This water will finally go into the natural nallah.
Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

CHAPTER 7

STACKING OF MINERAL REJECTS AND DISPOSAL OF WASTE Quantum of waste and soil generated during the previous plan period.
There was only a little quantity of soll was generated during the plan period which was used for reclamation/ plantation purpose.
In addition to it, entire mineral produced was salable. Therefore no overburden/waste was stacked during the plan period.

7.1 Disposal of Waste

Soil: There is a thin soil cover in the eastern part where as the western and north western part of lease area contains soil varying from $0.5-2.0 \mathrm{~m}$. Some amount of soil/powder is also generated from joints and cracks. Soil has been stacked at soil stockyard and shall be used for plantation /reclamation purpose only.
Rejects: No rejects generated during the plan period .Further about 2% mineral production will come under the category of rejects as there are thin soft layers of calc schist within the bed rock which are not fit as road metal/crushed material. This reject/overburden/inter-burden shall be used for internal uses like making of haul road, parapet wall, boundary walls etc and rest of the waste shall be disposed-off/sold to open market as per Haryana Minerals Rules, 2012 after taking due permission from Mines \& Geology Department of Government of Haryana. All unsold rejects and soil will be finalify used for reclamation of the mined out area at the final closure of the mine.
7.2 Maximum Height and Slope of Dumps
The area ear - marked for the stacking the soil mixed finer material of stone is 1000 M 2 Plate no 5-9 which can accommodate at least 5000 MT of material. In the present case soil generated contains fine powder of quartzite; the same shall be sorted out and stacked in separate dump yards. Yearly generation of soil/ fines which only 500 tones shall pe used for plantation and as a upper layer on the dumps. The dump may attain a maximum height of 6 mtr . With gentle slopes of $28-30^{\circ}$. Tow walls and drains around dumps are proposed to safeguard the dumps

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

7.3 Dump Yard for mineral

The whole material excavated shall be sent to buyers/crushers but still it is proposed to have a dump yard for mineral (5ize $60 \mathrm{~m} \times 15 \mathrm{~m}$), which will be used in the event of less demand or any other emergent reasons to stack the mineral in the dump yard.

The height of the dump yard may attain a maximum of $6-8$ mers with moderate slope of 39 degrees. This can accommodate about 5000 MT mineral.

The location of the soll and mineral dump yard is shown in plate no.5-9.

The annual quantum for construction of retaining walls/ dump yards for soil and mineral will be done during plan period. The length of the soil stack yard and dumping yard walls will be 360 m and 480 mtr . all along with height of one meter. Rest of the height will be made in the coming years as per the requirements of dumps. The thickness of the wall will be half meter.

As already described the optimum height of dumps shall be kept 6 mtr with gentle slope of 30° for soil stack and with moderate slope of 39° for rejects/inter burden stacks.

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

CHAPTER 8
 USE OF MINERAL

Use of Dolomite :-

Dolomite is double carbonate of calcium and magnesium (Ca Mg) Co3 containing 54.2%, $\mathrm{CaCo3}$ and $45.65 \% \mathrm{MgCo3}$.

A typical Dolomite contains $\mathrm{CaO}-29.6 \% \mathrm{MgO} 21 \% \mathrm{LO}-44 \%, \mathrm{SiO}_{2}-3.7 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Fe}_{2} \mathrm{O}_{3}-1.4 \%$
The hardness varies between 3.5 to 4 and specific gravity 2.8 to 2.9 . Color gray white, medium fine grained.

Specification of Dolomite:-

Refractory \quad Slo2 3\% Maximum

MgO 20\% Maximum
$\mathrm{CaO}+\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{MgO} 20 \%$

Glass Industry $<0.2 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{MgO} 20 \%$

As a flux in stee) $\quad(\mathrm{CaO}+\mathrm{Mgo})+90 \%$
\&Feero Alloys $\left(\mathrm{SiO}_{2}+\mathrm{Al}_{2} \mathrm{O}_{3}\right)<5 \%$
Dolomite is mainly used for manufacturing of refractories and as a flux in iron and steel industry, also used for high magnesia lime and used as soil conditioner to neutralise the acidic soils, Can be used in manufacturing of papers, glass work, as a chemicals and fertifizers. Also used for making animal feed for animal.

At present most of the dolomite produced in distt. Mohindergrah is crushed and grinded by the local industries and sent to various industries. Also dolomite being white colored, it can be used for making for mossaic tiles and flooring. The present dolomite deposit meets out the specifications for various industries and can be used accordingly.

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

Road metal and masonry stone

The entire mineral produced will be used in the building industry as road metal, crushed metal and dust etc after crushing by the crushers. The mineral is sold to buyers in and around Haryana, Delhi and other states of north India. Mineral rejects (around 2\%) will stacked temporally and will be sold as and when demand arises. There will be no mineral rejects at the end of life of mine.

Mining Scheme and Progressive Mine Closure plan for Donkhera Doiomite mine (4.80 ha). District Mohindergarh (Haryana)

CHAPTER 9 MINERAL BENEFICIATION\& PROCESSING

In view of the availability of direct market for Dolomite R.O.M., presently there is no proposal of beneficiation. R.O.M. Mineral will be sold to various crushers located in the area. Dolomites will be sold in the form of lumps to the crusher owners.

Road Metal \& Masonry stone has direct local market for crushing and making of various sized crushed material.

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District

 Mohindergarh (Haryana)
CHAPTER 10
 SURFACE TRANSPORT

The transportation of mineral from pit head / stock yard to the consumer end crushers / traders is carried out by the trucks deployed by the customer/purchaser generally of 25 MT Capacity. There is all weather metalied road and then a katcha road right up to mines to dispatch the material from mines to the market. Material is sold to the customers/ at mine site and transported by them through their own arrangement of trucks. The practice is quite sound in the area and ensure continuous lifting of the material. Customers/purchasers come with transport arrangement of their own. This practice will continue during the next plan period also. However necessary arrangement of trucks can be done from the nearby truck operators union available at Nangal Chaudhary, Narnatal\& Mohindergarh if 50 demanded.

To accom modate and to ensure smooth production and its transport (about 40 trips) to the tune of 1083 T/Day, the following points shall be considered:

1. Existing Kachcha road which joins mine to metalled road shall be further strengthened and shall be malntained regularly.
2. Proper traffic control shall be done at road crossings.
3. Road crossings shall be wide enough to ensure that dumpers plying on the roads are safe to cross/overtake, where ever necessary.
4. Plantation shall be done along both sides of kachchca road, as it will arrest the dust and will act as sound barrier to larger extent.

CHAPTER -11

 SITE SERVICE
11.0 Site Services:-

11.1 Manager's Office:-

As detailed in the preceding chapter the mines are designed to produce 3, 25,000 tons (maximum) of building stone. The activities shall be supervised by one competent person as overall manager. In addition it other supporting staff as required under statute has been engaged by the lease holder for day to day mining, driling, blasting and loading operations. Main administrative office was setup at the start of lease near the lease area which accommodates the Manager as well as other supervisory and administrative staff, The same is shown in the surface plan plate no. 3

11.2 Canteen -cum-rest shelter:-

In order to provide the rest shelter for the personnel working in the mine and also to provide tea/refreshment etc. as per the Mines Act, 1952. Canteen-cum Rest shelter is there as shown in plate no. 4 which is utilized by the workers. This rest shelter is used by labor and driver/ operators during the tunch hours. The size of rest shelter is about 15×10 meter to accommodate the working labors.

11.3 Store

Since the mining operations involve heavy earth moving machinery, a small wonkshop and storeroom is provided for day to day operations. . No provision for work shop as there are PVT shops in the area for repair and maintenance of Machinery.

11.4 First Aid Room:

To provide the first aid for any sort of injuries encountered during the mining operation, one small first aid room is provided. First aid kit and sufficient stock of material / medicines needed for first aid are provided as per requirement. As the mining engineer / Manager and mining mates are qualified first aiders they can provide first aid to the labor on the spot.

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

More ever the Govt. Hospitals is there at the Narnaul which is just 25 km . From the mine and necessary medical aid can be provided from there.

11.5 Crèche:

At present provision of crèche is not provided, however in future if women workers are employed, arrangement for a small creche shall be made as per the requirement.

11.6 V.T. Center

Necessary arrangement shall be made for conducting refresher course as laid down in Mines vocational training rules.

11.7 Magazine:

Both primary / mass blast and secondary blasting is carried out in the mines. At preset explosive is procured from the authorized source complying with the provisions of Indian Explosives act 1884 . Explosives are and will be transported to site from the magazine by approved explosive van.

All statutory provisions made under the Explosive act and modifications thereof are proposed to be followed.

11.8 Electricity Supply:

Presently there is no electric supply, at the mine as well a mine site office.

11.9 Water Supply

The water supply for drinking\& dust suppression are made available by hired tractor tanker. The water is taken from the viliage Public water supply which is just $0.5, \mathrm{~km}$. away from the mine site and is controlled by the public health department of the state Govt. The water form supply tube well is used for the entire village Donkhera. Therefore the same arrangement shall continue for the mines as well The water is transported by the tractor and stored in a RCC tank of 5000 liters capacity.

Water Requirement

Sr.no	Activity	Hequirment in 160	soirce
1	Dust suppression	3.00	There is seepage of water in the mine. This water is accumulated at the bottom of the mine. Same is used for dust suppression by own Tankers
2	Drinking	1.0	Hired Tankers
3	Green belt	2.00	There is seepage of water in the mine. This water is accumulated at the bottom of the mine. Same is used for dust suppression and plantation by own Tankers
	Total	6	

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

CHAPTER 12
 EMPLOYMENT POTENTIAL

12.1 General Consideration

In this project the mechanized mining is going on for production of building stone. The proposed organizational structure for the project for mining system adopted and the need of effective environment Management Plan. The following technical and non-technical personnel are deployed as per norms:-

1. The mine is worked in two shifts and same will continue in future as well.
2. In estimating the requirement of magazine attendants, and provision of competent person, mates, blaster etc. due consideration has been given to the statutory provisions.

12.2 Man power requirement and its distribution.

The following manpower is Deployed and also proposed to continue during next plan period.

S.No.	Designation	Category	Nos
1	Mines manager	Highly skilled	1
2	Assistant Managers	Highly skilled	1
3	Mining Mate cum Blaster	Mighly skilled	1
4	Clerical and other staff	Skilled	2
5	Security Guard \& Water man	Seml skilled	2
6	Environment Assistance	Skilled	1
7	Diesel hydraulic shovel operator	Highiy skilled	1
8	Diesel back hoe operator	Highly skilled	1
9	Rear dumpers operators	Highly skilled	15

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha) District Mohindergarh (Haryana)

10	Drill operators	Highly skilled	1
11	Tractor operator/driver	Skilled	
12	Tractor Operator	compressor	Skilled
13	Helpers/labour	Semi skilled	1
Total			5

In addition to the above mentioned staff rest of the function i.e. supply of explosives, preparation and amendment of plans etc. are performed from the professional on contract basis.

The above mentioned manpower is already deployed by the lessee for Scientific and systematic working of the mine.

CHAPTER- 13

ENVIRONMENT MANAGMENT PLAN

Particulars	Proposal as per approved mining plan	Position at the end of 5 th year of Mining Plan Period	Proposal for the next 5 years plan.
Top Soil storage preservation and utilization	Proposed to stack separately as per the approved mining plan dt.30-12-2015.	About 500 MT soil is generated during last plan period it was removed and stacked separately. Part of it is used for plantation. Rest is stacked separately. It will be used for progressive reclamation in due course as proposed in the chapter of PMCP.	Proposed to remove separately and stacked for plantation/ reclamation purpose.
Land reclamation and rehabilitation	The mined out area was proposed to be rectaimed after depletion of reserves.	None of the pits has attained the, ultimate pit limit. Therefore the actual land reclamation shall be done at the larer stage of mining.	Nore of the pits has attained the, ultimate pit limit. Therefore the actual land redamation shall be done at the later stage of mining
Waste dump management	About 2% waste is generated which is saiable. Entire mineral mined is salable.	No waste/OB was generated durim the last plan period. ryana.	No waste may be generated durfig the next plan period as the entire mineral produced is salable. The same is salable. Therefore no further management is required.
A forestation program	Proposed to plant 1000 no. of trees with survival rate of 70%, 1 Total plants proposed 1000 during last plan period	Over 1000 no. of plants have been planted fcovering lease boundry but due to scarce/ difficult environmental conditions the survival rate is about 50% out of 1000 plantsonly500 plants are surviving with survivat: rate of 50%.	The area is mostly rocky or sandy with very poor density of vegetation. Plantation will be carried out around the mine, to arrest the dust at source. It is therefore proposed to cover 05 hectare area during this plan period at the lease boundary (7.50 m buffer zone and the area (benches) where mining is not to be done further. Considering 2500
61			

-

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

PART - II
 PROGRESSIVE MINE CLOSURE PLAN

1.0

Introduction:-

Vide notification GSR 330(E) date 10-04-2003, MCDR, 1988 has been amended incorporating preparation of Mine Closure Plan. Corresponding amendments has been made in MCDR, 1960. Accordingly Haryana Government has also amended the mineral concession rules which requires the Mine Closure Plan (Progressive \& Final) as per chapter 10 of the "Haryana Minor Mineral Concession, Stocking, Transportation of Minerals and Prevention of fllegal Mining Rules, 2012". In the present case as it is a working mine a progressive mine closure plan, as a component of the mining scheme is required. The present rate of production the mine will require progressive closure of the parts where mineral is fully exhausted/ no more mineable/ economically viable. Such part of the pits will be progressively closed and are proposed for reclamation. At the final closure stage the maximum part of the mine will become like a water reservoir/lake and it will be used for fissiculture/ Boating site. It can be used as a water body for canal based water supply site. It will help in faster recharging of ground water.

At the proposed pace of work in the next 5 coming years it will not be possible to close down any part except doing protective works like fencing and making of a drain, plantation etc.
(A) Name \& address of the lessee

M/s Xandy Mine and minerals G.H.18-A, Celebrity Homes, PalamVihar Gurgaon
(B) LOCATION OF THE LEASE AREA

District	:Mohindergarh
State	:Haryana.
Taluka	:Narnaul.

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

Viliage : Donkhera
(C) EXTENT OF THE LEASE AREA

Village	Khasra no.	Area in hect.	Ownership
Donkhera	109 min	4.80	Gram Panchayat

(D) PRESENT LAND USE PATTERN

Sl. No,	Type of Land Use	Value (in Ha)
1	Quarry Area	3.88
2	Infrastructure	0.00
3	Road	0.030
4	Plantation	0.00
5	Water body	0.00
6	Habitation	0.00
7	OB dump	0.00
8	Undisturbed land	0.92
	Total	4.80

(E) METHOD OF MINING:
(Details are given in Chapter 4 of the main Mining plan)
The present mining operations are designed to be carried out by open cast mining means.
The entire mining operation proposed are mechanized A part of mining, the loading and

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Maryana)

The last mining plan was approved on 0-12-2015 and EC was accorded on 27-06-2016 The leaseholder has approached us to prepare a mining scheme and progressive mine closure plan over an area of 4.80 hectares under statute. Therefore a miningscheme and progressive mine closure plan has been prepared and submitted.

4.0 CLOSURE PLAN

4.1 Mined - out land

At the end of mining plan period,about 4.18 ha area will be minedout. Landuse at various stages is given in the table below:

Land Use at the end of plan period

SrNo.	Particulars	Present land use area in (ha)	At the end of plan (ha)	Conceptual stage
1.	Area excavated due to mining	3.88	4.18	0
2.	Dump of ore/OB/waste	0	0	0
3.	fufrastructure: Roads, buildings, electric line ete	0.03	0.03	00
4.	Backfilled area	0	0	0
5.	Area under plantation	0.59	0.59	0.59
6.	Reclamation plantation	0	0	1.41
7.	Water henly	0	0	2.80
8.	Undisturbed	0.30	0	0
	Total	4.80	4.80	4.8

4.2 Water quality management

There are no water courses in the area except dry nallahs :The precipitated water also flows along the depressions formed in between the outcrop of country rocks. The water table in the area is about $80-100 \mathrm{mtrs}$. Below the ground surface. There is no flow of water in the lease in post monsoon period. Area is having 499 mm rainfall in a year. During rainy season, water will be accumulated the pit which will be rained out and finally it will be sent in to natural drain. A settling tank will be provided so that the finer sediments are settled down.

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

These finer sediments will be collected after rain is over. There will be no intersection of water table as working will be carried above the valley level while the water level is 80 100 m below the general surface of area. Some wells are located in the agriculture fields where water table was recorded 80 m .

4.3 Air Quality Management:

The proposed miningmethodis not likely to produce much of dust and fugitive emissions to
cause damage to ambient air quality of the area. Workerswillbeprovidedwithpersonnelprotectiveequipmentlikefacemask, ear plug/ muffs.

Forairpollutionmanagementatheprogressivemineciosureofmine,greenbelt will be developed topreventandcontrol air pollution.
4.4 Waste Management:

Asstatedinminingmethod, there will be $O B /$ waste generation which is salable, There will not be any difficulty in $O B$ / handling.
4.5 Top Soil Management There is a very thin soil/ top soll which will be scraped and used for plantation.
4.6 Tailing dam management

Thereisnoproposalofbeneficiation of mineral. Notalingdamisenvisaged.
4.7 Infrastructure:

The infrastructurefacilities like site office,first-aidstation, restshelter/ store, drinking water etc. will be established.
4.8 Disposal of mining machinery:

Machinery is available on hire basis. Hence no decommissioningofmining machineryisproposed.

4.9 Safety \& Security:

Safety measures will be implemented to prevent access to excavation area by un authorized persons as per Mine Act 1952, MMR 1961.

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)
i. Safety measures willbeimplementedasperMineAct1952,MMR1961,MinesRules 1955.
ii. ProvisionsofMMR1961shallbe followedstrictlyandaliroadsshalibe10 mwideandhaveagradientofnot more than 1 in 20.
iii. The bench height will be 9.0 m .
iv. Width of bench will be kept around 10.0 m for ease of operations and provide sufficient room for the movement of equipments.
v. Protectiveequipmentlikedustmasks,earplugs/ muffsandotherequipmentsshallbeprovidedforusebythework persons.
vi. Notices givingwarning to prevent inadvertent entry of persons shall be displayed at all conspicuousplacesandinparticular near mineentries.
vii. Dangersignsshallbedisplayednearthe excavations.
vili. Security guards will be posted.
ix. In the event of temporary closer, approaches will be fenced off and notice displayed.

4.10 Disaster Management and Risk Assessment:

This should deal with action plan for high risk accidents like landslides, subsidence, flood, inundation in underground mines, fire, seismic activities, tailing dam failures etc. and emergency plan proposed for quick evacuation, ameliorative measures to be taken etc. The capability of lessee to meet such eventualities and the assistance to be required from the local authorities should be described.

- The mechanized mining activities in the hilly area will involve any high risk accident due to side falls/collapse, flying stones due to blasting etc.
- The complete mining operation will be carried out under the Management and control of experienced and qualified Mines Manager having Certificate of Competency to manage the mines granted by DGMS.
- All the provisions of Mines Act 1952, MMR 1961 and Mines Rules 1955, RMMCR 1986 and other faws applicable to mine will strictly be complied with.
- During heavy rainfall the mining activities will be suspended
- All persons in supervisory capacity will be provided with proper communication facilities. Competent persons will be provided FIRST AID kits which they will always carry.
4.11 Care and Maintenance during Temporary Discontinuance:

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

In case of any temporary discontinuance due to court order or due to statutory requirement or any other unforeseen circumstance following measures shall be taken for care, maintenance and monitoring of conditions.

* Notice of temporary discontinuance of work in mine shall be given to the DGMS as per the MMR 1961.
- All the mining machinery shall be shifted to a safe place.
- Entrance to the mine or part of the mine, to be discontinued shall be fenced off. Fencing shall be as per the circular 11/1959 from DGMS.
- Security Guards shall be posted for the safety and to prevent any unauthorized entry to the area.
- Carry out regular maintenance of the facilities/area detailed below in such a way as would have been done as if the mines were operation:

Mine roads and approach roads,
Fencing on approach roads,
Checking and maintenance of machines and equipment,
Drinking water arrangements,
Mine office, first aid stations etc.

* Competent persons shall inspect the area regularly.
- Air, water and other environmental monitoring shall be carried out as per CPCB and $\ddagger B M$ Guideline.
- Care and upkeep of plantation shall be carried out on regular basis.
- Status of the working and status monitoring for re-opening of the mines shall be discussed daily.

In case of discontinuance due to any natural calamities/abnormal conditiohs, mining operation will be restarted as early as possible after completing rescue work; restoring safety and security, repairs of roads etc.

5.0 ECONOMIC REPERCUSSION OF CLOSURE OF MINE AND MANPOWER REIRENCHMENTS

 Lease area has been granted for a period of 50 years. As per the production programme envisaged, This mine will sustain for about $7-8$ years, No mineable reserves will be available at the end of $8^{\text {th }}$ year from now. There will be littleaffect on the man power as the parsons belong to nearby villages will have an option to work in other nearby mines6.0 TIME SCHEDULING FOR ABANDONMENT

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

The lease area has enormous potential for continuance of operations during next 5 years of the plan period. The details of time schedule of all abandonment will be given at the time of final closer plan

7.0 ABANDONMENT COST

As at present mining is not going to be closed so abandonment cost could not be assessed.
However based on the progressive mine closure activities during the plan period, cost is assessed as given below:

Table 16: Abandonment Cost

ACTIVITY	YEAR					Rate	Amount (inRs.)
	First	Second	Third	Fourth	Fifth		
Plantation (in no.)	200	200	200	200	200	@100 Rs per sapling Including maintenance	1,00,000
Plantation cost	20,000	20,000	20,000	20,000	20,000		
Wire fencing (meter) $245 \mathrm{~m} /$ year	30,000	30,000	30,000	30,000	30,000	@ of 120 Rs per meter	1,50,000
Toe walls (m)240m	2,40,000	-	-	-	-	@ Rs 1000/m	2,40,000
$\begin{gathered} \text { Drain(m) } \\ 690 \mathrm{~m} \\ \hline \end{gathered}$	6,90,000			-	-	$@$ Rs 1000/m	6,90,000
	Total						10,80,000

8.0 FINANCIAL ASSURANCE

Total 4.16 ha area will be put in use upto the end of the plan period. Details of area put in use as given below (As per circular No.4/2006 issued by CCOM, Nagpur following table has been considered for calculation for financial assurance).

Table : Calculation for Financial Assurance

S.	Item	Area put on use at start of plan (Ha) (A)	Requirement at the end of plan period (Ha)	Total area put to use (Ha) (B)	Area considered as fully rectaimed \& rehablititation (Ha) (C)	Net area considered for calculation (Ha) $D=(B-C)$
1.	Area to be excavated	3.88	0.30	4.18	0.00	4.18
	Storage for topsoil	0.0	0.0	0.0	0.0	0.0

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha) District Mohindergarh (Haryana)

3.	Overburden/ durmps	0.00	0.0	0.0	0.0	0.0
4.	Mineral storage	0.0	0.0	0.0	0.0	0.0
5.	Infrastructure (Workshop, Adm. Building \& Road	0.00	0.0	0.0	0.0	0.0
6.	Green belt	0.0	0.59	0.59	0.0	0.59
7.	Road	0.03	0.03	0.03	0.0	0.03
8.	Effuent treatment plan	0.0	0.0	0.0	0.0	0.0
9.	Mineral separation plant	0.0	0.0	0.0	0.0	0.0
10.	Township area	0.0	0.0	0.0	0.0	0.0
11.	Others to specify	0.0	0.0	0.0	0.0	0.0
	Total	3.31	0.92	4.80	0.0	4.80

Total 4.80 ha area is considered for colculation. The total financial assurance ($@ 15000 /$ - per ha. Comes out to Rs72000/. However as per Rule 71(6) of Haryana Mineral Concession Rules 2012, The mineral concession holder shall furnish financial assurance for the area granted under the mineral concession and put to use for mining and allied activities subject to a minimum of one lakh rupees in the form and manner as defined.Therefore Financial Assurance of Rupees One lakh is required. This will be given by lessee as surety bond / bank guarantee.

Mining Scheme and Progressive Mine Closure plan for Donkhera Dolomite mine (4.80 ha). District Mohindergarh (Haryana)

9.0 CERTIFICATE

It is enclosed with the report.

10.0 PLAN AND SECTION

Plan and section are prepared and enclosed with the mining plan.

Duli Chand Padar
 DMG/HRY/RQP/2018/03

STATE ENVLRONMENT IMPACT ASSESSMENT AUTHORITY HARYANA Bay No. 55-58, Prayatan Bhawan, Sector-2, PANCHKULA.

No. SEIAA/HR2016/465 To
M/s Xandy Mines \& Mincrals, G.H. 18-A, Celebrity Homes, Palam Vihar, Gurgaon, Haryana-122001

Dated: $27-20 \%$

Subject: Environmental Clearance for "Extraction of Dolonite and Beryte, along with associated minor mineral (Road Metal \& Masonry)" at Village-Dhonkhera, Tehsil-Narnanl, District, Mahendergarh, Haryana of area 4.80 Ha .

This has reference to your online application dated 30.03 .2016 addressed to M. S. SEIAA Hayana; haid copy received on 30.03 .2016 and subsequent letter dated 2.05.2016 seeking prior environmental clearance for the above project under the ElA Notilication, 2006. The proposal has been appraised as per prescribed procedure in the light of provisions under the ELA Noilication, 2006 and subsequent amendment on the basis of the mandatory documents enclosed with the application viz., Form-1, Prefeasibility report, copy of approved Mining Plan and the additional clarifications furnished in response to the observations of the State Expert Appraisal Commitect (SEAC) constituled by MOEF \& CC, GOI vide their Notification 21.08 .2015 , in its meenings held on 06.05.20i6 and 31.05.2016. Mines \& Minerals for "Extraction of Dolomite and Beryte, along with associated minor mineral (Road Metal \& Masonry)" at Village-Dhonkhera, Telsil-Narnaul, District, Mahendergath, Haryma of area 4.80 Ha . The Mines and Geology Department has granted lease for a period of 07 years subjeci to the terms and conditions as indicated in Lelter of Intent (LOI) dated 28.08.2014. The lease has been granted for an area of 4.80 Jfa having Khasra no. 103,108 \& 109 Village-Dhonkhera. The validity of Mining Scheme in the Mining plan is for 5 years. The Mines \& Geology, Department has clarified that no other mine lease exists within 500 meter radius of this mine. The SEAC appraised this project as category B-2. NOC from Forest Department has been obtained.

Brief details of the project:

The SEAAA in $\mathrm{its}^{\mathrm{Gn}} \mathrm{m}^{n}$ mecting held on $16^{\text {th }}$ Junc, 2016 considerd the recommendation of SEAC and noticed that the mine lease area is less than 5 Ha and as such the environmental clearance in this case is to be granted by DEIAADEAC in view of amendment to the Nolification dated 15.01.2016. The MOEF \& CC, Gol wide letter no. 2-11013/8/2016-LAII (M) dated 15.03 .2016 has clarified that where SEAd has recommended the cases for environmental clearance and soch cases are to be processsed at the level of SEIAA for grant of environmental clearance. Accordingly it was decided $t=$ accept the recommendation of SEAC and to grant enviroment clearance to the projectby imposing the following conditions:-

A SPECIFIC CONDITIONS:

[I] This Enviromment Clearance is granted for Exiraction of Dolomite and Beryte, along with associated minor mineral (Road Metal \& Masonry) of Stote along with Associated Minewals as per below mentioned figures.
[2] The project proponent shall obtain prior CTO under Air Act and Water Act from HSPCB and effectively implement all the conditions stipulated by the HSPCB.
[3] The project proponent shall carry out mining activity strictly as per the approved Mining Plan.
[4] The project proponent shall ensure that the mining operations shall not intersect groundwater table and the mining opezation shouid be restricted at least 3 neter above the ground water table.
(5) Topsoil shall be stacked temporatly ar carmarked sites only and it shall not be kept unutized for a period more than three years; it shall be used for land reclamation and plantation inmined out areas.
161 The project proponent shall ensure that no natural water course/water body shan be obstructed due to any mining operations.
[7] The over burden gencrated shall be stacked at earmarked dump site (s) only and it shall not be kept active for long period of time. The maximum beight of the already existing waste dumps shall not exceed 5 meter in single terraces and the slope angle shatl not exceed $28^{\prime \prime}$ as per nonms.
[8] The dumping site selected and proposed shall be used for $O B$ dump al the designated site within the lease area as per the approved mine plan. In no case the overburden should be dumped outside the lease area.
(9) The benches beight and slope shall be maintained as per approved mining plan.

110] Waste dump shall be terraced. The height of the dump and its slope shat net excced as suggested in the approved mining plan. A retaining wall shall be constricted at the toe of the damp.
[11] Garland drains shall be constructed to prevent the flow of the water in the dumps.
[12] Check dams shall be constructed in the seasonal rivulets to prevent the flow of tines to low lying areas during tains.

1131 The total waste generated in the present plan period shall be as envisaged, which shall be accommodated in old dumpsite in addition to the waste already dumped. Monitoring and management of rehabilitated areas shall continue until the vegetation becomes self sustaining. Compliance status shall be submitted to HSPCB and MOEF Zonal Office. Chandigarh on six monthly bases.
[14] Drilis shall either be operated with dust extractors or equipped with water injection system.
[15] The Gigher benches of excavated yoidmining pit shall be terraced and plantation done to stabilize the slopes. The slope of higher benches shall be made genter for easy accessbibity by local people to use the water body. Peripheral fencing shall be carried out along the excavated area.
[16] Catch drains and siltation ponds of appropriate size shall be constructed for the working pit, $O B$ dumps and mineral dumps to arrest flow of silt and sediment. The water so coliected sinal be utilized for watering the mine area, roads, green belt development etc. The drains shall be regularly de-silted, particularly after monsoon and maintained properly.
[17] Garland drains and check dams of appropriate size, gradient and lengti shall be constructed bolh around the mine pit and over burden dumps and sump dapacity shail be designed keeping 50% safety margin over and above peak sudden rainfall (based on 50 years cata) and maximum discharge in the area adjoining the mine site. Sump capacity shall also be provided and Adequate pits shall be con\$tructed at the corners of the garland drains and de-silted.
[18] Dimension of the retaining wall at the toe of dumps and $O B$ benches within the mine to check run-off and siltation shali be based on the rainfall data.
[19] Plantation shall be raised in a 7.5 meter wide greci belt in the safety zone around the mining lease, backfilled and reclaimed area. around water body, aldng the roads etc. by planting the native species in consultation will the local DFOiAgriculture Department. The density of the trees should be around 2500 plants per ha. Greenbelt shall be developed alt along the mine lease area in a phased manner and shall be completed within frrst five years.
[20] Regtiar water sprinkling shall be carried out in critical areas prone to air pallution and having high levels of SPM and RPM such as haul road, loading and unloading point and transfer points. It shall be ensured that the Ambient Air Quality Parameters conform to the norms prescribed by the CPCB .
[21] The project authority shall implement suitable conservation measures to augment ground water resources in the area in consultation with the Regional Director, Central Ground Water Board.
[22] Regular monitoring of ground water level and quality shall be carried out in and around the mine lease. The monitoring shall be carried out fou times in a year-pre monsoon (April-May), monsoon (August), post monsoon (Novenber); winter (January) and the data thus collected may be sent regularly to MOEF Regional Office, Chandigath and Regional Director CGWB:
[23] Data on ambient air quality and stack emissions shall be submitted to Haryana Pollution Control Board once in six months carried out by MOEFNABL/CPCB/Goverament approved lab.
[24] Vehicular emissions shall be kept under control and regularly monitored. Measures sball be taken for maintenance of vehicles used in mining operations and in transportation of mineral. The vehicles shall be covered with a tarpaulia and shall not be overioaded. The project proponent shall ensure that the venticle must have pollution under control certificate.
[25] Blasting operation shall be caried out only during the daytime. Controlled blasting shall be practiced. The mitigation measures for control of ground vibretions and to arrest fly rocks and boulders shall be implemented.
126] The blasting operation will be carried out as per the norms of Director (Mines \& Safety), Gaziabad. Take all safety measures as per the various mining regulations.
127] The project proponent shafl take all precautionary measures during mining operations for conservation and protection of endangered fauma, if any, spoted in the study area. A plan for conservation shall be dravn and got approved by the Chief wildife Warden of the State before stant of mining operation. Necessary allocation of funds for implementation of the conservation plan shatl be made and the funds so ullocated shall be irvoluded in the project cost. All the safeguard masures brought out in the wildlife conservation plan so prepared specific to the project site shall be effectively implemented. A copy of action plan may be submitted to the HSPCB and MOEF, Regional Office, Chandigarh within 3 months
128) As envisaged, the Project Proponent shall invest at ieast an amount of Rs. 7.6 Lacs as cost for implementing various environinental protection measurcs including recurning expenses per year.

129] A stim of Rs. Ij Lacs shall be earmarked by the Project proponent for investment as CSR on sodo economic up-liftment activities of the area particularly in the are. of habitat, health or edication, training programue of rural women \& man provide the kit for employment generation. The proposal should contairy provision for monthly medical camps, distributions of medicines and improvement in educational facilities in the nearby schools. Details of such activity along with time bound action plan be submitted 10 HSPCB/SEIAA Haryana before the start of operation.
[30] Budgetary provision of Rs, Rs 3.5 Lacs per year earmarked for the labours working itt the Mine for all necessary infrastructure facilities such as health facility, sanitation facility, fuel for cooking, along with safe driaking water, medical camps and toilets for women, creche for infants should be made and, submitted to HSPCB at the time of CTOISELAA Haryana. The housing facilities should be provided for mining labours.
(31] A Final Mine Closure Plan along with details of corpus fund shall be submitied to the SEIAA well within the stipulated period as prescribed in the minor mineral concession rules 2012 .
132] The water reservoir, which would be created/available during post closure (all pits), shall be provided with suitable benches and fencing to provide the acdess to the water body and safety.
[33] The project proponent shall ensure that the Environment Clearance letter as well as the status of compliance of EC conditions and the monitoring data are played on company's website and displayed at the project site.
[3i] The project proponent shall ensure that loading in Trucks do not exceed the porms tixed by the Transport Department as per relevant rules.
[35] The project proponent shall ensure approach roads are widened and strengthened as per requirements fixed by PWD and district administration before the start of the work.
[36] The project proponent shall ensure that all meastres are taken simultaneously for safeguard and maintenance of the health of the workers.
[37] The project proponent shall ensure supply of drinking water through RO.
[38] The project proponent shall comply with all the conditions of mining as provided in the Notification dated 15.01.2016 issued by the Ministry of Environnent, forest and Climate Change, Government of India.
[39] The project proponent shall strictiy comply with the orders passed by the Hon'ble NGT dated 18.02.2016 and 01.06.2016 and also comply with the Comprehensive Mining Plan/Recommendations prepared by the High Powered Cominittee constituted by the Hon'ble NGT.

GENERAL CONDITIONS:

Ii) Any change in mining technology/scope of working shall not be made without prior approval of the SEIAA.
[ii) Any change in the calendar plan including excavation, quantum of mineral and waste shall not be made.
[iii] Periodic monitoring of ambient air quality shall be carried out for $\mathrm{PM}_{10}, \mathrm{PM}_{2}$, SO_{3} and NOx monitoring. Location of the stations (minimum 6) shall be dedided based on the meteorological data, topographical features and envirommentally and ecologically sensitive targets and frequency of montoring shall be decided in consultation with the Haryana State Pollution Control Board (HSPCB) Six monthly reports of the data so collected shall be regularly submitted to the $\mathrm{HSPCB} / \mathrm{CPCB}$ including the MOEF, Regional office, Chandigarh.
[iv] Measures shall be taken for control of noise levels below 85 dBA in the work environment. Workers engaged in operations of HEMM etc. shatl be provided with earplugs/muffs.
[v] Waste water (workshop and waste water from the mine) shall be properiy collected \& treated so as to conform to the standards prescribed under GSR 422 (E) dated $19^{\text {th }}$ May 93 and $31^{\text {st }}$ December 1993 (amended to date). Oit and grease trap shall be installed before discharge.
[vi] Personnel working in dusty areas shall wear protective respiratory devices they shail also be provided with adequate training and information on safety and health aspects.
[vii] Occupationai health surveiliance program of the workers shall be undertaken periodically to observe any contractions due to exposure to dust and take corrective measures, if needed.
[viii] The funds earmarked for environmental protection measures shall be kept in separate account and shall not be diverted for other purpose. Year wise expenditure shall be reported to the HSPCB and the Regional office of MOEF located at Chandigarh.
[ix] The project proponent shall also submit six monthly reports on the status of compliance of the stipulated EC conditions including results of montored data (both in hard copies as weil as by e-mail) to the northern Regional Office of MOEF , the respective Office of $\mathrm{CPCB}, \mathrm{HSPCB}$ and SEIAA Haryana.
$[x]$ The SElAA, Haryana yeserves the right to add new conditions, modify/annual any of the stipulated condiliots and/or to revoke the clearance if implementation of any of the condition stipulated by SEIAA, Haryana or any other competent authorities is not satisfactory.
[xi] Failure to comply with any of the conditions mentioned above may result in withdrawal of this clearance and attract action under the provisions of Enviromment (Protection) Act, 1986.
[xii] The above conditions will be enforced, inter alia, under the provision of the Water (Prevention \& Control of Pollution) Act, 1974 the Air (Prevention \& Controi of Pollution) Act, 1981, the Environment (Protection) Act, 1986 and the Public Liability insurance Act 1991 (all amended till date) and rules made hereunder and also any other orders passed by the Honb'le Supreme Court of india/High Court of Haryana and other Court of law relating to the subject matter.
[xiii] The Project proponent should inform the public that the project has been accorded Environment Clearance by the SEIAA and copies of the clearance letter are available with the Haryana State Pollution Control Board \& SEIAA. This should be advertised within 7 days from the date of issue of the clearance letter at least in two local newspapers that are widely circulated in the region and the copy of the same should be fonwarded to SEIAA Haryana. A copy of Environment Clearance conditions shall also be put on project proponent's web sile for public awareness.
[xiv] All the other statutory clearances such as the approvals for storage of diesel from the Chief Controller of Explosives, Fire department, Civil Aviation Deparment, Forest Conservation Act, 1980 and Wildife (protection) Act, 1972 etc. shall be obtained, as may be applicable, by Project proponent from the competent authority before the start of mining operation.
[xv] That the grant of this EC is issued from the envirommental angle only, and does not absolve the project proponeni from the other statutory obligations prescribed tuder any other law or any other instrument in force. The sole and complete responsibility, to comply with the conditions laid down in all other laws for the lime being in force, rests with the industry/unit/project proponent. Any appeal against this environmental clearance shall lie with the National Green Tribunal, if preferred, within a period of 30 days as prescribed under section 16 of National Green Tribunal Act, 2010.
\{xvi] Any area which has been banned by any authority/coutts shafl not be used for: mining activity.

Member Secreary,
 State Level Enviromment Impact Assessment Authority, Haryana, Panchkula.

Endst. No. SEiAA/HR/2016i
Dated:
A copy of the above is forwarded to the following:

1. The Director (IA Division), MoEF\&CC, GoI, Indra Paryavaran Bhavan, Zor bagh Road-New Dethi.
2. The Regional office, Ministry of Environment, Forests \& Climate Change, Govi. of India, Bay's no. 24-25, Sector 31-A, Dakshin Marg. Chandigart.
3. The Chairman, Haryana State Pollution Control Board, C-11, Sector-6, Pkl.
4. The Director General, Mines \& Geology Department Haryana, Chandigarh.

CONSENT LETTER FROM APPLICANT

The mining plan in respect of Dolomite \& associated Minerals mine of M / s Xandy Mine and minerals G.H.18-A, Celebrity Homes, PalamVihar Gurgaon in village Donkhera , 4.80 Hectares (Area in hectares area); District- Mohindergarh State-Haryana is being prepared by D.C.YadavRQP(DMG/HRY/RQP/2018/03)

I request The Director Mines and Geology, Haryana to make further correspondence regarding modification of the mining plan with the said RQP on the following address:-

```
D.C.Yadav RQP (DMG/HRY/RQP/2018/03)
#282 Sector 110 Faridabad ( Haryana)
```

I also authorize Shri D.C.Yadav to make correspondence with your office.
I hereby undertake that the mining plan in respect of the area prepared by RQP be deemed to have been made with my knowledge and consent and shall be acceptable to me and binding on me in all respects.

Place: Narnaul
Date: 5-05-2022

GOVERNMENT OF HARYANA

DIRECTORATE OF MINES AND GEOLOGY, HARYANA; 30-BAYS BUILDING, SECTOR 17, CHANDIGARH.

CERTIFICATE OF RECOGNITION AS A QUALIPIED PERSON TO PREPARE MINING PLAN/SCHEME OF MINING FOR MINOR MINERAL MINES (UUnder Rule 67 of Haryana Minor Mineral Concession, Stocking, Transportation of Minerals and Prevention of illegal Minifg Rules 2012)

Stiri Dull Chand Yadav S/o Shri Ramji Lal, resident of village Dhani Bania Wali, PO Nangal Chaudhary, District Mahendergarh having given satisfactory evidence of his qualifications and experience, is hereby granted recqgaition under Rule 67 of the Hiaryana Minor Mineral Contession, Stocking, Transportation of Minerals and Prevention of Illegal Mining Rules, 2012، as a "Qualified Person" to prepare Mining Plans/Scheme of Mining in respect of minor minerals mines in the State of Haryana.
2. His registration No. is DMG/HRY/RQP/2018/03.
3. This recognituon shail be valid for-a period of ten years endingoñ 26.04 .2028

Place: Chandigarh
Dated: $26 \cdot 04.20 / 8$
Mines \& Geology, Haryana, Chandigarh.

XANDY MINES AND MINERALS
 GHASRANO. 102 , NEEN SA THADA ROAD HLLAGE DOKHEBA MAHENDEREERA- 123023

To,
The Director
Department of Mines Geology
Panchkula (Haryana)
Date: fanury 199^{9}

Subject Clarification on the submited Mining Plan

Sir.
We have been operating a Ming leose situatedin Village Dokdera, District Mahendergarh spread over an area of 4.80 Hectares.
Consequently, we had sumitted a Mining Pan for the said area, for approval.
A Mining Lease under the name ond strie of M/S STONE FLLD, has been granted Letter of Intent adjeining to the Mining area allotted to us.
M/s STORE FIELD has no objection to the fact that a buffer zone is not being provisioned for as if would ereate a potential hazardous stuation with an unstabte 7.5 metre wall standing between the two Mining areas.
In view of the maninent danger, M/S STONE FIELD have logically supported our cause,
You are requested to kindly approve the Minng Plan with the above considerattons.

Best Regards

For Xandy Mines And Minerals

We have been operating a Mhing tease situated ti VIlgge Dokhera, Dtstrct Mahendergarh spread over an area of 480 Hectares.

Consequently, we had subritied a Mining plan tor the said aren for approval
A Minind Lease under the name and strpe of M/S STONE FRLD, has been granted Letter of intent adioning to the Ninirg area allotted to us:
M/S STONE FIEED has no oblection to the fact that a buffer zone fs not being provisioned for as it would create a potental hazardous situation with an unstable 7.5 metre wall standiris between the two Mining areas.
In viev of the imminent danger, M/S STONE FELD have logitally supported our cause.
You are requested to kindly approve the Mining Plan with the above consideratoonsi

Best Regards
For Xandy Mines And Minerals

XANDY MINES AND MINERALS

KHASRA NO. 109 NEEM KA THANA ROAD UHLAGE OOKHERA MAHENDERGERH - 123023

We have been operating a Mining Lease in Village Dokhera, Nangal Chaudhary, spread over an area of 4,80 Hectares. In matter of days, we started observing deep crevices and fissures alongside the pillars installed at the boundary of the Mining Lease which seem dangerous to continue Mining operations.

Since some crevices and fissures had developed beyond the allotted area across the boundary pillars, an inspection of the said boundary was requested for guidance on the plan of action.
In order to resolve the danger pertaining to the Mining operations, a joint inspection of the mentioned cracks and fissures was conducted by the authorities, and it was revealed that some parts of the boundary consisting of cracks had to be removed to eliminates all possibilities of danger and hazard for the operation of Mining activity.

Registored Post
From:
The Director Gentrat, Mines and Ceotomy Haryamas ist beor, 30 - bega bututng \$eceor-17. Chapdigarb

Ti)

H/s Xandy Mines and Annerats, Wilbise Dhonehera, District Mahendergash

Memo No KC/GO/HYF-2612/ Si4Z Dated Chandigarn the F.07.20e
Subiect- Ftssures and cracks along the boundary of the minng area of Whege Honhbera, distult thahendergarh.

3. Vide setter undes reference you infowed that over few days debpervidel gup and fiseure chose to the bundary pilars have developed and dangernas for sominue monto operations Therefore you stopped ine bporatoons for the tree

 requatd for which yousought permssibn
3. In thit cezard it has be enathined and onsidermg prime concerned of safy

 of pocts may orcie putste lead holat area. To ensure that he urcalled tor

 atruigators

 future nes/acords.
\& topy sorwirtied to Assistant Mining Engineer Narmad for information and to ansure that all operadons mine undertaken por difectons

+6

$$
\begin{aligned}
& \text { Netrish } \\
& \text { Thenat Mamendeqush. }
\end{aligned}
$$

 vi he Dodhcrat hatrict Mahenaragart.

It is minated that the Divetor Tenerat. Mincs and Geobpy,

 hate hod wreq shall be motaredreftled by uing the blasted/ heren

 23 16220

 No, 37677 DA deled $28,07,2020$ to do therekdflum the repesentation -aned 23072020 presentea by M/s Kumbe. Mnes mad Mintat Accorditby, wint mapection report recitedront jooth the of ene

Repwi regardigg marking of safety bench line along the crack developed at westerf edge of Dolomite mine at willage Dakhera.

In complance to you orders dated 18.002020 undersighed ajongwith Ratan Lal, Nab Tensildar, Nanaul and Sh. Sum Prokesh, first class mines nanger yisted the dolomite mine of village Dokhera on 21.08.2020

In this tegard, a report and map was prepared by the mines managet Sh. som Pakesh (copy enclosed) for providing a safety bench. As per the map and report a satety bench of minimum of 3 meters width from the crack and 3 metars depth from the existing ground level is required as minimum measure to sofegard the area. Accordingly, a safety bench boundary line was marked 3 meters from the crack on the western edge of the mine. The cracks at western edoe of the mine site were observed and found that the cracks seen earlier are now even more widened and become more dangerous (Photographsattached).

The measuremen and makongof safety bench line from the crack developed at the westernedge ofthe mile was completed and white marks wate made 4 a distance of $3 / m e t e r s$ from the crack on the western edge of the mine for mplementation/of orders of the oirectot, General, Mines and Geology. Narabadn getter an spitt.

$$
\text { किति }-x+2 \text { के } \sin \text { रे को }
$$

ANNEXURES - 1.3
 CLUSTER LETTER FOR 500M FROM LEASE

To,
M / s Xandy mines and Minerals
R/O G.H. 18-A, Celebrity Homes,
Palm Vihar, Gurgaon.

Memo No. 1794

Subject: No Objection Certificate for Cluster.
Reference: Status of other Mining Leases Situated within 500 m radius from our Stone mining project of area 4.80 hectares in the district Mahendergarh, Haryana, awarded by Department of Mines and Geology Haryana,

In reference to your subject, it is intimated that one mining Lease is presentwithin 500 m of your project site that is M / s Stone Field (Area7.46 ha).

Department of Mines \& Geology Narnaul.

ANNEXURES - 1.4
 COPY OF FOREST NOC

From.
Divisional Forest Officer
Mahendergarh.
To.
Mis Xandy Mines and Minerals.
GH18A Celebrity Homes. Palom Whar. Gugaon, Haryana.
No. 6367
Dated: $90-3-14$
Sub: No Objecton Centicate for Dolomite and Baryte lease at vilage Dhonikhera
Applcant Mis Xandy Mines and Minerals, GH-1eA Celebrity Homes. Pafam Vhar Gurgaon, Haryana vide letter dated 14 -03-2014 made a request in connection with land khasara no. 109 min land located at village Dhonkhera Disfict Mahendergan. The detailed report pertaining to this areas as:
a) As per records available above said land is not part of notifed Resoved Forest. Protected Forest under Indian Forest Aot. 1927 National Park Sanctuary area or any areas closed under section $4 \& 5$ of Punjab Land Preservation Act. 1900.
b) It is ciamied that by the Notification No S.O.8P. A $21900 / 5.4 / 2013$ dated 4th January, 2013. ail revenue Estate of Mahendergarh is notified ufs 4 of PLPA 1000 and S.O B1/PA. $2190053 / 2012$ dated 19 th December. 2012 us 3 of PLPA 1900. The area is however not recorted as forest in the Govermment record but felling of any tree is strictly prohibted without the permission of Divisional Forest Officer. Mehendergarn.
c) The lease holder must confined to the area survey/demarcated with GPS and found no sion of artifial plantation in khesra no. 100 mon for which the survey teport was submitted by Dy Commissioner, Mahendergarh at Narnaul to Direcior Mines and Geology, Haryana vide letter Memo No. 44081DA dated 12-11-2013. Any kind of violation of this survey report amounts to contempt of Hon'ble Supreme Court orcier as the remaining area of this knasra no. 109 min comes under Aravalli plantation.
0) All other statitory ciearance mandated under the Enviroment Protection Act. 1985, as per the notification of Ministry of Environment and Forests, Government of India, deted 0.05.1992 or any oner Actorder shall be obianed as applicable by the project proponents from the concemed aathorties.
e) It is clamfed the the Honble Supreme Court has issued varous judgment datec $07.05 .2002 .29 .10 .2001,1642.2002,18.03 .2001,14.05 .2008$, etc. peraning to Aravall region in Heryana, wheh shouid be compiled wish
7) It shall be the responsibitity of user agencypaplicant to get nepassany teataross/permissiont under varion ficis ard Ruies spplicable any, fom the respective authoritiesiDeparment

ANNEXURES - 1.5

PREVIOUS EC LETTER

STATE ENVIRONMENT MMPACT ASSESSMENT AUTHORITY HARYANA Bay No. 55-58, Prayatan Bhawan, Sector-2, PANCHKULA.

No. SEIAA/HR/2016/465
Dated: $27-\alpha-2 / 6$
To
M/s Xandy Mines \& Minerals, G.H. 18-A, Celebrity Homes, Palam Vihar, Gurgaon, Haryana-12200I

Subject: Environmental Clearance for "Extraction of Dolomite and Beryte, along with associated minor mineral (Road Metal \& Masonry)" at Village-Dhonkhera, Tehsil-Narnaul, District, Mahendergarh, Haryana of area 4.80 Ha .

This has reference to your online application dated 30.03.2016 addressed to M. S. SEIAA Haryana; hard copy received on 30.03 .2016 and subsequent letter dated 25.05.2016 seeking prior environmental clearance for the above project under the ElA Notification, 2006. The proposal has been appraised as per prescribed procedure in the light of provisions under the EIA Notification, 2006 and subsequent amendment on the basis of the mandatory documents enclosed with the application viz., Form-1, Prefeasibility report, copy of approved Mining Plan and the additional clarifications furnished in response to the observations of the State Expert Appraisal Committee (SEAC) constituted by MOEF \& CC, GOI vide their Notification 21.08.2015, in its meetings held on 06.05.2016 and 31.05.2016.

The SEAC has examined the application and noted that the propos $\$ 1$ is for Mines \& Mincrals for "Extraction of Dolomite and Beryte, along with associated minor mineral (Road Metal \& Masonry)" at Village-Dhonkhera, Tehsil-Narnaul, District, Mahendergarh, Haryana of area 4.80 Ha . The Mines and Geology Department has granted lease for a period of 07 years subject to the terms and conditions as indicated in Letter of Intent (LOI) dated 28.08.2014. The lease has been granted for an area of 4.80 Ha having Khasra no. $103,108 \& 109$ Village-Dhonkhera. The validity of Mining Scheme in the Mining plan is for 5 years. The Mines \& Geology, Department has clarified that no other mine lease exists within 500 meter radius of this mine. The SEAC appraised this project as category B-2. NOC from Forest Department has been obtained.

Brief details of the proiect:

1.	Category/ltem no. (in schedule):	I (a) B-2	
2.	Location of Project	Village-Dhonkhera, Tehsil-Narnaul, Mahendergarh, Haryana	District
3.	Project Details Khasra No.	"Extraction of Dolomite and Beryte, along with associated minor mineral (Road Metal \& Masonry) at Village-Dhonkhera, Tehsil-Narnaul, District	
Mahendergarh, Haryana Khasra no. 103, 108\& 109			

	Production capacity	over an area of 4.80 Ha Dolomite \& Beryte: $1,25,000 \mathrm{MT}$ R.M. \& M.S: $2,00,000 \mathrm{MT}$ Total: 3,25,000 TPA			
4.	Project Cost	19 Crores			
5.	Water Requircment \& Source	4 KLD th Dust sup Plantation Drinkin	rough Tanke on	et Drilling	2 KLD 1 KLD 1 KLD
6.	Environment Management Plan Budget	7.6 lakh			
7.	CSR Activates Budget	15 Lakh			
8.	Production (Year wise)				
		Year Bench mrl Production			
		First	364 to 358	3,21,650 MT	
		Second	364 to 352	3,25,250 MT	
		Third	370 to 352	$3,25,500 \mathrm{MT}$	
		Fourth	370 to 352	$3,25,100 \mathrm{MT}$	
		Fifth	352 to 346	3,25,100 MT	
9.	Green belt/ plantation				
		Year of Plantation Proposed Plantation			
		I Yr.		200 Trees	
		II Yr.		200 Trees	
		III Yr.		200 Trees	
		IV Yr.		200 Trees	
0.	Machincry required	VYI			
1.	Macinnery required	Excavator, Dozer Crawler Mounted, Wagon Drill with inbuilt Compressors, Air Compressor, Rock Breaker, Diesel Operated Pump, Explosive Van, Water sprinkler, Rear dumpers.			

The SEIAA in its $92^{\text {od }}$ meeting held on $16^{\text {th }}$ June, 2016 considered the recommendation of SEAC and noticed that the mine lease area is Iess than 5 Ha and as such the environmental clearance in this case is to be granted by DEIAA/DEAC in view of amendment to the Notification dated 15.01.2016. The MoEF \& CC, Gol vide letter no. Z-11013/8/2016-IA.II (M) dated 15.03 .2016 has clatified that where SEAC has recommended the cases for environmental clearance and such cases are to be processed at the level of SEIAA for grant of environmental clearance. Accordingly it was decided to accept the recommendation of SEAC and to grant environment clearance to the project by imposing the following conditions:-

A SPECIFIC CONDITIONS:

[1] This Environment Clearance is granted for Extraction of Dolomite and Beryte, along with associated minor mineral (Road Metal \& Masonry) of Stone along with Associated Minerals as per below mentioned figures.

Year	Bench mrl	Production
First	364 to 358	$3,21,650 \mathrm{MT}$
Second	364 to 352	$3,25,250 \mathrm{MT}$
Third	370 to 352	$3,25,500 \mathrm{MT}$
Fourth	370 to 352	$3,25,100 \mathrm{MT}$
Fifth	352 to 346	$3,25,100 \mathrm{MT}$

[2] The project proponent shall obtain prior CTO under Air Act and Water Adt from HSPCB and effectively implement all the conditions stipulated by the HSPCB.
[3] The project proponent shall carry out mining activity strictly as per the approved Mining Plan.
[4] The project proponent shall ensure that the mining operations shall not intersect groundwater table and the mining operation should be restricted at least 3 meter above the ground water table.

15] Topsoil shall be stacked temporarily at earmarked sites only and it shall beo kept unutilized for a period more than three years; it shall be used for land reclamation and plantation in mined out areas.
[6] The project proponent shall ensure that no natural water course/water body shall be obstructed due to any mining operations.
[7] The over burden generated shall be stacked at earmarked dump site (s) only and it shall not be kept active for long period of time. The maximum height of the already existing waste dumps shall not exceed 5 meter in single terraces and the slope angle shall not exceed 28° as per norms.
[8] The dumping site selected and proposed shall be used for $O B$ dump at the designated site within the lease area as per the approved mine plan. In no case the overburden should be dumped outside the lease area.
[9] The benches height and slope shall be maintained as per approved mining plan.
[10] Waste dump shall be terraced. The height of the dump and its slope shall not exceed as suggested in the approved mining plan. A retaining wail shall be constructed at the toe of the dump.
[11] Garland drains shal! be constructed to prevent the flow of the water in the dumps.
[12] Check dams shall be constructed in the seasonal rivulets to prevent the flow of fines to low lying areas during rains.
[13] The total waste generated in the present plan period shall be as envisaged, which shall be accommodated in old dumpsite in addition to the waste aiready dumped. Monitoring and management of rehabilitated areas shall continue unti] the vegetation becomes self sustaining. Compliance status shall be submitted to HSPCB and MOEF Zonal Office, Chandigarh on six monthly bases.
[14] Drills shall either be operated with dust extractors or equipped with water injection system.
[15] The higher benches of excavated void/mining pit shall be terraced and plantation done to stabilize the slopes. The slope of higher benches shall be made genter for easy accessibility by local people to use the water body. Peripheral fencing shall be carried out along the excavated area.
[16] Catch drains and siltation ponds of appropriate size shall be constructed for the working pit, OB dumps and mineral dumps to arrest flow of silt and sediment. The water so collected shall be utilized for watering the mine area, roads, green befi development etc. The drains shall be regularly de-silted, particularly after monsoon and maintained properly.
[17] Garfand drains and check dams of appropriate size, gradient and lenglh shall be constructed both around the mine pit and over burden dumps and sump capacity shall be designed keeping 50% safety margin over and above peak sudden rainfall (based on 50 years data) and maximum discharge in the area adjoining the mine site. Sump capacity shall also be provided and Adequate pits shall be constructed at the corners of the garland drains and de-silted.
[18] Dimension of the retaining wall at the toe of dumps and OB benches within the mine to check run-off and siltation shall be based on the rainfall data.
[19] Plantation shall be raised in a 7.5 meter wide green belt in the safety zone around the mining lease, backfilled and reclaimed area, around water body, along the roads etc. by planting the native species in consultation with the local DFO/Agriculture Department. The density of the trees should be around 2500 plants per ha. Greenbelt shall be developed all along the mine lease area in a phased manner and shall be completed within first five years.
[20] Regular water sprinkling shall be carried out in critical areas prone to air pollution and having high levels of SPM and RPM such as haul road, loading and unloading point and transfer points. It shall be ensured that the Ambient Air Quality Parameters conform to the norms prescribed by the CPCB.
[21] The project authority shall implement suitable conservation measures to augment ground water resources in the area in consultation with the Regional Director, Central Ground Water Board.
[22] Regular monitoring of ground water level and quality shall be carried out in and around the mine lease. The monitoring shall be carried out four times in a year-pre monsoon (April-May), monsoon (August), post monsoon (November); winter (January) and the data thus collected may be sent regularly to MOEF Regional Office, Chandigarh and Regional Director CGWB.
[23] Data on ambient air quality and stack emissions shall be submitted to Haryana Pollution Control Board once in six months carried MOEF/NABL/CPCB/Government approved lab.
[24] Vehicular emissions shall be kept under control and regularly monitored. Measures shall be taken for maintenance of vehicles used in mining operations and in transportation of mineral. The vehicles shall be covered with a tarpaulin and shall not be overioaded. The project proponent shall ensure that the vehicle must have pollution under control certificate.
[25] Blasting operation shall be carried out only during the daytime. Controlled blasting shall be practiced. The mitigation measures for control of ground vibrations and to arrest fly rocks and boulders shall be implemented.
[26] The blasting operation will be carried out as per the norms of Director (Mines \& Safety), Gaziabad. Take all safety measures as per the various mining regulations.
[27] The project proponent shall take all precautionary measures during mining operations for conservation and protection of endangered fauna, if any, spotted in the study area. A plan for conservation shall be drawn and got approved by the Chief Wildlife Warden of the State before start of mining operation. Necessary allocation of funds for implementation of the conservation plan shall be made and the funds so allocated shall be included in the project cost. All the safeguard measures brought out in the wildife conservation plan so prepared specific to the project site shall be effectively implemented. A copy of action plan may be submitted to the HSPCB and MOEF, Regional Office, Chandigarh within 3 months.
[28] As envisaged, the Project Proponent shall invest at least an amount of Rs. 7.6|Lacs as cost for implementing various environmental protection measures including recuring expenses per year.
[29] A sum of Rs. 15 Lacs shall be earmarked by the Project proponent for investment as CSR on socio economic up-liftment activities of the area particularly in the area of habitat, health or education, training programme of rural women $\&$ man prqvide the kit for employment generation. The proposal should contain provision for monthly medical camps, distributions of medicines and improvement in educational facilities in the nearby schools. Details of such activity along with time bound action plan be submitted to HSPCB/SEIAA Haryana before the start of operation.
[30] Budgetary provision of Rs. Rs 3.5 Lacs per year earmarked for the labours working in the Mine for all necessary infrastructure facilities such as health facility, sanitation facility, fuel for cooking, along with safe drinking water, medical camps and toilets for women, crèche for infants should be made and submitted to HISPCB at the time of CTO/SEIAA Haryana. The housing facilities should be provided for mining labours.
[31] A Final Mine Closure Plan along with details of corpus fund shall be submitted to the SEIAA well within the stipulated period as prescribed in the minor mineral concession rules 2012.
[32] The water reservoir, which would be created/available during post closure (all pits), shall be provided with suitable benches and fencing to provide the access to the water body and safety.
[33] The project proponent shall ensure that the Environment Clearance letter as well as the status of compliance of EC conditions and the monitoring data are placed on company's website and displayed at the project site.
[34] The project proponent shall ensure that loading in Trucks do not exceed the norms fixed by the Transport Department as per relevant rules.
[35] The project proponent shall ensure approach roads are widened and strengthened as per requirements fixed by PWD and district administration before the start of the work.
[36] The project proponent shall ensure that all measures are taken simultaneously for safeguard and maintenance of the health of the workers.
[37] The project proponent shall ensure supply of drinking water through RO.
138] The project proponent shall comply with all the conditions of mining as provided in the Notification dated 15.01.2016 issued by the Ministry of Environment, Forest and Climate Change, Government of India.
[39] The project proponent shall strictly comply with the orders passed by the Hon'ble NGI dated 18.02.2016 and 01.06.2016 and also comply with the Comprehensive Mining Plan/Recommendations prepared by the High Powered Committee constituted by the Hon'ble NGT.

GENERAL CONDITIONS:

[i] Any change in mining technology/scope of working shall not be made without prior approval of the SEIAA
[ii] Any change in the calendar plan including excavation, quantum of mineral and waste shall not be made.
[iii] Periodic monitoring of ambient air quality shall be carried out for $\mathrm{PM}_{10}, \mathrm{PM}_{2 . \mathrm{s},}$ SO_{2} and NOx monitoring. Location of the stations (minimum 6) shall be decided based on the meteorological data, topographical features and environmentally and ecologically sensitive targets and frequency of monitoring shall be decided in consultation with the Haryana State Pollution Control Board (HSPCB). Six monthly reports of the data so collected shall be regularly submitted to the HSPCB/CPCB including the MOEF, Regional office, Chandigarh.
[iv] Measures shall be taken for control of noise levels below 85 dBA in the work environment. Workers engaged in operations of HEMM etc. shall be provided with earplugs/muffs.
[v] Waste water (workshop and waste water from the mine) shall be properly collected \& ireated so as to conform to the standards prescribed under GSR 422 (E) dated $19^{\text {th }}$ May 93 and $31^{\text {st }}$ December 1993 (amended to date). Oit and grease trap shall be installed before discharge.
[vi] Personnel working in dusty areas shall wear protective respiratory devices they shall also be provided with adequate training and information on safety and health aspects.
[vii] Occupational health surveillance program of the workers shall be undertaken periodically to observe any contractions due to exposure to dust and take corrective measures, if needed.
[viii] The funds earmarked for environmental protection measures shall be kept in separate account and shall not be diverted for other purpose. Year wise expenditure shall be reported to the HSPCB and the Regional office of MOEF located at Chandigarh.
[ix] The project proponent shall also submit six monthly reports on the status of compliance of the stipulated EC conditions including results of monitored data (both in hard copies as well as by e-mail) to the northern Regional Office of MoEF, the respective Office of CPCB, HSPCB and SEIAA Haryana.
$[x] \quad$ The SEIAA, Haryana reserves the right to add new conditions, modify/annual any of the stipulated conditions and/or to revoke the clearance if implementation of any of the condition stipulated by SEIAA, Haryana or any other competent authorities is not satisfactory.
[xi] Failure to comply with any of the conditions mentioned above may result in withdrawal of this clearance and attract action under the provisions of Environment (Protection) Act, 1986.
[xii] The above conditions will be enforced, inter alia, under the provision of the Water (Prevention \& Control of Pollution) Act, 1974 the Air (Prevention \& Control of Polfution) Act, 1981, the Environment (Protection) Act, 1986 and the Public Liability Insurance Act 1991 (all amended till date) and rules made hereunder and also any other orders passed by the Honb'le Supreme Court of India/High Court of Haryana and other Court of law relating to the subject matter.
[xiii] The Project proponent should inform the public that the project has been accorded Environment Clearance by the SEIAA and copies of the clearance lettir are available with the Haryana State Pollution Control Board \& SEIAA. This should be advertised within 7 days from the date of issue of the clearance letter at least in two local newspapers that are widely circulated in the region and the copy of the same should be forwarded to SEIAA Haryana. A copy of Environment Clearance conditions shall also be put on project proponent's web site for public awareness.
[xiv] All the other statutory clearances such as the approvals for storage of diesel from the Chief Controller of Explosives, Fire department, Civil Aviation Department, Forest Conservation Act, 1980 and Wildlife (protection) Act, 1972 etc. shall be obtained, as may be applicable, by Project proponent from the competent authority before the start of mining operation.
[xv] That the grant of this EC is issued from the environmental angle only, and does not absolve the project proponent from the other statutory obligations prescribed under any other law or any other instrument in force. The sole and complete responsibility, to comply with the conditions laid down in all other laws for the time being in force, rests with the industry/unit/project proponent. Any appeal against this environmental clearance shall lie with the National Green Tribunal, if preferred, within a period of 30 days as prescribed under section 16 of National Green Tribunal Act, 2010.
[xvi] Any area which has been banned by any authority/courts shall not be used for mining activity.

Endst. No. SEIAA/HR/2016/

 State Level Environment Impact Assessment Authority, Haryana, Panchkula.

Dated: \qquad
A copy of the above is forwarded to the following:

1. The Director (IA Division), MoEF\&CC, GoI, Indra Paryavaran Bhavan, Zor bagh Road-New Deilhi.
2. The Regional office, Ministry of Environment, Forests \& Climate Change, Govt. of India, Bay's no. 24-25, Sector 31-A, Dakshin Marg, Chandigarh.
3. The Chairman, Haryana State Pollution Control Board, C-11, Sector-6, Pki.
4. The Director General, Mines \& Geology Department Haryana, Chandigarh.

Member Secretary, State Level Environment Impact Assessment Authority, Haryana, Panchkula.

ANNEXURES - 1.6 CONSENT TO ESTABLISHED

HARYANA STATE POLLUTION CONTROL BOARD C-11, SECTOR-6, PANCHKULA

Website - ww hrypcogovin E-Malt - Hspob.phensifymail.com

Telephone No. - 0172-25778,0-73

No. HSPCBFConsent: 2611914MAHCTE1039375
To
Dated:06/05/2014
M/s: Xandy Mines \& Minerals
Khasra No. 109 mins, at Vill-Dhonkhera, Narnaul Diste-Mtohindergarlı MAHENDRAGARH 123001

Sub. : Issue of Consent to Establish from pollution angle .

Please refer to your Consent to Establish application received in this office on the subject noted above. Under the Authority of the Haryana State Pollution Control Board vide its agenua Item No. 47.8 dated 28.04.83 sanction to the 15 sue of "Consent to Establish" with respect to pollution control of Water and Air is hereby accorded to the unit Xandy Mines \& Minerals, for manufacturing of Dolomite Alafor Mineral) of 4.80 hectare lease area of $125000 \mathrm{MT} / \mathrm{ye}$, with the following terms and conditions:-

1
7. No in prosess or pest-process objectionable emision or the empent will be allowed, if the
8.

The Elcetricity Department will give only temporary connection and permanent connection to the unit will be given after verifying the consent granted by the Board, both under Water
Act and Ait Act.
9. Unit will raise the stack height of DG SetBoiler as per Board's noms.

Cout will mantain proper boghok of Water metersub meter beforeffer commesioning.
11. That in the case of an indusiry ar any other process the activity is lodated in an area approved and that in case the activity is sited in an residential or institutional or commercial or agriculturat area, the necessary permossion for siting such industry and process ta an residental or imstitutional or commercial or agricultural area or controlled area ander Town and Country Planning laws CLU or Manicipal laws bat wo betained from the competent Authoriny in law pentuting this deviation and be submitted in original with the request for consent to operute.
12. That there is no discharge directy of indirectly from the unit or the process into any interstate river or Yamuna kiver or River Ghaggar.
13. That the industry or the unit concerned is not sited within any prohibited distaness accordnu to the livirommental Laws and Rules, Notheation, Orders ana Poleics of Central Pollution contol Board and Haryana State Pollution Control poard.
14. That of the unit is discharging its sewage or trade effluent into the publicisewer mand to recive trade ethuent from inductries etc. then the permission of the Competent Authority owing and operating such public sewer giving permission letter to his unit shatl be submitted at time of consent to operate.
15. That if at any time, there is adverse repor from any adioning reiphotor or any other aggricued party or Munkipal Committe or Zita Parishad or any orther pablie body agatist the unif's polution, the Consent to kstablish so granted shall be revoked.
16. That all the finaneial dues required under the rules and policies of the Board have been deposited in full by the unit for this Consent to Establish.
17. In case of change of mame trom previous Consent to Esrablish granted. fresh Consent to Establish tee statl be terted
18. Industry should adope water conservation meavures to ensure minimum ponstimption of water in their Process. Ground water based proposals of new monstries should ye: clearance from Cenral Ground Water Authority for scientific development ot previar
resonre.

That the unf will take all ather charances from concemed agencies, wheneser required.
That the anit will not change its process withom the prior pemensson of the Board.
21 That the Consent to Eytablish so granted will be invalid, if the mit falls in fraved Area or non conforming area.
22. That the unit will comply with the Hazardons Waste Management Rulet and will atso make the non-fcachate pit for storage of Hazardous waste and will undertak not to dispose off the same except for pis in theit own premises or with the authorized disppsal authority.
23. Thet the unit will submit an undertaking that it will comply with all the specific and general conditions as imposed in the above Consent to Establish withon o days failing
which Consent to Estabish will be revoked.
24. That unit will obtain ELA from MoEF, if required an any stage.
25. In case of unit does not comply with the above conditions within the stipulated period, Consent to Establish will be revoked.

Specific Conditions

1 Unit shall obtein trial consent to operate before start of production

Other Conditions ;

The unt will complying the directions/ conditions RO/Board/Eny. Depti/EMP/Mibng DepithioEF etc.:-

1. Unit will install and maintain adequafe APCM strictly.
2. Unlt will nut affect plantation in the vicinty etc. as per polley of the Board.

Seicmist C. HQ
 For tord on be hatf of chaionan Harvana State Polhuton Contwol hourd

ANNEXURES - 1.7
CONSENT TO OPERATE

HARYANA STATE POLLUTION CONTROL BOARD

Regional office, Mahendragarh at Lala Nemi Chand

 Singhal Enc.Sohna Road, Near Hanuman Mandir, Dharuhera. Email:- hspebromg@gmail.com
E-mail: hspebohry.nic,in

To.
M/s Xandy Mines and Minerals
Khasra No. 109 mins. at Vill-Dhonkhera, Narnaul Dist-Mohindergarh
Subject: Grant of consent to operate to M/s Xandy Mimes and Minerats.
Please refer to your appliation na. 26737457 recaived on dated $2022-07-30$ in regional office Manendragarh. With referenee to your above application for consent to operate, M/s Xandy Mines and Minerals is here by granted consent as per following specification/Terms and conditions.

Comsent Under	BOTH $:$?
Period of consent	$01102022 \sim 30092024$ [
Industry Type	Mining and ore beneficiation
Category:	KED
Investmentin Lakn)	9.6000604
Total Land AreatSq meter)	48000.3
Tona Builmp Areasa. metery	450000
Quantity of efluent	C x^{4}
1. Trade	0.0 KLDay ,
2. Dumsestic	0.2 KLDay , L
Namber of outlets	10.0
Mode of discharge	\cdots
1. Domestic	Septic Tank
2. Tride	
Domestic Effluent Param	meters
1 NA	
Trade Effuent Paramet	
1. NA	
Number of stacks	1
Helght of stack	
$\begin{aligned} & \text { ACOR MINING } \\ & \text { ACTVITY } \end{aligned}$	
Emission parameters	
1. SPM	$100 \mathrm{mg} / \mathrm{m}^{3}$
2. SPM	100 mem ${ }^{\text {m }}$

3. NOX	80 mgm 3
4. Sux	80 mgem3
Product Details	
1. Mining acivity le Dolomite and Baryte	1072 Metric Tonnes/day
Capacity of boiler	
1. nat	Tonhy
Type of furnace	
1.na	
Type of Fuel	
1. Electricity	Kilowatuday
Raw Material Details	
Mining activity te Dolomite and Baryie	1072 Metric TomesDay

Rexional Officer, Mahendragarh
Haryana State Pollution Control Boaral.
Terme and conditions

1. The applicants shall mantaingood bouse keeping both within factory and in the premiscs. All hose pipelines values storage tanks etc. shall be leak proof. In plant allowable pollutants levels, if specifred by State Board should be met strety.
2. The applicant/company shall comply with and carry out directive/orders issued by the Boart in this consent order at all subsequent times whthout negligence of his /its part. The appleanticompany shall be liable for such legal action against him as per provision of the lawher in case of volation of any ordordiectives. Issucd at any time and or non compliance of the terms and condition of his consent order.
3. The applicant shat make appleation for grant of consent at least 90 days before the date of expiry of this consent.
4. Necessary fee as preseribed for obaining renewal consent shall be paid by the applicant alongwith the consent application.
5. If due 10 any techrological improvement or otherwise this Board is of opinion that all or any of the conditions referred to above required variation fincluding the change of any control equipment either in whole or in part) this Board shall after giving the applicant an opportunity of being heard vary all or such condition and there upon the applicant shall be bound to comply with the conditions so varied.
6. The industry shall provide adequate arrangement for fighting the accidental leakages, discharge of any pollutants gashquids from the vessels, mechanical equipment ett. Which are likely to cause environment poltution.
7. The industry shall comply noise pollution (Regulation and control) Rules, 2000 .
8. The industry shall comply all the direction/Rulesinstructions as may be issued by the MOEF/CPCB/HSPCB from time to time.
9. The industry shall ensure that various characteristics of the effluents remain within the tolerance limits as specified in EPA Standard and as amended from time to time and at no time the concentration of my characteristics should exceed these limits for discharge.
10. The industry would imnediately submt the revised application to the Board in the event of any change in the raw material in process, mode of treatment discharge of effuent. In case of change of process at any stage during the consert period, the industry shall submit fresh consent application alongwith the consent to operate fee, if found due, which may be on any account and that shall be paid by the industry and the industry would immediately submit the consent application to the Board in the event of any change during the year in the raw material. quantity, quality of the effuent, mode of discharge, treatment facilities etc.
11. The officerolitiat of the Board stall reserve the right to access for the inspection of the industry in connection with the various process and the treatmen: facilities. The consent to operate is subject to review by the Board at any time.
12. Permissible limits for any pollutants mentioned in the consent to operate order should not exceed the concentration permitted in the effluent by the Board. 13. The industry shall pay the batance fee, incase it is found due from the industry at any time later on.

How
14. If the industry hils to adhere to any of the conditions of this consent to operate order, the consent to operate so granted shall automatically fapse.
15. If the industry is closed temporarily at its own, they shall inform the Board and obtain permission before restart of the unit.
16. The industry shall comply all the Directions/Rulesfistructions issued from time to time by the Board.

Specific Condithons:

1. The unit will comply with provision of all applicable Acts/RulesiDirection of the Board: CPCB/NGT/CAQM along with general conditions of the board. 2. The unit will mantain its APCM dust suppresswa system in well working condition. 3. The unit will plant \& maintain trees within \& outside the premises. 4. Unit will procure water for sprinkling from approved source and will mankain log book for the same $5, \mathrm{CTO}$ sogranted is without prejudice to the any violation eatused by unit in past and will be deemed cancelled on account of any such observation. 6. The unit wil striety comply with all the conditions of EC granted by MOEF\&CC, CTE \& CTO granted by the Board and incase of non compliance of the conditions, the Cro shall be revoked without gring any more opportunity. 7. The unil will abide by all the directions orders issued from time to time by all the court i.e. District Couts, Hon'ble Punjab \& Haryana High Court, Chandigarh, Hon'ble NGT and Hon'ble Supreme Court of India w.r.t. mining projects. 9. Unit will deposit balance CTO fee if found pending at on later stage as per prescribed sehedule.

SANDEEP SINGH:
Regional Officer, Mahendragarh
Haryana State Pollution Control Board.

ANNEXURES - 1.8 EC COMPLIANCE

Half yearly Environmental Clearance compliance Report- M/s Xandy Mines and Minerals, Khasra No. 109 mins, at Vill-Dhonkhera, Narnaul Distt-Mohindergarh

EC Granted vide letter No. SEIAA/HR/2016/465 dated 27.06.2016

Sr. No.	Specific Conditions 1	This EC is granted for production of Stone along with Associated Minerals as per below mentioned figures	Yes, Environment Clearance has been granted by State Environment
Year	Bench mrl	Production	
Yimpact Assessment Authority vide			
letter No. SElAA/HR/2016/465			
dated 27.06.2016. Copy of EC is			
attached as Annexure-1.			

	lease area as per the approved mine plan. In no case the overburden should be dumped outside the lease area.		
9	The benches height and slope shall be maintained as per approved mining plan	Noted and benches heigh will maintained as per mining plan	t and slope approved
10	Waste dump shall be terraced. The height of the dump and its slope shall not exceed as suggested in the approved mining plan. A retaining wall shall be constructed at the toe of the dump.	Noted for compliance	
11	Garland drains shall be constructed to prevent the flow of the water in the dumps.	Noted for compliance	
12	Check dams shall be constructed in the seasonal rivulets to prevent the flow of fines to low lying areas during rains.	Noted for compliance	
13	The total waste generated in the present plan period shall be as envisaged, which shall be accommodated in old dumpsite in addition to the waste already dumped.	Noted for compliance \& T no waste generation for p period.	ere will be esent plan
14	Drill shall either be operated with dust extractors or equipped with water injection system.	Noted	
15	The higher benches of excavated void/ mining pit shall be terraced and plantation done to stabilized the slopes. The slop of higher benches shall be made gentler for easy accessibility by local people to use the water body. Peripheral fencing shall be carried out along the excavated area.	Noted. The higher benche pit will be terraced and will be done to stabilize The slope of higher benc made gentler for easy acc local people to use the Peripheral fencing will be along the excavated area.	s of mining plantation the slope. hes will be essibility by water body. carried out
16	Catch drains and siltation ponds of appropriate size shall be constructed around the mine working, mineral and $O B$ dumps to prevent run off of water and flow of sediments directly into the river and other water bodies. The water so collected should be utilized for watering the mine area, roads, green belt development etc. The drains shall be regularly desilted particularly after the monsoon and maintained properly.	Catch drains of appropria be constructed to arrest and sediment. The water will be utilized for waterin area, roads, green belt d etc. The drains will be regularly.	te size shall flow of silt so collected ing the mine development maintained
17	Garland drain setting tanks and check dams of appropriate site, gradient and length shall be constructed both around the mine pit and over burdong dumps to prevent run off water and flow of sediments directly into the river and other water bodies and sump capacity should be designed keeping 50% safety margin over and above peak sudden rainfall (based on 50 years data) and maximum discharge in the area adjoining the mine site. Sump capacity shall also provide adequate retention period to allow proper settling of silt material. Sedimentation pits shall be constructed at the corners of the garland drains and delisted	Catch drains and siltatio appropriate size has around the mine site to off of water. The collecte be utilized for waterin area, roads, green belt etc.	on ponds of constructed prevent run d water will g the mine development

18	Dimension of the retaining wall at the toe of dumps and $O B$ benches within the mine to check run-off and siltation shall be based on the rainfall data.	Noted
19	Plantation shall be raised in a 7.5 meter wide green belt in the safety zone around the mining lease, backfilled and reclaimed area, around water body, along the roads etc by planting the native species in consultation with the local DFO/Agriculture Department. the density of the trees should be around 2500 plants per ha. greenbelt shall developed all along the mine lease area in a phased manner and shall be developed all along the mine lease area in a phased manner and shall be developed within first five year.	Plantation will be planted as per mining plan and Greenbelt will be developed all along the mine lease area in a phased manner and will be completed first five years all along the periphery of the mine lease
20	Regular water sprinkling shall be carried out in critical areas prone to air pollution and having high levels of SPM and RPM such as haulage road, loading and unloading point and transfer points. It shall be ensured that the ambient air quality parameters confirm to the norms prescribed by the CPCB.	Agreed. Permanent water sprinkling is being done on main haulage road, loading and unloading points and transfer points. Regular monitoring is being/ will be conducting as per the CPCB norms in critical areas prone to Air Pollution and having high level of SPM \& RPM. (Lab reports are attached as Annexure -3) Plantation is also being carried out around the mine to arrest the dust at source.
21	The project authority shall implement suitable conservation measures to augment ground water resources in the area in consultation with the Regional Director, CGW Board.	Noted -- -- - -
22	Regular monitoring of ground water level and quality shall be carried out in and around the mine lease. Themonitoring shall be carried out four time in a year pre pre-monsoon (April-May), monsoon (August), post monsoon (November) and winter (January) and the data thus collected may be sent regularly to the Ministry of Environment, Forests and Climate Change and its Regional Office Chandigarh, and Regional Director CGWB.	This project of mining is not a dewatering project. Mining will carried out above ground water level and hence there is no depletion ground water due to mining. Regular monitoring of the ground water is being/ will be carried out
23	Data on ambient air quality and stack emissions shall be submitted to HSPCB once in six months carried out by MOWEF/NSBL/CPCB/Govt. approved lab.	Analysis data of ambient air is being / will be carried out from time to time by MOWEF/NSBL/CPCB/Govt. approved lab.
24	Vehicular emissions shall be kept under control and regularly monitored. Measures shall be taken for maintenance of vehicle used in mining operations and in transportation of mineral. The mineral will be transported by covered conveyor belt to the cement plant which shall be set up based on this deposit. The vehicles carrying the mineral shall not be	Noted, PCU certificate for all the vehicles will be obtained from authorized testing centres. During transportation all the haulage roads including the main ramp from the mines pit will be kept wide, levelled, compacted and properly maintained

	overloaded. The project proponent shall ensure that the vehicle must have pollution under control certificate	and watered regularly during the operation to prevent generation of dust due to movement of trucks dumpers and other vehicles. Overloading of mineral will be restricted and mineral will be transported through tarpaulin covered trucks.
25	Blasting operation shall be carried out only during the daytime. Controlled blasting shall be practiced. The mitigation measures for control of ground vibrations and to arrest fly rocks and boulders shall be implemented.	Blasting is being conducted on in day time and as per the approved mining scheme as well as DGMS guidelines. Ear plugs has provided to the persons working in the mining area. The mitigation measures to reduce the impact due to blasting are as follows: - Silencer in the machineries is being provided to reduce generation of noise. - Drilling with sharp edges bits will minimize generation of noise. - Control blasting is being done with proper charge of explosive to minimize noise during blasting. - Regular Noise monitoring is being/will be conducting regularly at the project site.
26	The blasting operation will be carried out as per the norms of Director (Mines \& safety) Gaziabad. Take all safety measures as per the various mining regulations.	Blasting is being carried out only daytime and blasting carried as per norms of Director (Mines \& safety) Gaziabad and all taken safety measures as per the various mining regulations.
27	The project proponent shall take all precautionary measures during mining operation for conservation and protection of flora and fauna., if any, spotted in the study area.	Noted.
28	As envisaged the project proponent shall invest at least an amount of Rs. 17.6 Lakh as cost for implementing various environmental protection measures including recurring expanses per year.	Noted. The project proponent will invest amount of Rs. 17.6 lakh as cost for implementing \| various environmental protection measures including recurring expenses per year.
29	A sum of rs. 15 Lakh shall earmarked by the project proponent for investment as CSR on socio economic up-liftment activities of the area particularly in the area of habitat, health or education, training, programmee of rural women $\&$ man provide the kit	Noted for compliance

	for employment generation.	
30 31	Budgetary provisions of rs. 3.5 Lacs per year earmarked for the labours working in the mine for all necessary infrastructure facilities such as health facility, sanitation facility, fuel for cooking along with safe drinking water, medical camps and toilets for women and submitted to HSPCB at the time of CTE/CTO/SEIAA Haryana.	An amount of Rs. 3.5 Lakh Per annum is allocated for providing Labour facilities. For the working labours following Facilities will be provided by project proponent: - Temporary Shelter facilities are being provided to the laborers at the Mine Site. - Hygienic Toilet Facilities is being provided at the Mine Site. - Portable drinking water is being provided to the laborers. - Regular Medical checkup facilities are being provided.
31	A final mine closure plan along with details of corpus fund shall be submitted to SEIAA well within the stipulated period as prescribed in the minor mineral concession rules, 2012.	Noted
32	The water reservoir, which would be created/available during post closure (all pits) shall be provided with suitable benches and fencing to provide the access to the water body and safety.	Noted
33	The project proponent shall ensure that the EC letter as well as the status of compliance of EC conditions and the monitoring data are placed on company website and displayed at the project site.	Noted and compliance done
34	The project proponent shall ensure that loading in trucks do not exceed the norms fixed by the Transportation Deptt as per relevant rules.	Overloading of mineral will be restricted and loading is being done as per the norms of Transport Department.
35 36	The project proponent shall ensure approach roads are widened and strengthened as per requirements fixed by PWD and district administration before the start of the work.	The project proponent has widening and strengthening the existing public road as per requirement fixed by PWD and district Administration.
36	The project proponent shall ensure that all the measures are taken simultaneously for safeguard and maintenance of the health of the workers.	Protective respiratory devices like Nose mask are provided to the labors working in the dusty area, occupational health surveillance program of the workers is being taken periodically. However there is no dust due to sufficient water

		sprinkling on haul roads etc.
37	The project proponent shall ensure supply of drinking water through R0.	The project proponent has supply the RO water for drinking purpose at the mine site. The water for other purpose is being be obtained from water tankers.
38	The project proponent shall comply with all the conditions of mining as provided in the Notification dated 15.01.2016 issued by the MoEF and Climate Change, Government of India.	Noted for compliance
39	The project proponent shall strictly comply with the orders passed by the Hon'ble NGT dated 18.02.2016 and 01.06.2016 and also comply with comprehensice Mining Plan/Recommendations prepared by the High Powered Committee constituted by the Hon'ble NGT.	Noted for compliance
	GENERAL CONDITIONS	
1	Any change in mining technology/scope of working shall not be made without prior approval of the SEIAA.	There will be no change in the mining technology and the scope of working without prior approval of SEIAA.
ii.	Any change in the calendar plan including excavation, quantum of mineral and waste shall not be made.	Work is being conducted as per the proposed mine scheme by DGM Haryana.
ini.	Periodic monitoring of ambient air quality shall be carried out for PM10, PM2.5, SO2 and NOx monitoring. Location of the stations (minimum 6) shall be decided based on the meteorological data, topographical features and environmentally and ecologically sensitive targets and frequency of monitoring shall be decided in consultation with the HSPCB	Regular monitoring is being/ will be conducting from time to time. (Lab reports are attached as Annexure 3)
iv.	Measures shall be taken for control of noise levels below 85 dBA in the work environment. Workers engaged in operations of HEMM, etc. should be provided with ear plug/ muffs.	During mining activities the noise level is below 85 dBA . All scientific blasting is proposed to reduce the vibrations and check noise pollution. An earplug is being provided to the workers. All the machineries including transport vehicles are properly maintained to minimize generation of Noise. Drilling with sharp edges bits is provided to reduce generation of noise.
v.	Waste water (workshop and waste water from the mine) should be properly collected, treated so as to conform to the standards prescribed under GSR 422 (E) dated 19th May, 1993 and 31stDecember, 1993	That the project is a mining lease for extraction of stone. Project is neither water consuming nor water polluting industry. Hence there is no discharge

	or as amended from time to time. Oil and grease trap Shall be installed before discharge	of workshop effluents.
vi.	Personnel working in dusty areas should wear protective respiratory devices and they should also be provided with adequate training and information on safery and health aspects.	Protective respiratory devices like Nose mask are provided to the labors working in the dusty area, occupational health surveillance program of the workers is being taken periodically. However there is no dust due to sufficient water sprinkling on haul roads etc.
vii.	Occupational health surveillance programe of the workers shall be undertaken periodically to observe any contractions due to exposure to dust and take corrective measures, if needed	Occupational health surveillance program of the workers is being taken periodically. Dust mask is being provided to be workers working in the dust prone areas as additional personal protective equipments. Workers are informed and kept aware about occupational health hazards due to such activities and preventive measures. Workers health related problem is being properly addressed.
viii.	The funds earmarked for environmental protection measures should be kept in separate account and should not be diverted for other purpose. Year wise expenditure shall be reported to the Ministry and its Regional Office located at Chandigarh.	Separate account/fund will maintained for environmental protection measure.
ix.	The project proponent shall submit six monthly reports on the status of compliance of the stipulated environmental safeguards to the Ministry of Environment, Forests and Climate Change, its Regional Office, Chandigarh, Central Pollution Control Board and State Pollution Control Board.	Noted
x.	The SEIAA, Haryana reserves the right to add new conditions, modify/annual any of the stipulated conditions and / or to revoke the clearance if implementation of any of the condition stipulated by SEIAA, Haryana or any other competent authority is not satisfactory.	Noted
xi.	Failure to comply with any of the conditions mentioned above may result in withdrawal of this clearance and attract action under the provisions of EP Act, 1986	Noted
xii.	The above conditions will be enforced, inter alia, under the provisions of the Water Act, 1974 the Air Act, 1981, the EP Act, 1986 and the PLI Act, 1991 and rules made hereunder and also any other orders passed by the Hon'ble Supreme Court of India/High Court of Haryana and other Court of law relating to	Noted. All conditions will be enforced, inter alia, under the provision of the water (Prevention \& control of Pollution) Act, 1974 the Air (Prevention and control of

	the subject matter.	pollution) Act, 1981, the Environment (Protection) Act, 1986 and the public Liability Insurance Act 1991 (all amended till date) and rules made here under and also any other orders passed by Honb'le Supreme Court of India/High Court of Haryana and other Court of law relating to this matter.
xiii.	The project proponent should inform the public that the project has been accorded EC by the SEIAA and copies of the clearance letter are available with the HSPCB \& SEIAA. This should be advertised within 7 days from the date of issue of clearance letter at least in two local newspapers that are widely circulated in the region and the copy of the same should be forwarded to SEIAA Haryana. A copy of EC conditions shall also be put on project proponent website for public awareness.	Noted and we have already advertised local news papier.
xiv.	All the other statutory clearances such as the approvals for storage of diesel from the Chief Controller of Explosives, Fire department, Civil Aviation department, forest conservation act, 1980 and wildlife Act, 1972 etc shall be obtained, as may be applicable, by project proponent from the competent authority before the start of mining operation.	Noted for compliance and we have obtained all permission from concerned authority for mining activity.
xv	That the grant of this EC is issued from the environmental angle only, and does not absolve the project proponent from the other statutory obligations prescribed under any other law or any other instrument in force. the sole and complete responsibility, to comply with the conditions laid down in all other laws for the time being in force, rest with the industry/unit/project proponent.	Noted
xvi	Any area which has been banned by any authority/courts shall not be used for mining activity.	Agreed

ANNEXURES - 1.9
 LAB REPORT AS PER PREVIOUS EC

A-PDF Image Po PDF Demo. Purchase from www.A-PDF.com to remove
 Laboratory: Plot No. 82A, Sector - S, IMT Manesar, Gurugram-122051, Haryana

 ISO 9001||SO 14001 |ISO 45001

"SOP- Laboratory Standard Operating Procedure.

Note: Terms \& conditions refer on backside of test report.
www.vardan.co.in

Laboratory: Plot No. 82A, Sector - 5, IMT Manesar, Gurugram - 122051, Haryana
SO 9001|ISO 14001||SO 45001

Test Report

Sample Number:
Name \& Address of the Party:

Sample Description:

General Information:
Sample collected by
Sampling Location
Instrument Used
instrument Code
Instrument Calibration Status
Meteorological condition during monitoring
Date of Monitoring
Time of Monitoring
Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
Surrounding Activity
Scope of Monitoring
Control measure if Any
Sampling \& Analysis Protocol
Parameter Required : IS -5182 \& CPCB Guide lines
: As Per Client Requirement

Note: Terms \& conditions refer on backside of test report

(B)

Vardan EnviroLab

Laboratory: Plot No, 82A, Sector - 5, IMT Manesar, Gurugram-122051, Haryana ISO 9001 IISO 14001 |ISO 45001

${ }^{4}$ SOP- Laboratory Standard Operaling Procedure.

- Vardan EnviroLab

Laboratory: Plot No. 82A, Sector - 5, IMT Manesar, Gurugram-122051, Haryana ISO 9001]ISO 14001|ISO 45001

Test Report

Sumple Number
Name A Address of the Project:

Sample Descriptian:
Sample Location:
Sample Collected by:
Varmmeter Kequired;
Samping and Analysis Pratucolz

Report No.t	VE1 W/2205/16\%el
Format No.:	9.5 F-61
Party Reterence No:	Vil.
Reporting Date:	21/65 2022
Period of Anatysis;	16/40/2722 to 21,05/2022
Reccipt Date:	16) 6 ¢ 20 m 22
Sampling Date:	14/ta/2022
Sampling Quantity:	2.1 1:3m +250 mb
Sampling Type:	Gran
Preservation:	Refriger

S. No.	Parameter	Tcst-Metbod $+\mathrm{Fl}^{*}$ B Electrometric Method	Kesuit	Unit	Limits of 15: 10500-2012	
					Requiremant (Acceptable Limit)	Permissible Fimit in the Absence of Alternate Source
1.	$\mathrm{pH}\left(\mathrm{at} 25^{\circ} \mathrm{C}\right)$		7.86	**	6.5 ti. 8.5	No Retaxation
2.	Colour	APlfa $2120 \mathrm{~B}, \mathrm{Visual}$ Comparisem Method		flazen	${ }_{5}$	15
3.	Turbidity	APHA, 2130 B Nephelometric Method	* 3 BL (**DL 10 NTH	NTU	1	5
4.	Odour	APHA 2150 B , Threshold Ofour Methed	Agreable	-	Agresahle	Agreabic
5.	Taste	AP1A, 2160 B , Threshold Test Methot	Agreeable	-r	Agratable	Agrecable
6.	Fotal Hardness as CaCO_{3}	APHA, 2340 C, EDTA Titrimetric Method	673.09	mad	$2{ }^{6} 3$	600
7.	Calcium as Ca	APHA 3500 Ca B. FDTA Titrimetric Method	191.63	mg 1	75	200
8.	Atalmity as CaCO_{3}	APtha, 2520 B, Thrimerric Method	598.22	mg/	261	600
9.	Chiloride as Cl	APliA, $4500-\mathrm{CIB}$. Argontometric Meibed	182.37	$\mathrm{mg} /$	259	1000
70.	Ctanide as CN		* 1 lf$) 1$ +**DL $0.02 \mathrm{mg} / \mathrm{l})$	$\mathrm{mg} /$	0) 56	No Relaxation
11.	Magnesimm as Mg	APHA . $4560 \mathrm{CN}-\mathrm{D}$	- 47.11	mg 1	S	100
12.	fotal Dissolved Solids	APHA ${ }^{\text {, } 5500 \mathrm{Mg} \mathrm{B} \text {, Calculation Method }}$	1875.90	med	Som	2006
13.	Sulphate si SO_{4}	AP'iA , 2540 C., Gravimetric Method	168.50	mgl	2 t 等	100
14.	Fhuride as 5	APHA, 4500 E , Tutidimetric Method	1.87	mg/	1.5	1.5
15	Nitrate as NO_{4}	APHA . 4300 - F - D, SPADNS Metbod	43.63	$\mathrm{mg} /$	\%	No Rclaxation
16.	Iron wime	is 3025 ($\mathrm{P}, 34$), (hromutropic Methed	0.29	mg1	10	No felaxation
17.	Álumisium as Al	IS 3125 (P-65):2014(RA:2019)	*BDL(**OL 0.002 mg 2$)$	med	0.15	0.2
18.	Poros	IS 3023 (P-65)2014RA:2019)	*BDL**DE.0.01 neg	mgl) 5	2.4
19.	Total Chromium as Cr	1S 3025 (P-65):2014(RA:2019)	${ }^{*} \mathrm{BDLL}\left({ }^{*} \mathrm{D} \mathrm{D}_{1}, 0.002 \mathrm{men}\right.$	mg/	0.05	No Retaxation

Note: Terms \& conditions refer on backside of test report.
www.vardan.co.in

Test Report

Sample No,: VEL/XMM/W\%ul			Report No, VEE/N/2205/6/001			
					Limits of 5	10500-2012
5.18	Parameter	Test-M1etinod	Result	Enit	Hequirement (Acceptable) fimia	Permissible Pimit in the Amente of Alternate Source
. 3	Phenolic Compounds	APHA, 5530 C Ciltorotorm Extraction Method	*BDL(**DL $0.001 \mathrm{mg} / \mathrm{l})$	mg / l	0.001	0.002
21	Mineral Oil	Clause 6 of IS:3025 (Part 39)	*BDL(*DL 0.01 mg /)	mg/	0.5	No Relaxation
22.	Anonic Detergents as MBAS	Annex K, 1S 13428/1S 3025 (P-68)	*BDL ${ }^{* *} \mathrm{DL} .0 .05 \mathrm{mef}$	mgl	$0{ }_{2}$	1.0
-3	Finc as $\langle a$	IS 3025 (P-65) 20:4(RA:2019)	*PDi_(**DL 0.05 mgel)	mgl	5	15
- 1.	Copper as Cu	IS 3025 (P-65):20]4(RA:2019)	* BDl (${ }^{* * D L .} 0.05 \mathrm{mg}$)	$\mathrm{mg} / 4$	0.5	1.5
25.	Manganesc as M	IS 3035 (P-65) $2014(\mathrm{RA} 2019)$	* $\mathrm{BDL}(* * \mathrm{DL} 0.01 \mathrm{mg}$)	mgl	0.1	63
26	Cadman as Cd	[S 3025 (P-65):2014(RA2019)		m@ 1	0.603	No Refaxarion
7	lcad as Pb	IS 3025 (P-65):2014(R4:2019)	* $\mathrm{BDL} 4^{* *} \mathrm{DL} 0.002 \mathrm{mg}$ ()	mgit	9. ${ }^{1}$	No Relamalion
-	Sclenium as Se	IS 3025 (P-65):2014(RA:3019)	*BDLi**D. $0.601 \mathrm{mg} / \mathrm{t}$	mg ${ }^{\text {d }}$	0.01	No Relaxation
39	Arsenit as 4 s	1S 3025 (P-65):2014(RA:2019)	*3DL(** DL 0.002 mgl)	met	0.01	No Relaxation
3)	Mercury as Hg	iS 3025 (P-65):2014(RA:2019)	* WBL. ${ }^{* *}$ DL 0.0005 then)	mgt	0.603	No Relaxation
$\therefore 1$.	Total Coliform	$1515185: 2016$	ábsent	1100 ml	Shut foot be d 130 m	etectable in any sample
:	E. Coll	1S 15185:2016	Absent	100ma	$\begin{array}{r} \text { Sinall pee be } \\ \text { imen } \end{array}$	fectable in any sample

Note: - This Repor Complies as per IS $105(\mathrm{~N}) 2012$ (RA: 2018)
*BDL-Below Detsction Limit. *=DL- Detection Limit.

www.vardan.co.in
Note: Terms \& conditions refer on backside of test report.

ANNEXURES - 1.10
 NOC FROM GRAM PANCHAYAT

सुशीला सरपंच
सरपंच ग्राम पंचायत - ढौखेरा
(खण्ड - बांगल चौधरी)
तह. नांगल चौधरी, जिला महेन्द्रगढ़(हरि०) पिन नं. 123023

प्रमारित किया जाता है कि गुम दौरेंरा तहसीलनांगm चौधी जला महेन्द्राप हरियागा मे जोनी माईन्शा एणड मिना इस स्थापित है जो रुसरा न्वर 109 मे 4.8 हैरेया मै है। उपरोक्त जन्डी माईन बाबत ग्याम पचापत को मिसी तरह की कोई आपतित नही है। Doktora (N.Chodhary)

ANNEXURES - 1.11
 APPROVED DSR REPORT

XANDY MINES AND MINERALS

To,
The Mining Officer,
Mines and Geology Department,
Namaul, Haryana
Date; June $26^{1 \%}, 2023$
Subject: Regarding approved District Survey Report (DSR) for "Donkhera Dolomite Mine along with Associated Minor Minerals Lease Area - 4.80 ha Village-Donkhera, DistrictMahendergarh, State-Haryana by M/s. Xandy Mines and Minerals.

Dear sir.
This is reference to the above-mentioned project for which approved DSR from the Mining Department is being required for the Environment Clearance Process. Khasra no. of the mining lease area are given in below table for your reference:

You are requested to kindly give us approved DSR report for the above-mentioned project.

Thanking You,

For Xandy Mines and Minerals

DISTRICT SURVEY REPORT

FOR MINING OF MINOR MINERALS OF DISTRICT MAHENDRAGARH, HARYANA

District Survey Report is prepared in accordance with Para 7 (iii) of S.O.3611 (E) dated 25th July 2018 of Ministry of Environment, Forest and Climate

Prepared By:-

OUTLINE OF THE DISTRICT SHRVEY BEPORY OF MINERAS: IN UASTRTCT MAIIENDERGARII, IIARYANA

1.	PREFACE	(1)
2	Introduction	(2-3)
3	Overview of mining activity in the Disitici	(4)
4	General Profite of the District	(4-7)
5	General Characterisilics of the Districi	(8)
6	Geology And Mineral Wealth of the District	(8-9)
7.	Drainge of itrigation pattern	(9-11)
8	Land Utilsation Pattern in the District: Agricultural, Horticultural, etc.	(11-12)
9.	Surface Water and Ground Water scenario of the district.	(12.13)
10.	Rainfall of the district and climatic conditon	(13-14)
10	Detail of the mining lease in the district.	(15-22)
11.	Mineral Map of The District	(23)
12	Quality / Grade of Mineral available in the district.	(24)
13.	Use of Mineral	(24-25)
14.	Impact on the Environment (Air, Water, Noise, Soil, Flora \& Fauna, land use, agriculture, forest etc.) due to mining activity.	(25-28)
15.	Remedial Measures to mitigate the impact of mining on the Environment.	(28-30)
16.	Reclamation of Mined ouf area (best practice already implemented in the district, requirement as per rules and regulation, proposed reclamalion plan)	(30)
17.	Risk Assessment \& Disaster Management Plan	(31)
18.	Plantation and Green Bell Development in respect of lease already granted in the district.	(31-32)
19.	Process of Deposition of Minerals in District	(32-34)
20.	General Profile of District	(34-43)
21.	Land Ulilization Pattern in District:-	(44)
22.	Forest and Forest Types	(45)
23.	Conclusion	(46)

PREFACE

In Compliance to the Notification Issued by the Ministry of Environment, Forest and Climate change S.O. 3611(E) Dated 25.07.2018, the preparation of District survey report of minor minerals is in accordance appendix 10 of the notification. It is also mentioned here that the procedure of preparation of District Survey Report is as per notification guidelines. Every efforts have been made to minor minerals mining locations, areas \& overview of Mining activity in the district with all it's relevant features pertaining to geology \& mineral wealth sources. This report will be a model and guiding document which is a compendium of available mineral resources, geographical set up, environmental and ecological set up of the District and is based on data of various departments, published reports and websites.

1. INTRODUCTION:-

Mahendragarh district occupies the southern extremity of the Haryana state jointly with Rewari and Gurgaon districts of Haryana. It has a total geographical area of $1776 \mathrm{sq} . \mathrm{km}$. and falts between Latitudes $27^{\circ} 48^{\prime} 10^{\prime \prime}$ and $28^{\circ} 8^{\prime} 30^{\prime \prime}$ and Longitudes $75^{\circ} 54^{\prime} 00^{\prime \prime}$ and $76^{\circ} 51^{\prime} 30^{\prime \prime}$. Mahendragarh district is bounded by Dadri and thajjar districts in its north, Rewari in its east and Alwar and Jhunjhunu (Rajasthan) districts in its south and west respectively. Administratively, the district is divided into three sub divisions, namely Mahendragarh, Narnaul and Kanina. The district, located in the semi-arid region of the state, has its head quarter at Narnaul. The district forms a part of Haryana Plains which itself is an integral part of Indo-Gangetic alluvial plain, has vast stretch of almost flat land. There are eight development blocks in the area namely Ateli, Kanina, Mahendragarh, Nangal Chaudhary and Narnaul, Sihma, Nizampur and Samali. The district is comprised of 370 vilages and 5 towns with the population of $9,21,680$ souls as per 2011 census.

The district lies between north latitude $27^{\circ} 47$ to $28^{\circ} 26$ and east longitude $75^{\circ} 56^{\prime}$ to $76^{\circ} 51^{\prime}$. It is bounded on the north by Dadri and Jhajar districis, on the east by Rewarl cistrict and Alwar district of Rajasthan, on the south by Alwar, Jaipur and Sikar districts of Rajasthan, and on the west by Sikar and Jhunjhunu districts of Rajasthan.

In district Mahendergarh of Haryana, there are so many types of mineral such as Dolomite, Baraytes, Quartz, Quartzite, Road Metal and Masonry Stone, Lime Stone, Caicite, Iron Ore, Slate Stone, Granite, Felspar, Bajri/ Sand etc. are available in district Mahendergarh. Eight Mines of Road Metal and

Masonry stone, quartz and bajri in the district are already in operation and few are in queue likely to be come into operation.

Minerals are classified into two groups, namely (i) Major minerals and (ii) Minor minerals. Amongst these two groups minor mineral have been defined under section 3 (e) of Mines and Minerals (Regulation and development) Act, 1957; Quartz \& Felspar were included in major mineral.

With subsequent notification dated $10.02 .2015,31$ minerals (as notified in the Act) have been declared as Minor Minerals. Therefore, minerals namely Quartz \& Felspar for which lease was granted now have fallen under category of Minor Minerals and shall be under the purview and provisions of the "Haryana Minor Mineral Concession, Stocking, Transportation and Prevention of Illegal Mining Rule, 2012".

As per Gazette notification of dated 15.01.2016 passed by Ministry of Environment, Forest and Climate Change prior Environmental clearance for the mining of minor minerals has now become mandatory in the area of mining lease.

According to the guidelines of this Gazette notification, an district survey report for mining of minor mineral have been prepared for necessary and future requirement to provide the Environment Management Plan for the purpose of mining of minor minerals in district.

In district Mahendergarh, Aravalli hills exists with different type of minerals such as quartz, felspar, baraytes, dolomite, road metal and masonry stone, sandi bajri, slate stone, lime stone, calcite, granite, iron ore, kyanites and quartzite stonel minera. Aravalli hill range inselbergs and seattered in different locations of the district Aravalli hills which scattered through different villages of the district such as Garhi Khudana, Zerpur, Mandola, Rajowas, Ushmapur, Sohla, Basai, Digrota, Madhogarti, Pali, Narnaul, Pachmota, Rasulpur, Jakhani, Khatoti, Lebroda, Khampura, Khaspur, Dhanota, Rambas, Karoli, Maroli, Naya Gaon. Musnota, Bayal, Gangutana, Golwa, Jainpur, Antri Biharipur, Morund, Berundla, Sareli, Ghataser, Bakhrija, Sehlong, Mudandpura, Basirpur, Amarpur Jorasi, Bazar etc. Minerals like fluvial Sandi Bajri Ordinary clayl brick earth are available throughout the river bed area of Krishnawati and Dohan rivers which are passed through the villages such as Deroli Jat, Kherki, Baproli, Mehrampur, Khatoti, Badopur, Jadupur, Bamanwas, Dhani Jajma, Nolayaja, Antri, Biharipur, Kojinda, Mandi, Dhani Bhathotha, Nangal Pipa, Nanget Kaliya etc. The area of Mahendergarh district is marked by the Indo-gangetic Alluvial Plains with outcrops of Arava"i Ranges and overlain by Eolian Sand Dunes at isolated places. In addition, Brick earth is excavated at scattered places. The list of mining leasesl contracts in district Mahendergarh which are in operation/ temporary closed due to some personal reasons/likely to be in operations.

3. GENERAL PROFILE OF THE DISTRICT:-

3.1 Haryana State Profile

Haryana is a state in north India. It was carved out of the state of Punjab in 1966. It bordered by Punjab and Himachal Pradesh to the north and Rajasthan to the west and

- The Aravallj Range in the south

3.2 Mahendragarh District Profile

Mahendergarh district occupies the southern extremity of the Haryana state jointly with Rewari and Gurgaon districts of Haryana. It has a total geographical area of 1776 sq. kn. and falls between latitudes $27^{\circ} 48^{\prime} 10^{\prime \prime}$ and $28^{\circ} 8^{\prime} 30^{\prime \prime}$ and longitudes $75^{\circ} 54^{\circ} 00^{\prime \prime}$ and $76^{\circ} 51^{\prime} 30^{\prime \prime}$. Mahendergarh district is bounded by Dadri and Jhajjar districts in its north, Rewari in its east and Alwar and Jhunjhunu (Rajasthan) districts in its south and west respectively. Administratively, the district is divided into three sub divisions, namely Mahendergarh, Namaul and Kanina. The district, located in the semiarid region of the state, has its head quarter at Narnaul. The district forms a part of Haryana Plains which itself is an integral part of Indo-Gangetic alluvial plain, has vast

stretch of almost flat land. Broadly speaking the district can be divided into five distinct landscapes with elevation varying from 200 mean above sea level (mers) to 634 mtrs, in Aravalli hills near Bayal village, foot hilts flood plains, Aeolian plains and sand dunes Alluvium deposits. There are eight development blocks in the area namely Ateli, Kanina, Mahendergarh, Nangal Chaudhary and Narnaul, Sihma, Nizampur and Satnali. The district is comprised of 370 villages and 5 towns with the population of $9,21,680$ souls as per 2011 census. The district lies between north lattude $27^{\circ} 47$ to $28^{\circ} 26$ and east longitude $75^{\circ} 56^{\prime}$ to $76^{\circ} 51^{\prime}$. It is bounded on the north by Dadri and hajar districts, on the east by Rewari district and Alwar district of Rajasthan, on the south by Alwar, Jaipur and Sikar districts of Rajasthan, and on the west by Sikar and Jhunjhunu districts of Rajasthan.

3,3 Administrative

There are 4 Vidhan Sabha constituencies in this district: Ateli, Mahendergarh, Narnaul and Nangal Chaudhry. All of these are part of Bhwani-Mahendergarh Lok Sabha constituency. The district has an area of $1899 \mathrm{sq} . \mathrm{kms}$. The population density the district is 921,680 (Census 2011) in which 486 Thousands are male over 435 thousands of female, over all rural population is $78,8,000,14.61 \%$ are percent5age of Urban population to total population. The District is 165 km away from Delhi and well connected to National highway 08 through Rewari the district lies between the Latitude 76.15° East to Latitude 28.28° North. The District Administrative map is epitomized in below Figure.

6

 princely states; Namaul and Mahewdergarh tehsils from Patiala State, Dadri (Charkhi Dadri) from Jind State and a part of Bawal nizamat from Nabha State It became a part of Patiala and East PunjabStates Union (PEPSU) state. On Nevember 1, 1956, with the merger of PEPSII with Punjab, it bexame a part of Punjab state and with the formation of Haryana state in 1966; it became a part of the newly formed state. Rewari tehsil of Gurgaon district was added to it in 1972 but Rewari tehsil was made a separate district in 1989.
4.0 GEOLOGY AND MINERAL WEALTH OF THE DISTRICT :-

In district Mahendergarh, Aravalli hills exists with different type of minerals such as quartz, felspar, baraytes, dolomite, road metal and masonry stone, sand bajri, slate stone lime stone, calcite, granite, Iron ore, kyanites and quartzite stonel mineral. Aravalli hilf range inselbergs and scattered in different locations of the district. Aravalli hills which scattered through different villages of the district such as Garhi Khudana, Zerpur, Mandola, Rajawas, Ushmapur, Sohla, Basai, Digrota, Madhogarh, Pali, Narmaul, Pachnota, Rasulpur, lakhani, Khatoti, Lehroda, Khampura, Khaspur, Dhanota, Rambas, Karoli, Maroli, Naya Gaon, Musnota, Bayal, Gangutana, Golwa, Jainpur, Antri Biharipur, Morund Berundla, Sareli, Ghataser, Bakhrija, Sehlong, Mudandpura, Basirpur, Amarpur Jorasi, Bazar etc. Minerals like fluvial Sandl Bajril Ordinary clayl brick earth are available throughout the river bed area of Krishnawati and Dohan rivers which are passed through the villages such as Deroli Jat, Kherki, Baproli, Mehrampur, Khatoti, Badopur, Jadupur. Bamanwas, Dhani Jajma, Nolayaja, Antri, Biharipur, Kojinda, Mandi, Dhani Bhathotha, Nangal Pipa, Nangal Kaliya etc. The area of Mahendergarh district is marked by the Indo-gangetic Alluvial Plains with outcrops of Aravalli Ranges and overlain by Eolian Sand Dunes at isolated places. In addition, Brick earth is excavated at scattered places.

Geologically above mentioned minerals are avalable unter the earth as well as above the surface of earth and their modification forms are wefit in different type of needs of human being such as construction of thilding, roods, bridges, railway lines, crockery utensils, ghasses used in different type of vehieles, plasters which are used for medical purposes etc.

5.0 DRAINAGE OF MEREMATION PATTHEN

There is no peremial river in the district. The general slope of the district is from south towards north in which direction rain fed streams of the district flow. The Dohan and the Kasaunti or Krishnawati are the main seasonal streams of the district running parallel to each other from south west to north east and pass through middle of the district. In the past, these streams flooded the district but now due to construction of large number of bunds in 12 Rajasthan catchment area, no flooding takes place. Third one, which is also tributary of Krishnawati is Guili Nadi or Nallah which covers about 13 kilometres to join Krishnawati. From Jorasi Dam, this nallah runs from west to east and joins Krishnawati river near Shekhpura village. Three main nallahs entering Jorasi Dam are, first from Basirpur village hills, second from Hasanpur village hills and third from Khalra hills in southern part of the district. Small hill slope torrents like Dhani China, Panchnota, Mosnota, Meghot Binza, Ganwari Jat, Nangal Durgo, Ateli mandi, Kheri and many more also drain the Aravalli slopes in the district These torrents originate on local hills and are active only during rainy days. Kasaunti or Krishnawati originates in Jajpur hills of Rajasthan near Nim Ka thana. Flowing in a northerly direction, it enters Narnaul tahsil near Bhadanti and Dostpur villages. It covers 31 kilometres upto Dublana village with clear bed After Dublana village, it converts into Krisnawati Nallah. Passing near Narnaul town, the stream completes the 49 kilometres course, then it is no visible as the water

Dows through depression and altimately falls into drain mumber 8 near Ratantal village of Rewari district. Dohan also takes off in hapur hills of Rajasthan near Nim Ka Thana enters Namand tahsif near Jadupur village and terminates near Akoda village in Mahendergarh district. It is an important source of ditnking water for areas of both the tahsils of the district, It runs a course of about 50 kilonetres with clear bed in the district in northeriy direction. Some small nallahs join it from both sides at different places.
The crops grown in the distritt are divided into two nain categories viz. Wharif and rabi, locally called as sawant and sadhi. The former is the summer season harvest and the latter he winter season harvest. Any crop which does not strictly fall within these two harvests is known as a qaid crop and its harvest is called the zaid kharif or zaid rabi, accorting to the harvest with which it is assessed. Toria (an oilseed) is cultivated as zaid kharif and vegetables, melon and green fodder as zaid rabi. The major kharif crop of the district is bajra. The minor ones include cotton and kharif vegetables. The major rabi crops of the district include wheat, gram and mustard oilseeds. Minor ones include rabi vegetables and barley. The district is deficient in irtigation facilties; hence crops requiring smaller quantities of water or barani crops are dominant. It is a dry farming district. The farmers have tremendously changed the cropping pattern from mono-culture to multi-culture with the help 16 of sprinkler and drip irrigation techniques. In this direction some cooperative societies and banks have played an effective role in providing economic help in the district. Cultivation of green fodder like jowar, kasani, barseem, etc. has been started both in kharif and rabi seasons. The farmers of those villages which lie near the urban centres have started cultivation of vegetables such as tomato, carrot, cauliflower, Jadyinger, raddish, spinach, methi, etc throughout the season. The farmers have started cultivation of commercial crops also. In the past decades, only sutsintence type of
agriculture was practised but now-a-days mustard is cultivated commercially over large tracts of land. Due to declining water table, farmers have started cultivating those erops whicls require lesser water. Cultivation of moong, toria and lobia during klarif season and grant, barley, etc. during rabi season have cither decreased to the minimum or totally stopped.
6.O LAND UTLLISATION PATTERN IN TIE DISTRICT: AGRICULTURAL, HORTICULTURAL, ETC.;

BASIC STATICS OF DISTRICT MAHENDRAGARH FOR THE YEAR 2010-11

Hectare"			"Area in	
No.	Particulars	Narnaul	Mahendragarh	Total
\uparrow	Geographical Area	95446	98714	194160
2	Cultivable Area	75122	80364	155486
3	Net Irrigated Area By Canal By Tubewell	$\begin{gathered} 46664 \\ 412 \\ 46252 \end{gathered}$	$\begin{gathered} 76184 \\ 1355 \\ 74829 \end{gathered}$	$\begin{gathered} 122848 \\ 1767 \\ 121081 \end{gathered}$
4	Gross Irrigation Area By Canal By Tubewel	$\begin{gathered} 48210 \\ 412 \\ 47798 \end{gathered}$	$\begin{gathered} 90993 \\ 1442 \\ 89551 \end{gathered}$	$\begin{gathered} 139203 \\ 1854 \\ 137349 \end{gathered}$
5	-and put to Non-Cultivable Area	20324	18350	38674
6	Total Cropped Area	130045	150335	280380

TYPES OF MAIOR CROPS AND SOIL IN THE DISTRICT:

1. Major Crops (Rabi):- Wheat, Mustard, Barley, Gram etc.
2. Major Crops (Kharif):- Cotton, Bajra, Guar etc.
3. Type of Soil: - Alkaline and Saline.

GROUND WATER SCENARIO OE THEDISIMCT: The district is undertain by alluvium and blown sand of Recent to sub recent age which are overlying the rocks of post Dethi and Delhi system. The alluvium the area belongs to older alluvium stage comprising of sand, silt, clay and calcareous nodules. The alluvium is the fresh water deposit of Indo- Gangetic river system. In alluvium the granular zones exist down to entire thickness, which is negligible near the out crop of Delhi system to about 150 m in the northern part of district The average thickness of the alluvium in the district is more than 50 m . Exploratory drilling has been carried out at 19 exploratory sites in alluvial formation and 35 in Hard rock areas. In alluvial formations the successful exploratory tube well tapped aquifer zones down to the depth of $170 \mathrm{~m} \& 235 \mathrm{~m}$ yielding 220 lpm to 1200 lpm for 6 to 23 m drawdown. The transmissibility value ranges from 150 to 810 m 2 /day in alluvial formations and between 370 and 1685 m 2 /day in hard rocks. The lateral hydraulic conductivity ranges from 1.5 to $20 \mathrm{~m} /$ day. In hard rock area the depth of bore holes ranges between 50 to 135 m and the water bearing zones in weathered fractured quartzite and limestone were tapped. The discharge of tube wells varies between 100 to 1325 lpm with 3 to 15 m draw down in lime stone aquifers. The discharge of tube wells constructed in quartzite formation ranges between 22 and 820 Ipm for reasonable drawdown.
The water supply of the district is mainly based on ground water through tube wells. The water supply of the villages is met out through installation of hand pumps and construction of and dug wells by the local villagers. Water for irrigation in the district is also based mainly on ground water. Two numbers of artificial recharge schemes were

implemented in the district in collaboration with the state agencies in order to creare awareness in the district.

Stage of Development: The block wise ground water resource potential in the district has been assessed as per GEC 97. The stage of ground water development in the district ranges between 49% (block -Narnaul) to 178% (block -Kanina). The total repleneshable ground water resource in the district is 21435 Ham. The net ground water draft is 22778 Ham , thus over exploiting 1343 Ha . m of ground water. The stage of ground water developinent in the district is 104% Source: htth:/cewh.govin/District Profle/Haryana/Mabendragarinpof

SURFACE WATER SCENARIO OF THE DISTRICT: The main Streams of the district are Dohan $\&$ Krishnawati which flow from south to north. These streams are known to carry copious supply of water to inundate large part of the district during monsoon and remain dry for major part of the year. The climate of Mahendragarh district can be classified as semi-arid and hot which is mainly dry with very hot summer and cold winter except during monsoon season when moist air of oceanic origin penetrates into the district. Therefore the surface water bodies are mainly seasonal with lower order stream.

8. RAINFALL OF THE DISTRICT AND CLIMATIC CONDITION

The climate of Mahendergarh district can be classified as tropical steppe, semi-arid and hot which is mainly dry with very hot summer and cold winter except during monsoon season when moist air of oceanic origin penetrates into the district. There are four seasons in a year. The hot weather season starts from mid March to last week of the june followed by the south-west monsoon which lasts up to September. The transition pertod from September to October forms thepost-monsoon season. The

winter season starts late in November and remains up to first week of March. The normal annual rainfall of the district is 500 mm which is unevenly distributed over the area 26 days. The south west monsoon sets in from last week of June and withdraws in end of September, contributed about 84% of annual rainfall. fuly and August are the wettest months. Rest 16% rainfall is received during nonmonsoon period in the wake of western disturbances and thunder storms. Generally rainfall in the district increases from southwest to northeast.

Normal Annual Rainfall	500 mm	
Normal Monsoon Rainfall	420	
Temperature	$41^{\circ} \mathrm{C}$ (May, June)	
Mean Maximum	$5.6^{\circ} \mathrm{C}$ (January)	
Mean Minimum	26	
Normal Rainy Days		

9. Detail of Mining Leases in the District with location, area and period of validity

Name of Quarty	Name of Firm	Revente Fectord of the quarry	Name of Minesal	Area	Feriod	Rematis.
Makandpura	Stui Satish Kumar Garg S/a Shri Ajudhy̧a Parshad Gafg, C/o Royal Matble \& Wines, 22-A Industrial Estate, Namaul	Khasta No. $211 / 3 / 2$	Quartz.	$\begin{aligned} & 3.7275 \\ & \mathrm{Ha} . \end{aligned}$	50 Years	in Operational
Rambas Ditanota	Sh. Kuldip Yadav S/O Sh. Kanwar Singh, Village Kalwari, P.O. Dongra Ahir, Tensil \& District Mahentergarh	Whasfa No. $\begin{aligned} & 718,719,744,717 \\ & 895 / 718,896 / 719 \\ & 894 / 717 \end{aligned}$	Feldspar	$\begin{gathered} 128.95 \\ \mathrm{~Hz} . \end{gathered}$	50 Years	Mon-operstiona
Dhonkhera	M/s Xandy Mines \& Minerals, GH-18A, Celebrity Homes, Palam Vhar, Gurgaon	Khasra do. 109 Min .	 Dolomites	4.80 Hz	50 Years	Operational
Rasutpur	M/s Rattan Singh \& Co. shrough Shri Rattan Singh 5/o 5hri Multan Singh, Vilage Dhanaunda Via Kanina, District Mohindergarh	Khasra Nos. 69min, 69/5 \& 69/6	Quartz \& Calcite	4.35 Ha .	50 Years	Non-operationa
Gerhi	M/s Haryana Mining Company	Khasra No. 7	Stone	$6,70 \mathrm{Ha}$.	10 Years	Non-operationa
Musmota	M/s 5atish Kumar Garg \& Co., 22-A, Industrial Estate, Narnau!	$\begin{aligned} & \text { Khasra Nos. } \\ & 599,600,601, \\ & 626,627,628, \\ & 648 \& 649 \end{aligned}$	Barytes, Feldspar, Quartas Quarzite Stone	79,32 Ha .	Soyears	Environment clearance pendir
Bakhrija Plot No. 2	M/s Tirtupati Viniyoge Pvt. Ltd., 63/38, Sarat Bose Road, 5th Floor, Kolkata (West Bengal)-700025	Khasra Nos. 67,68, 73, 74, 75, 76, $77 \mathrm{~min}, 78 \mathrm{~min}$, 79 min	Stone	21.65 Hz	10 Years	Operational
Bakhrija Plot No. 1	M/s Madaan Assoclates Through Sh. Raj Kumar Madaan, B-9/90i, ITL Twin Tower, Neraif Subhash Place, Pitampurat, New Dethi- $\mathbf{1 1 0 0 3 4 .}$	Khasra Nos. 69, 70, 71, 72, $80 \mathrm{~min}, 81 \mathrm{~min}$	stone	11.26 Ha	10 Years	Close
15						

Mahendergarl district has rich mineral deposits. f enjoys unique position in the state but it is irony of the fate that these deposits have not been tapped to the desired extent and add negligible contribution to the district economy. The important minerals found in the district are lime stone, marble, sandstone, iron ore, silica sand, feldspar, quartz, calcite, quartzite, dolomite, baraytes etc, at different locations.
12. USE OF MINERAL

Mining Industry plays an important role in economic sector in india. Haryana is rich in mineral wealth. The state is endowed with major and minor mineral resources. The regions, where the project is situated is mostly is mostly dependent on agriculture and mineral resources. The developments of mining are provide direct and indirect employment opportunities, infrastructure development, communication and socio-economic infrastructure.
Limestone:- it is the raw material for the manufacture of quicklime (Cacium oxide), slaked lime (calcium Hydroxide), Cement and mortar.

Marble: - it is used in Construction as building material, making of sculptures.
Quartz: - quartz crystals are used to make oscillators for watches, clocks, radios, televisions, electronic games, computers, cell phones, electronic meters ${ }_{p}$ and GPS equipment. A wide variety of uses have also been developed for optical-grade quartz crystals.
Quartaite: - Quartzite is a decorative stone and may be used to cover walls, as roofing tiles, as flooring, and stair steps. Its use for countertops in kitchens is expanding rapidly. It is harder and more resistant to stains than granite. Crushed quartzite is sometimes used in road construction.

Silica Sand: - it is used for water purification and manufacture of glass, synthetic foundry moulding catalysts, disodium ultramarine etc. it is also used for acid heat resistant ceramics, refractories, pottery glaze, enamel etc.

Barytes: - If is a principal mineral of barium and is also used as a feedstock for producing various barium compounds, and is utilised as filler. extender and aggregate. Barytes after converting to barium carbonate, is used in the manufacture of ceramic and glass.
Calcite: - It is used as a building material, abrasive, agricultural soil treatment, construction aggregate, pigment, pharmaceutical, and other applications.
Feldspar; - The term feldspar encompasses a whole range of materials. Most of the products we use on a daily basis are made with feldspar: glass for drinking, glass for protection, fiberglass for insulation, the floor tiles and shower basins in our bathrooms, and the tableware from which we eat.
Dolomite: - it is used as a source of magnesium metal and of magnesia (MgO) , which is a constituent of refractory bricks. Dolostone is often used instead of limestone as an aggregate for both cement and bitumen mixes and also as a flux in blast furnaces.
13. MPACT ON THE ENVIRONMENT (AR, WATER, NOISE, SOLL, FLORA \& FAUNA. LAND USE, AGRICULTURE, FOREST ETC.) DUE TO MINING ACTIVITY Environmental impact arising out of mining operations may be defined as an alteration of environmental conditions. The purpose of identifying and assessing the existing environmental parameters is to know the basic conditions prevailing before getting the targeted production. Depending on the nature of activities and existing status the impacts are assed for their importance. On the basis of the impact analysis the mitigative action and future monitoring requirement are focused in the Environmental Management Plan for counting or minimizing adverse impacts.

The environmental impact on Air, Water, Noise, Soil, Flora \& Fauna, land use, agriculture and forest arising out of mining operations need be assessed and thereafter mitigation measures are to be adopted. Impact due to mining on each parameter of environment like to be affected. The parameters, which are relevant in the context, are given below.

If the mineral ore exploration phase proves that there is a large enough mineral ore deposit, of sufficient grade, then the project proponent may begin to plan for the development of the mine. This phase of the mining project has several district components.

Site Preparation

If a mine site is located in remote, undeveloped area, the project proponent may need
26

to begin by clearing land for the construction of staging areas that would house project personnel and equipment, even before any land is mined, activities associated with site preparation and clearing can have significant environment impacts, especially if they are within or adjacent to ecologically sensitive areas. The EIA must assess, separately, the impacts associated with ste preparation and clearing.

Impact of Mining project on Air Quality: -
The largest sources of air pollution in mining operations are particulate matter transported by the winds a result of excavations, blasting, transportation of materials, wind erosion (More frequent in open-pit mining) fugitive dust froms tailing facilities, stockpiles, waste dumps and haul roads, Exhaust emission from mobile sources [Cars, trucks, heavy vehicles) raise these particulate levels: and gas emission from the combustion of fuel in stationary and mobile sources, explosions and mineral processing. Once pollutants enter the atmosphere, they underge physical and chemical changes before reaching a receptor. These pollutants can cause seriously effects to people's health and to the environment.

Air quality is adversely affected by mining operations. Unrefined materials are released when material deposits are exposed on the surface through mining. Wind erosion and nearby vehicular traffic cause such material to become airborne. Lead, Arsenic, Cadmium and other toxic elements are often present in such particles. These pollutants can damage the health system of people living near the mining site. Diseases of the respiratory system and allergies can be triggered by the inhalation of such airborne particles.

Impact on water

Mining also causes water pollution which includes metal contamination, increased sedimentation in streams, and acid mine drainage. Pollutants released from processing plants, tailing ponds underground mines, waste-disposal areas, active or abandoned surface or haulage roads etc., act as the top source of water pollution. Sediments released through soil crosion cause slltation or the smothering of stream beds. It adversely impacts irrigation, domestic water supply and other activities depended on such water bodies.

High concentrations of toxic chemicals in water bodies pose a survival threats to aquatic fatua \& Flora and terrestrial species dependent on them for food. The acidic water released from metal mines or coal mines also drains into surface water or seeps below ground to acidity groundwater. The loss of normal PH of water can have disastrous effects on life sustained by sucli water.

lmpact on Soil

Soil disruptions can contribute to the deterioration of the area's flora and Fauna. There is also a huge possibility that many of the surface features that were present before mining activities cannot be replaced after the process has ended. The removal of soil layers and deep underground digging can destabilize the ground which threatens the future of roads and buildings in the area.

Impact on Flora \& Fauna

Often, the worst effects of mining activities are observed the mining process has ceased. The destruction or drastic modification of the pre-mined landscape can have a catastrophic impact on the biodiversity of the area. Mining leads to a massive habitat loss for a diversity of flora \& fauna ranging from soil microorganism to large mammals. Endemic species are most severely affected since even the slightest disruptions in their habitat can result in extinction or put them at high risk of being wiped out. Toxins released through mining can wipe out entire populations of sensitive species.
14. Remedial measures to mitigate the impact of mining on the ENVIRONMENT
To minimize the probable \& possible impact on the environment due to mining activities an Environmental management plan is aimed at mitigating the possible adverse impact of project and for ensuring to maintain the existing environmental quality. The Environmental Management Plan (EMP) is a site specific plan to ensure that the project implementation is carried out taking appropriate mitigative measures to reduce adverse environmental impacts due to developing projects. The Environmental Plan aims to mitigative measures to restore and conserve the ecosystem of the possible adverse impacts due to proposed project. The mitigative

steps are used to minimize or prevent negative impacts on onvironment due to proposed project of mining The EMP conlains planned improvements with adopting some control measures vir. Fugitive dust reduction on roads \& measures to allevinte problems in affected villages near project area and planning for the closure of mine.

Mitigation measurcs for Air Environment

1. Water spraying arrangement shall be done on haul roods in the mining area to suppress the dust.
II. Dust extraction shall be provided in drilling machines to suppress the dust, whenever possible wet drilling shall be done.

III. Controlled blasting techniques shall be adopted.

IV. Proper and regular maintenance of mining equipment's have to be undertaken.
V. Transportation of materials in trucks is to be covered with tarpaulin.

Vl. Comprehensive greenbelt around overburden dumps and periphery of the mining project.
VII. Time to time air monitoring shall be done.

Mitigation measures for Water Environment

1. Construction of garland drains and setting tanks to divert surface runoff of the mining are to the natural drainage.
JI. Retaining walls with weep hole are to be constructed around the mine boundries to arrest silt wash off.
IIL. The mined out pits shall be converted into the water reservoir at the end of mine life. This will be help in recharging ground water table by acting as a water harvesting structure.
IV. Periodic analysis of mine pit water and ground water quality in nearby villages are to be undertaken.
V. Domestic sewage from site office \& urines is to be discharges in septic tank followed by soak pits.

Mitigation measures for Noise Environment

Periodic maintenance of machincries equipments shall be ensured to keep the noise generated within acceptable limit.
Adequate silencers will be provided in diesel engines of machineries, compressors, dumpers and trucks.
Development of thick greenbelt around mining/cluster area, haul roads to reduce the noise.
Provision of earplugs to workers exposed to high noise generating activities like blasting. excavation site etc. Worker and operators at work site will be provided with earmuffs.
Conducting a periodical medical checkup of all workers for any noise related effects.

Mitigation measures for Biological Environment

Development of greenbelt/gap filling sapling in the safcty barrier left around the quarry area/cluster area.
Carrying out thick greenbelt with local flora species predominantly with long canopy laves on the inactive mined out upper benches.
Adoption of suitable air pollution control measures as suggested above.
Transportation of materials in trucks covered with tarpaulin.
15.

RECLAMATION OF MINED OUT AREA (BEST PRACTICE ALREAD IMPLEMENTED IN THE DISTRICT, REQUIREMENT AS PER RULES ANP REGULATION, PROPOSED RECLAMATION PLAN)
Mine reclamation is the process of restoring land that has been mined to a natural or economically usable state. Although the process of mine reclamation occurs onde mining is completed, the planming of mine reclamation activities occurs prior to a mine being permitted or started. Mine reclamation creates useful landscapes that meet a variety of goals ranging from the restoration of productive ecosystem to the creation of industrial and municipal resources. Modern mine reclamation minimizes and mitigate the environmental effects of mining.

16.

REK ASSESSMENTE DSASTER MANAGDMENT D.AN
Risk assessment is the determination of quantitative or qualitative value of risk related to a concrete situation and a recognized threat. Activities requiring assessment of risk due to occurrence of most probable instances of hazard an accident are both onsite and off-site.

It must be realized that any incident may develop into a major emergency even with the best safcty measures and programmes in any industry. Hence, an emergency procedure will be planned properly and documented to help in reducing time loss, chaos and confusion at the hour of need by assigning person who will engage in meeting emergency smoothly and effectively. Any accident which has potential to develop into a major emergency can threaten large number of person or large area of industries on the site may affect safety of the public, property and environment Hence it is absolutely essential that emergency procedures will be properly planned and documented. Any disastrous situation raised in the mining area must be reported to the concern authorities as soon as possible,

17. Plantation and green belt development in respect of leases

 already granted in the districtThe greenbelt development plan aims to overall improvement in the environmental conditions of the region. The plan with a five-fold objective addresses issues such as prevention of land degradation due to activities during mining operation, enhancing the forest cover for increasing the biodiversity of the region, providing aesthetic value in the project area for enhancing the ecological equilibrium of the area and to a large proportion in combating soil erosion.
need for greenbelt development plant eith scheme for greenbelt DEVELOPMENT

The implenentation for developnent of greenbelt will be parmont importance as it will not only add up as an aesihetic feature, but also act as a pollution sink.

The scheme of plantation in-side cluster area is given as follows:
I. The species to be grown in the area should be dust tolerant and fast growing species so that permanent green belt is created.
II. The greenbelt development will be done along with the haul roads.
iff. The greenbelt development will be done nearby the mining leases to minimize the pollution level.
IV. The greenbelt will be put under a protective regulatory framework to ensure that it is not degraded or disturbed. No ecologically disruptive activity will be allowed in this zone.
V. The greenbelt development should be approx 33% of the area of the mining lease.

3. PROCESS OF DEPOSITION OF MINERALS IN DISTRICT:-

The district with geographical area 1899 sq km lies between north latitude $27^{\circ} 47$ to $28^{\circ} 26$ and east longitude $75^{\circ} 56^{\prime}$ to $76^{\circ} 51^{\prime}$. It is bounded on the north by Bhiwani and Rohtak districts, on the east by Rewari district and Alwar district of Rajasthan, on the south by Alwar, Jaipur and Sikar districts of Rajasthan, and on the west by Sikar and Jhunjhunu districts of Rajasthan.

Physiographically Mahendragath district has broadly five landforms viz. hill, pediplain, aeolin plain, fluvial plain and abandoned river course. Hills are barren and rocky with irregular shapes. The pediplain comprises of pediments and buried pediments, the aeolin plain consists of sand dune, interdune, sandy plain. Fluvial plain occurs along the course of ephemeral rivers and their
seasonal tributarios. The district is localod in semi-arid pegion of the state. The study area has lhree hondforms viz. Aravall Hills, Aravalli Pediments and Fhivio Aeolin Plains.

The Mahendragarh district is the domain of dry-land topography throughout. Presence of inland streams, sandy plain, shilling sand dunes devoid of vegetation, fixed or fossil sand dunes, dissected upland tract, and often barren, denuded rocky hill ranges and their outcrops provide an ensemble of terrain features truly associated with semi-arid to arid environment. In easi-west traverse, many of the above referred features may be recognised. The features are morphologically symmetrical and provide rapid and often large variations in relief and slope characteristics. Consequently, the overall relief is undualtory with a regional south to north and west to east slope.

The area is located in semi-arid region of the state with landscape comprising of undulating plain, sand dunes and rocky surfaces. The area is geomorphologically classified as Eolian Plain and Dome type residual hills. The mine lease area exhlibits plain to undulated topography. The highest elevation of 635 masl exists in the Aravalli range near Kharjo forest in south - west direction whereas the lowest elevation of 287 masi exists near Rampura on north direction.

The lease area consists of ridges and valleys. The highest point in the lease area is recorded to be 480 mRL and the fowest point recorded is 370 mRL.

The lease area does not have any water body. There are dry nallahs in which water flows during rains for a short duration, otherwise they remain dry for the rest of the months. The rain water from these nallahs drains either into tocal Johars or in agriculture fields.

4. GENERAL PROFILE OF DISTRICT:-

7.1 HARYANA STATE PROFILE

Haryana is a state in north India. It was carved out of the state of Punjab in 1966. It is bordered by Punjab and Himachal Pradesh to the north, and Rajasthan to the west and south. Eastem border to Haryana \& Uttar Pradesh is defined by river Yamuna. Haryana also surrounds Delhi on three sides, forming the northern, western and southem borders of Delhi. Consequently, a large area of Haryana is included in the National Capital Region. The capital of Haryana is Chandigarh which is administered as a union teritory and is aiso the capital of Punjab.

Haryana is a landlocked state in northem India. It is located between $27^{\circ} 37^{\prime}$ to $30^{\circ} 35^{\prime} \mathrm{N}$ latitude and between $74^{\circ} 28^{\prime}$ and $77^{\circ} 36^{\prime} \mathrm{E}$ longitude. The altitude of Haryana varies between 700 to 3600 ft . (200 metres to 1200 metres) above sea level. Haryana has four main geographical features.

- The Yamuna-Ghaggar plain forming the largest part of the state
- The Shivalik Hills to the northeast
- Semi-desert sandy plain to the southwest
- The Aravalli Range in the south
7.2 MAHENDRAGARH DISTRICT PROFILE

Haryana state jointly with Rewari and Gurgaon districts of Haryana. It has a total geographical area of 1776 sq . km. and falls between Latitudes $27^{\circ} 48^{\prime} 10^{\prime \prime}$ and $28^{\circ} 8^{\prime} 30^{\prime \prime}$ and Longitudes $75^{\circ} 54^{\prime} 00^{\prime \prime}$ and $76^{\circ} 51^{\prime} 30^{\prime \prime}$. Mahendragarh district is bounded by Dadri and Jhajjar districts in its north, Rewari in its east and Alwar and Jhunjhunu (Rajasthan) districts in its south and west respectively. Administratively, the district is divided into three sub divisions, namely Mahendragarh, Narnaul and Kanina. The district, located in the semi-arid region of the state, has its head quarter at Narnaul. The district forms a part of Haryana Plains which itself is an integral part of Indo-Gangetic alluvial plain, has vast stretch of almost flat land. Broadly speaking the district can be divided into five distinct landscapes with elevation varying from 200 mean above sea level (masl) to 634 masl, in Aravalli hills near Bayal village, foot hills flood plains, Aeolian plains and sand dunes Alluvium deposits. There are eight development blocks int the area namely Ateli, Kanina, Mahendragarh, Nangal Chaudhary and Namaut, Sihma, Nizampur and Satnali. The district is comprised of 370 villages and 5 towns with the population of $9,21,680$ souls as per 2011 census.

The district lies between north latitude $27^{\circ} 47$ to $28^{\circ} 26$ and east longitude $75^{\circ} 56^{\prime}$ to $76^{\circ} 51^{\prime}$. It is bounded on the north by Dadri and Jhajjar districts, on the east by Rewari district and Alwar district of Rajasthan, on the south by Alwar, Jaipur and Sikar districts of Rajasthan, and on the west by Sikar and Jhunjhunu districts of Rajasthan.
i. Administrative

There are 4 Vidhan Sabha constituencies in this district: Ateli, Mahendragarh, Narnaul and Nangal Chaudhary. All of these are part of BhiwaniMahendragarh Lok Sabha constituency.

The district has an area of $1899 \mathrm{sq} . \mathrm{kms}$. The population density of the district is 921.680 (Census 2011) in which 486 Thousands are male over 435 thousands of female, over all rual population is $78,8,000,14.61 \%$ are percent5age of Urban population to total population. The District is 165 km away from Delhi and well connected to National highway 08 through Rewari the district lies between the Latitude 76.15° East to Lattitude 28.28° Norththe.The District Administartive map is epitomized in Figure 7-A.

Figure 7-A: District Administrative Map

7.2.3 General Charactoristics of the Distitut

 Mathendragarh districe was formed in 1940 by groaping dilatemt inats of erstwhile princely slates; Namaul and Malmanagian bohsils from Patian Stato, Dadri (Charkhi Dadri) from dind Stalo and a parl of Dawal namal Irom Nathm Stale. It became a part of Paliala and East PuniabStates Union (PLäSU) atald. On November 1, 1956, will the margor of PEPSU with Pumath, it bocamo a phrl of Punjab state and with the formation of Haryama stato in 1996; it beamod at part of the newly formed state. Rewari tolsil of Gurgaon district was added to it in 1972 but Rewari tehsil was made a separale district in 1989.
7.2.4 Rainfall and Climote

The climate of Mahendragarh district can be classified as tropical stoppe, semiarid and hot which is mainly dry with very hol summer and cold wintor excopt during monsoon season when moist air of oceanic origin penetrates into the district. There are four seasons in a year. The hot weather season starts from mid March to last week of the June followed by the soull- west monsoon which lasts up to September. The transilion period from September to Oclober forms the post-monsoon season. The winter season slarts late in November and remains up to first week of March.

The normal annual rainfall of the district is 500 mm which is unevenly distributed over the area 26 days. The soulh west monsoon sots in from last week of June and withdraws in end of September, contributed about 84% of annual rainfall. July and Augusi are the weltest months. Rost 16% rainfall is received during non-monsoon period in the wake of woslern

disturbances and thunder storms. Generally rainfall in the district increases from southwest to northeast.

7.2.5 Hydrogeology

The district is underlain by alluvium and blown sand of Recent to sub recent age which are overlying the rocks of post Delhi and Delhi system. The alluvium in the area belongs to older alluvium stage comprising of sand, sill, clay and calcareous nodules. The alluvium is the fresh water deposit of indo- Gangetic river system.

In alluvium the granular zones exist down to entire thickness, which is negligible near the out crop of Delhi system to about 150 m in the northem part of district. The average thickness of the alluvium in the district is more than 50 m . Exploratory drilling has been carried out at 19 exploratory sites in alluvial formation and 35 in Hard rock areas. In alluvial formations the successful exploratory tube well tapped aquifer zones down to the depth of $170 \mathrm{~m} \& 235 \mathrm{~m}$ yielding 220 lpm to 1200 lpm for 6 to 23 m drawdown.

The transmissivity value ranges from 150 to $810 \mathrm{~m} 2 /$ day in alluvial formations and between 370 and $1685 \mathrm{~m} 2 /$ day in hard rocks. The lateral hydraulic conductivity ranges from 1.5 to $20 \mathrm{~m} /$ day. In hard rock area the depth of bore holes ranges between 50 to 135 m and the water bearing zones in weathered fractured quartzite and limestone were tapped. The discharge of tube wells varies between 100 to 1325 ipm with 3 to 15 m draw down in lime stone aquifers. The discharge of tube wells constructed in quartzite formation ranges between 22 and 820 lpm for reasonable drawdowns.

7.2.6 Metcorology

The meteorological data recorded during the study period is very useful proper interpretation of the baseline information, surrounding area for air dispersion. Historical data on meteorological parameters will also play an important role in identifying the general meteorological regime of the region.

Mahendragarh has arid to semiarid climate and receives over 517.8 mm of rainfall annually with most rains occurring during the monsoon months. Temperatures remain relatively high throughout the year, with the summer months of April to early July having average daily temperatures of around $30^{\circ} \mathrm{C}$. During the monsoon there are frequent, heavy rains and thunderstorm. The winter months are mild and pleasant, with average temperatures ranging from $15-18^{\circ} \mathrm{C}$. There are however occasional cold waves that lead to temperatures near freezing.

7.2.7 Seismicity of the Mahendragarh District

The major region of Mahendragarh district falls in least Active Seismic Zone +11 . The prominent Mahendragarh-Dehradun Fault passes in the district. The Axis of Delhi Folding also passes under Mahendragarh towards Rohtak.

Eastern parts of Haryana along with Delhi lie in the Gangetic Plain. Most earthquakes in this region are shallow though a few earthquake of intermediate depth have been recorded in Haryana. The major earthquake with epic centre in Mahendragarh district was felt in 1998 with magnitude of 5.2 on Richter scate.

7.2.8 Population

In 2011, Mahendergarh had population of 921,680 of which population density of the district is 921,680 (Census 2011) in which 486,665 are male over 435,015 of female, over all rual population is $788,000,14.61 \%$ are percentage of Urban population to total population

TABLE OF THE POPULATION OF DISTRICT

1.	Population	921,680
2.	Male	486,665
3.	Femate	435,015
4.	No. of Village	376

7.2.9 Connectivity

The district lies between north latitude $27^{\circ} 47$ to $28^{\circ} 26$ and east longitude 75° 56^{\prime} to $76^{\circ} 51^{\prime}$. It is bounded on the north by Dadri and Jhajar districts, on the east by Rewari district and Alwar district of Rajasthan, on the south by Alwar, Jaipur and Sikar districts of Rajasthan, and on the west by Sikarand Jhunjhunu districts of Rajasthan. The District is 165 km away from Delhi and well connected to National highway 08 through Rewari the district lies between the Lattitude 76.150 East to Latitude 28.280 North.

41

7.2.10 Railway and Road

The nearest railhead (Broad gauge) is at Mahendergarh, Narnaul and Nizampur. wilhin 15 km . from different leases of the district. The nearest airport are Dethi and Jaipur.

7.2.11 Road

District Mahendergarh is bounded on the north by Dadri and Jhajar districts, on the east by Rewari district and Alwar district of Rajasthan, on the south by Alwar, Jaipur and Sikar districts of Rajasthan, and on the west by Sikar and Jhunjhumu districts of Rajasthan. It has 3 tehsils of Narnaul, MahenderGarh and Kanina. Connectivity map of district Mahendergarh is emphasized in the following figure.

7.2.12 Avallability of Minerals

Mahendragarh district has rich mineral deposits. It enjoys unique position in the state but it is irony of the fate that these deposits have not been tapped to the desired extent and add negligible contribution to the district economy. The important minerals found in the district are lime stone, marble, sandstone, iton ore, silica sand, feldspar, quartz, calcite, quartzite, dolomite, baraytes etc, at different locations.

CONNEGTIVITY MAP OF DISTRICT MAHENDERGARH

LAND UTILIZATION PATTERN IN DISTRICT:-

8.1 Land Use Patfern

BASIC STATISTICS OF DISTRICT MAHENDERGARH FOR THE YEAR 2010.11

TYPE OF MAJOR CROPS AND SOIL IN THE DISTRICT:-

1. Major Crops (Rabi):- Wheat, Mustard, Barley, Gram etc.
2. Major Crops (Kharif):- Colton, Bajra, Guar etc.
3. Type of Soil:- Alkaline and Saline

8.2 Forest and Forest Types

The slate Haryana lies at the meeting point of three vegetative zones: the western Himalayas to the north, the upper Gangelic Plains to the east, and West Indian Desert or Arid Zone which encompasses most of the State (Singh et al. 1994) The planned project falls in the Mahendragarh district whichis bounded on the north by Bhiwani and Rewari districts, on the east by Rewari district and Alwar district of Rajasthan, on the south by Alwar. Jaipur and Sikar districts of Rajasthan, and on the west by Sikar and Jhunihunu districts of Rajasthan.

In accordance to the India State of Forest Report, 2015 (Forest Survey of India), the total forest cover of the project district Mahendragarh is 69 km 2 which is only 3.71% of the total forest cover of the state of Haryana. The forest cover of Haryana is predominantty comprising of open forest (69 km 2) followed by Moderate Dense Forest (16 km 2). No recorded very dense forests are present in the project district. Further a total of 26 km 2 area in the project district is under scrub land.

According to Champion and Seth's classification, the state has two forest type groups, viz. Tropical Dry Deciduous and Subtropical Pine. The forest vegetation of the Mahendragarh district comes under Tropical Dry Deciduous Forests and all the forest areas are categorized in Open and Scrub categories
24. Conclusion. In district Mahendergath a total tease out area is 2857.57 hectare ont of which 170.78 hectare area are in operational in seven blocks and hon operational area 2695.78 hectare has been identifiers for mining of minor minerals under 49 mineral concessions (at para 11) through number of mineral concessions may change depending upon policy of the state from time to time. Further, use of mineral deposits and exploration/excavation in respect of minerals is an ongoing activity, therefore, as per requirements the area used for mining of minor minerals may have to be revised from time to time. trestady dos at her.

(2) 03 res 2023

景 E
PW (B\&R)
Mahendergarh

Executive Engineer, Irrigation Department Mahendergarh

Regional Officer, HSPCB Mahendergarh

Discunsectajppores
范
(Dr. Jai Krishan Abhir), IAS
Deputy Commissioner
Mahendergarh

ANNEXURES - 1.12 COPY OF STANDARD TOR

File No.SEIAA/HR/2023/363
Goverment of India
State Level Environment Impact Assessment Authority
Haryana

To,
M/s XANDY MINES \& MINERALS
GH-18, CELEBRITY HOMES, PALAM VIHAR, GURGAON, HARYANA, INDIA 122017, Gurgaon-122017
Haryana
Tel.No.-; Email:minesxandy@gmail.com
Sub. Terms of Reference to the Environment Clearance (EC) for Mining of Minor Mineral Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity $\mathbf{3 , 2 5 , 0 0 0}$ Lacs TPA ($\mathbf{7 5 , 0 0 0}$ MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha (Gram Panchayat) located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed, GH-18, CELEBRITY HOMES, PALAM VIHAR, GURGAON, HARYANA, INDIA 122017

Dear Sir/Madam,
This has reference to the proposal submitted in the Ministry of Environment, Forest and Climate Change to prescribe the Terms of Reference (TOR) for undertaking detailed EIA study for the purpose of obtaining Environmental Clearance in accordance with the provisions of the EIA Notification, 2006. For this purpose, the proponent had submitted online information in the prescribed format (Form-1) along with a Pre-feasibility Report. The details of the proposal are given below:

1. Proposal No.:
2. Name of the Proposal:

3. Category of the Proposal:

4. Project/Activity applied for:

5. Date of submission for TOR:

Date : 04-07-2023

SIA/HR/MIN/435325/2023
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity $3,25,000$ Lacs TPA (75,000 MTPA of Dolomite and $2,50,000$ MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha (Gram Panchayat) located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed

Non-Coal Mining
1(a) Mining of minerals
01 Jul 2023

Sh. Pardeep Kumar, IAS
(Member Secretary)
Office : Bays No. 55-58, Ist Floor, Prayatan Bhawan, Sector-2, Panchkula, Haryana
Phone No: Mobile : $\mathbf{8 8 0 0 7 6 3 3 7 7}$
Email id : seiaa-21.env@hry.gov.in
Note: This is auto tor granted letter.

In this regard, under the provisions of the EIA Notification 2006 as amended, the Standard TOR for the purpose of preparing environment impact assessment report and environment management plan for obtaining prior environment clearance is prescribed with public consultation as follows:

STANDARD TERMS OF REFERENCE (TOR) FOR ELATEMP REQORT FOR PROIECTS/ACTIVITHES REQUIRINGENVIRONMENT CLEARANCE

Terms of Reference (TOR) for preparation of Environmental Impact Assessment (EIA) and Environmental Management Plan (EMP) for "Mining of Minerals" as per the EIA Notification, 2006 has been devised to improve the quality of the reports and facilitate decision-making transparent and easy. TOR will help the project proponents to prepare report with relevant project specific data and easily interpretable information. TOR for mining of minerals is expected to cover all environmental related features.

Mining of minerals plays a positive role in the process of country's economic development. In addition to the contribution towards economic growth, mining can also be a major source of degradation of physical as well as social environment, unless it is properly managed. Environmental impacts can arise during all activities of the mining process. Minimizing the damage due to mining operations depends on sound environmental practices in a framework of balanced environmental legislation. The potential adverse effects of mining activities include air pollution, surface and groundwater pollution, noise and vibration, damage to local ecology, natural topography and drainage, depletion of water resources etc. All these environmental components are required to be considered while selecting a proper methodology of mining, mitigation measures to reduce pollution load, conservation of natural resources etc.

The projects of mining of minerals as stated in the schedule require prior environment clearance under the EIA notification, 2006. Category ' A ' Projects are handled in the MoEF\&CC and Category ' B ' projects are being handled by the respective State Environment Impact Assessment Authorities (SEIAAs) notified by MoEF\&CC and following the procedure prescribed under the EIA Notification, 2006. As per this Notification, as amended, the projects of mining of minor minerals with mining lease area equal to or greater than 50 hectare are to be handled at the level of the MoEF\&CC for grant of EC. Such projects with mining lease area less than 50 hectare are to be handled by the respective State Environment Impact Assessment Authority (SEIAA).

1(a):STANDARD TERMS OF REFERENCE FOR CONDUCTING ENVIRONMENT IMPACT ASSESSMENT STUDY FOR NON-COAL MINING PROJECTS AND INFORMATION TO BE INCLUDED INEIA/EMP REPORT

1) Year-wise production details since 1994 should be given, clearly stating the highest production achieved in any one year prior to 1994. It may also be categorically informed whether there had been any increase in production after the EIA Notification 1994 came into force, w.r.t. the highest production achieved prior to 1994.
2) A copy of the document in support of the fact that the Proponent is the rightful lessee of the mine should be given.
3) All documents including approved mine plan, EIA and Public Hearing should be compatible with one another in terms of the mine lease area, production levels, waste generation and its management, mining technology etc. and should be in the name of the lessee.
4) All corner coordinates of the mine lease area, superimposed on a High Resolution Imagery/ toposheet, topographic sheet, geomorphology and geology of the areashould be provided. Such an Imagery of

STANDARD TERMS OF REFERENCE (TOR) FOR ELA/EMP REPORT FOR PROJECTS/ ACTIVITIES REQUIRING ENVIRONMENT CLEARANCE

the proposed area should clearly show the land use and other ecological features of the study area (core and buffer zone).
5) Information should be provided in Survey of India Toposheet in 1:50,000 scale indicating geological map of the area, geomorphology of land forms of the area, existing minerals and mining history of the area, important water bodies, streams and rivers and soil characteristics.
6) Details about the land proposed for mining activities should be givenwith information as to whether mining conforms to the land use policy of the State; land diversion for mining should have approval from State land use board or the concerned authority.
7) It should be clearly stated whether the proponent Company has a well laid down Environment Policy approved by its Board of Directors? If so, it may be spelt out in the EIA Report with description of the prescribed operating process/procedures to bring into focus any infringement/deviation/ violation of the environmental or forest norms/conditions? The hierarchical system or administrative order of the Company to deal with the environmental issues and for ensuring compliance with the EC conditions may also be given. The system of reporting of non-compliances / violations of environmental norms to the Board of Directors of the Company and/or shareholders or stakeholders at large,may also be detailed in the EIA Report.
8) Issues relating to Mine Safety, including subsidence study in case of underground mining and slope study in case of open cast mining, blasting study etc. should be detailed. The proposed safeguard measures in each case should also be provided.
9) The study rea will comprise of 10 km zone around the mine lease from lease periphery and the data contained in the EIA such as waste generation etc. should be for the life of the mine / lease period.
10) Land use of the study rea delineating forest area, agricultural land, grazing land, wildlife sanctuary, national park, migratory routes of fauna, water bodies, human settlements and other ecological features should be indicated. Land use plan of the mine lease area should be prepared to encompass preoperational, operational and post operational phases and submitted. Impact, if any, of change of land use should be given.
11) Details of the land for any Over Burden Dumps outside the mine lease, such as extent of land area, distance from mine lease, its land use, $R \& R$ issues, if any, should be given.
12) A Certificate from the Competent Authority in the State Forest Department should be provided, confirming the involvement of forest land, if any, in the project area. In the event of any contrary claim by the Project Proponent regarding the status of forests, the site may be inspected by the State Forest Department along with the Regional Office of the Ministry to ascertain the status of forests, based on which, the Certificate in this regard as mentioned above be issued. In all such cases, it would be desirable for representative of the State Forest Department to assist the Expert Appraisal Committees.
13) Status of forestry clearance for the broken up area and virgin forestland involved in the Project including deposition of net present value (NPV) and compensatory afforestation (CA) should be indicated. A copy of the forestry clearance should also be furnished.
14) Implementation status of recognition of forest rights under the Scheduled Tribes and other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006 should be indicated.
15) The vegetation in the RF / PF areas in the study area, with necessary details, should be given.
16) A study shall be got done to ascertain the impact of the Mining Project on wildlife of the study area and details fumished. Impact of the project on the wildlife in the surrounding and any other protected area and accordingly, detailed mitigative measures required, should be worked out with cost implications and submitted.
17) Location of National Parks, Sanctuaries, Biosphere Reserves, Wildlife Corridors, Ramsar site Tiger/ Elephant Reserves/(existing as well as proposed), if any, within 10 km of the mine lease should be clearly indicated, supported by a location map duly authenticated by Chief Wildife Warden. Necessary clearance, as may be applicable to such projects due to proximity of the ecologically sensitive areas as mentioned above, should be obtained from the Standing Committee of National Board of Wildlifeand copy fumished.
18) A detailed biological study of the study area [core zone and buffer zone (10 km radius of the periphery of the mine lease)] shall be carried out. Details of flora and fauna, endangered, endemic and RET Species duly authenticated, separately for core and buffer zone should be furnished based on such primary field survey, clearly indicating the Schedule of the fauna present. In case of any scheduledIfauna found in the study area, the necessary plan alongwith budgetary provisions for their conservation should be prepared in consultation with State Forest and Wildlife Department and details furnished. Necessary allocation of funds for implementing the same should be made as part of the project cost.
19) Proximity to Areas declared as 'Critically Polluted' or the Project areas likely to come under the 'Aravali Range', (attracting court restrictions for mining operations), should also be indicated and where so required, clearance certifications from the prescribed Authorities, such as the SPCB or State Mining Dept. Should be secured and furnished to the effect that the proposed mining activities could be considered.
20) Similarly, for coastal Projects, A CRZ map duly authenticated by one of the authorized agencies demarcating LTL. HTL, CRZ area, location of the mine lease w.r.t CRZ, coastal features such as mangroves, if any, should be furnished. (Note: The Mining Projects falling under CRZ would also need to obtain approval of the concemed Coastal Zone Management Authority).
21) R\&R Plan/compensation details for the Project Affected People (PAP) should be furnished. While preparing the R\&R Plan, the relevant State/National Rehabilitation \& Resettlement Policy should be kept in view. In respect of SCs /STs and other weaker sections of the society in the \$tudy area, a need based sample survey, family-wise, should be undertaken to assess their requirements, and action programmes prepared and submitted accordingly, integrating the sectoral programmes of line departments of the State Government. It may be clearly brought out whether the village(s) located in the mine lease area will be shifted or not. The issues relating to shifting of village(s) including their R\&R and socio-economic aspects should be discussed in the Report.

STANDARDTERMS OF REFERENCE TOR) FOR EIA/EMPREDORT FOR PROJECTS/ ACTIVITIES REQUIRING ENVIRONMENT CLEARANCE

22) One season (non-monsoon) [i.e. March-May (Summer Season); October-December (post monsoon season) ; December-February (winter season)]primary baseline data on ambient air quality as per CPCB Notification of 2009, water quality, noise level, soil and flora and fauna shall be collected and the AAQ and other data so compiled presented date-wise in the EIA and EMP Report. Sitespecific meteorological data should also be collected. The location of the monitoring stations should be such as to represent whole of the study area and justified keeping in view the pre-dominant downwind direction and location of sensitive receptors. There should be at least one monitoring station within 500 m of the mine lease in the pre-dominant downwind direction. The mineralogical composition of PM10, particularly for free silica, should be given.
23) Air quality modeling should be carried out for prediction of impact of the project on the air quality of the area. It should also take into account the impact of movement of vehicles for transportation of mineral. The details of the model used and input parameters used for modeling should be provided. The air quality contours may be shown on a location map clearly indicating the location of the site, location of sensitive receptors, if any, and the habitation. The wind roses showing pre-dominant wind direction may also be indicated on the map.
24) The water requirement for the Project, its availability and source should be furnished. A detailed water balance should also be provided. Fresh water requirement for the Project should be indicated.
25) Necessary clearance from the Competent Authority for drawl of requisite quantity of water for the Project should be provided.
26) Description of water conservation measures proposed to be adopted in the Project should be given. Details of rainwater harvesting proposed in the Project, if any, should be provided.
27) Impact of the Project on the water quality, both surface and groundwater, should be assessed and necessary safeguard measures, if any required, should be provided.
28) Based on actual monitored data, it may clearly be shown whether working will intersect groundwater. Necessary data and documentation in this regard may be provided. In case the working will intersect groundwater table, a detailed Hydro Geological Study should be undertaken and Report furnished. The Report inter-alia, shall include details of the aquifers present and impact of mining activities on these aquifers. Necessary permission from Central Ground Water Authority for working below ground water and for pumping of ground water should also be obtained and copy furnished.
29) Details of any stream, seasonal or otherwise, passing through the lease area and modification / diversion proposed, if any, and the impact of the same on the hydrology should be brought out.
30) Information on site elevation, working depth, groundwater table etc. Should be provided both in AMSL and bgl. A schematic diagram may also be provided for the same.
31) A time bound Progressive Greenbelt Development Plan shall be prepared in a tabular form (indicating the linear and quantitative coverage, plant species and time frame) and submitted, keeping in mind, the same will have to be executed up front on commencement of the Project. Phase-wise plan of plantation and compensatory afforestation should be charted clearly indicating the area to be covered

STANDARD TERMS OF REFERENCE (TOR) FOR EIA/EMP REPORT FOR PROJECTS/ACTIVITIES REQUIRING ENVIRONMENT CLEARANCE

under plantation and the species to be planted. The details of plantation already done should be given. The plant species selected for green belt should have greater ecological value and should be of good utility value to the local population with emphasis on local and native species and the species which are tolerant to pollution.
32) Impact on local transport infrastructure due to the Project should be indicated. Projected increase in truck traffic as a result of the Project in the present road network (including those outside the Project area) should be worked out, indicating whether it is capable of handling the incremental load. Arrangement for improving the infrastructure, if contemplated (including action to be taken by other agencies such as State Government) should be covered. Project Proponent shall conduct Impact of Transportation study as per Indian Road Congress Guidelines.
33) Details of the onsite shelter and facilities to be provided to the mine workers should be included in the EIA Report.
34) Conceptual post mining land use and Reclamation and Restoration of mined out areas (with plans and with adequate number of sections) should be given in the EIA report.
35) Occupational Health impacts of the Project should be anticipated and the proposed preventive measures spelt out in detail. Details of pre-placement medical examination and periodical medical examination schedules should be incorporated in the EMP. The project specific occupational health mitigation measures with required facilities proposed in the mining area may be detailed.
36) Public health implications of the Project and related activities for the population in the impact zone should be systematically evaluated and the proposed remedial measures should be detailed along with budgetary allocations.
37) Measures of socio economic significance and influence to the local community proposed to be provided by the Project Proponent should be indicated. As far as possible, quantitative dimensions may be given with time frames for implementation.
38) Detailed environmental management pian (EMP) to mitigate the environmental impacts which, should inter-alia include the impacts of change of land use, loss of agricultural and grazing land, if any, occupational health impacts besides other impacts specific to the proposed Project.
39) Public Hearing points raised and commitment of the Project Proponent on the same along with time bound Action Plan with budgetary provisions to implement the same should be provided and also incorporated in the final EIA/EMP Report of the Project.
40) Details of litigation pending against the project, if any, with direction/order passed by any Court of Law against the Project should be given.
41) The cost of the Project (capital cost and recurring cost) as well as the cost towards implementation of EMP should be clearly spelt out.
42) A Disaster management Plan shall be prepared and included in the EIA/EMP Report.

STANDARD TERMS OF REFERENCE (TOR) FOR ELA/EMP REPORTFOR PROJECTS/ ACTIVITIES REQUIRING ENVIRONMENT CLEARANCE

43) Benefits of the Project if the Project is implemented should be spelt out. The benefits of the Project shall clearly indicate environmental, social, economic, employment potential, etc.
44) Besides the above, the below mentioned general points are also to be followed:-
a) All documents to be properly referenced with index and continuous page numbering.
b) Where data are presented in the Report especially in Tables, the period in which the data were collected and the sources should be indicated.
c) Project Proponent shall enclose all the analysis/testing reports of water, air, soil, noise etc. using the MoEF\&CC/NABL accredited laboratories. All the original analysis/testing reports should be available during appraisal of the Project.
d) Where the documents provided are in a language other than English, an English translation should be provided.
e) The Questionnaire for environmental appraisal of mining projects as devised earlier by the Ministry shall also be filled and submitted.
f) While preparing the EIA report, the instructions for the Proponents and instructions for the Consultants issued by MoEF vide O.M. No. J-11013/41/2006-IA.II(I) dated 4th August, 2009, which are available on the website of this Ministry, should be followed.
g) Changes, if any made in the basic scope and project parameters (as submitted in Form-I and the PFR for securing the TOR) should be brought to the attention of MoEF\&CC with reasons for such changes and permission should be sought, as the TOR may also have to be altered. Post Public Hearing changes in structure and content of the draft EIA/EMP (other than modifications arising out of the P.H. process) will entail conducting the PH again with the revised documentation.
h) As per the circular no. J-11011/618/2010-IA.II(I) dated 30.5.2012, certified report of the status of compliance of the conditions stipulated in the environment clearance for the existing operations of the project, should be obtained from the Regional Office of Ministry of Environment, Forest and Climate Change, as may be applicable.
i) The ELA report should also include (i) surface plan of the area indicating contours of main topographic features, drainage and mining area, (ii) geological maps and sections and (iii) sections of the mine pit and external dumps, if any, clearly showing the land features of the adjoining area.

ANNEXURES - 3.1
 ONSITE (HOURLY) MICROMETEOROLOGY DATA FOR PRE-MONSOON SEASON, 2023

Date	Time	$\begin{array}{\|c\|} \hline \text { Temperature } \\ \left.{ }^{\circ} \mathrm{C}\right) \\ \hline \end{array}$	$\begin{aligned} & \text { RH } \\ & (\%) \\ & \hline \end{aligned}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m / s		
$\begin{aligned} & 01-03-2023 \\ & \hline 1-03-2023 \end{aligned}$	2	18.8	71.0	22.5	NNE	1.8	0.5	0.0	0.0
01-03-2023	3	18.6	66.0	67.5	ENE	1.8	0.5	0.0	0,0
01-03-2023	4	17.8	71.0	135.0	SE	1.8	0.5	0.0	0.0
01-03-2023	5	17.5	69.0	135.0	SE	1.8	0.5	0.0	0.0
01-03-2023	6	18.3	64.0	112.4	ESE	9.4	2.6	0.0	0.0
01-03-2023	7	19.9	62.0	157.5	SES	9.4	2.6	0.0	0.0
01-03-2023	8	21.4	60.0	202.4	SSW	15.1	4.2	0.0	0.0
\|01-03-2023	9	24.1	58.2	270.0	W	13,3	3.7	0.0	0.0
01-03-2023	11	26.3	55.5	270.0	W	15.1	4.2	0.0	0.0
01-03-2023	12	27.4	53.7	45.0 315.0	NW	16.6	4.6	0.0	0.0
01-03-2023	13	30.4	51.7	315.0	NW	19.4	5.4	0.0	0.0
\|01-03-2023	14	31.3	51.3	315.0	NW	13.7	6,2	0.0	0.0
\|01-03-2023	15	33.2	50.8	292.4	WNW	15.5	4.3	0.0	0.0
01-03-2023	17	34.4	50.4	315.0	NW	7.9	2.2	0.0	0.0
01-03-2023	18	34.6	51.0	315.0	NW	9.4	2.6	0.0	0.0
01-03-2023	19	32.2	53.0	225.0	SW	7.9	2.2	0.0	0.0
01-03-2023	20	29.4	55.6	202.0	SSW	9.4	2.6	0.0	0.0
01-03-2023	22	23.6	60.2	333.0	NWN	2.2	0.6	0.0	0.0
01-03-2023	24	19.8	63.5	45.0	NE	4.7	1.3	0.0	0.0
02-03-2023	1	19.4	67.3	135.0	SE	2.1	0.6	0.0	0.0
02-03-2023	2	18.8	69.0	$\frac{135.0}{15.0}$	SNE	2.9	0.8	0.0	0.0
02-03-2023	3	18.3	71.0	18.0	NNE	2.2	0.6	0.0	0.0
02-03-2023	4	17.9	67.0	360.0	N	7.9	1.3	0.0	0.0
02-03-2023	5	17.7	64.0	360.0	N	9.7	2.2	0.0	0.0
02-03-2023	6	18.5	61.0	102.0	ESE	8.6	2.7	0,0	0.0
02-03-2023	7	21.1	59.0	108.0	ESE	8.6	2.4	0,0	0.0
02-03-2023	9	$\frac{23.2}{248}$	57.0	45.0	NE	15.1	4.2	0.0	0.0
02-03-2023	10	27.2	58.0	270.0	W	13,3	3.7	0.0	0.0
02-03-2023	1	28.6	55.0	255.0	WSW	9.4	2.6	0.0	0.0
02-03-2023	12	30.3	53.0	315.0	NW	9.4	2.6	0.0	0.0
02-03-2023	13	31.6	51.0	45.0	NE	14.0	3.7	0.0	0.0
02-03-2023	15	33.1	50.6	315.0	NW	18.7	5.2	0	0.0
02-03-2023	16	33.9	50.3	315.0	NW	19.4	5.4	0.0	0.0
02-03-2023	17	33.7	53.0	315.0	NW	15.5	4.3	0.0	0.0
02-03-2023	18	31.2	55.0	288.0	WNW	13.3	3.7	0.0	0.0
02-03-2023	19	30.1	58.5	295.0	WNW	10.1	2.8	0.0	0.0
02-03-2023	20	28.6	60.0	135.0	SE	5.0	0.8	0.0	0,0
02-03-2023	22	26.8	$\frac{63.0}{64.0}$	135.0	SE	4.7	1.3	0.0	0.0
02-03-2023	23	22.2	64.0	345.0	NWN	1.8	0.5	0.0	0.0
02-03-2023	24	20.3	69.0	45.0	NE	0.7	0.2	0.0	0.0
03-03-2023	1	19.7	68.0	165.0	SES	2.5	0.7	0.0	0.0
03-03-2023	2	19.4	68.0	160.0	SES	7.9	$\frac{2.2}{2.6}$	0.0	0.0
03-03-2023	4	19.1	67.0	155.0	SES	13.3	3.7	0.0	0.0
03-03-2023	5	19.3	63.0	225.0	SW	1.4	0.4	0.0	0.0
03-03-2023	6	19.8	64.0	225.0 120.0	SW	6.5	1.8	0.0	0.0
03-03-2023	7	21.1	61.0	$\frac{120.0}{166.0}$	ESE	1.8	0.5	0.0	0.0
03-03-2023	8	22.7	59.0	115.0	SESE	9.7	2.7	0.0	0.0
03-03-2023	9	24.6	58.0	45.0	ESE	5.0	1.4	0.0	0.0
03-03-2023	10	26.6	56.0	45.0	NE	12.8	0.5	0.0	0.0
03-03-2023	Π	28.1	55.0	180.0	NE	12.6	3.5	0.0	0.0
3-03-2023	12	29.4.	53.0	270.0	W	15.1	2.2	0.0	0.0
3-03-2023	13	30.9	51.0	270.0	W	5.8	4.2	0.0	0.0

Date	Time	$\begin{gathered} \text { Temperature } \\ \left.{ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \text { RH } \\ (\%) \end{gathered}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m / s		
03-03-2023	14	31.7	51.0	240.0	WSW	13.0	3.6	0.0	0.0
03-03-2023	15	32.5	50.6	315.0	NW	9.0	2.5	0.0	0.0
03-03-2023	16	33.3	50.0	256.0	WSW	11.5	3.2	0.0	0.0
03-03-2023	17	32.6	50.6	315.0	NW	11.9	3.3	0.0	0.0
03-03-2023	18	31.2	51.0	180.0	S	16.2	4.5	0.0	0.0
03-03-2023	19	29.3	52.0	58.0	ENE	11.9	3.3	0.0	0.0
03-03-2023	20	27.4	53.0	69.0	ENE	0.7	0.2	0.0	0.0
03-03-2023	21	25.6	54.0	360.0	N	4.7	1.3	0.0	0.0
03-03-2023	22	23.2	55.0	225.0	SW	2.2	0.6	0.0	0.0
03-03-2023	23	21.4	58.0	155.0	SES	13.0	3.6	0.0	0.0
03-03-2023	24	20.3	60.0	165.0	SES	2.5	0.7	0.0	0.0
04-03-2023	1	19.9	64.0	135.0	SE	5.4	1.5	0.0	0.0
04-03-2023	2	19.6	64.0	15.0	NNE	1.6	0.5	0.0	0.0
04-03-2023	3	19.1	67.0	25.0	NNE	3.2	0.9	0.0	0.0
04-03-2023	4	18.7	67.0	180.0	S	9.0	2.5	0.0	0.0
04-03-2023	5	18.4	64.0	180.0	S	7.9	2.2	0.0	0.0
04-03-2023	6	19.3	61.0	180.0	S	6.5	1.8	0.0	0.0
04-03-2023	7	20.2	58.0	180.0	S	2.5	0.7	0.0	0.0
04-03-2023	8	21.3	55.0	60.0	ENE	12.6	3.5	0.0	0.0
04-03-2023	9	23.6	54.0	75.0	ENE	7.9	2,2	0.0	0.0
04-03-2023	10	25.5	52.0	360.0	N	12.2	3.4	0.0	0.0
04-03-2023	II	27.2	51.0	315.0	NW	13.3	3.7	0.0	0.0
04-03-2023	12	28.6	49.0	315.0	NW	15.1	4.2	0.0	0.0
04-03-2023	13	29.6	48.7	315.0	NW	15.5	4.3	0.0	0.0
04-03-2023	14	31.1	48.2	295.0	WNW	10.1	2.8	0.0	0.0
04-03-2023	15	32.1	47.7	45.0	NE	14.4	4.0	0.0	0.0
04-03-2023	16	32.7	47.4	45.0	NE	7.9	2.2	0.0	0.0
04-03-2023	17	32.4	47.0	245.0	WSW	8.6	2.4	0.0	0.0
04-03-2023	18	31.2	47.6	250.0	WSW	11.5	3.2	0.0	0.0
04-03-2023	19	29.8	48.8	180.0	S	13.3	3.7	0.0	0.0
04-03-2023	20	27.7	50.0	180.0	S	9.7	2.7	0.0	0.0
04-03-2023	21	25.4	54.0	180.0	S	9.4	2.6	0.0	0.0
04-03-2023	22	24.0	57.0	115.0	ESE	10.1	2.8	0.0	0.0
04-03-2023	23	21.8	62.0	225.0	SW	6.1	1.7	0.0	0.0
04-03-2023	24	21.1	65.0	180.0	S	1.8	0.5	0.0	0.0
05-03-2023	1	20.7	68.0	180.0	S	2.2	0.6	0.0	0.0
05-03-2023	2	20.4	68.0	180.0	S	5.6	1.5	0.0	0.0
05-03-2023	3	20.1	68.0	180.0	S	2.2	0.6	0.0	0.0
05-03-2023	4	19.6	67.0	180.0	S	6.5	1.8	0.0	0.0
05-03-2023	5	19.9	64.0	180.0	S	4.2	1.2	0.0	0.0
05-03-2023	6	21.3	61.0	59.0	ENE	6.5	1.8	0.0	0.0
05-03-2023	7	22.2	58.0	65.0	ENE	8.6	2.4	0.0	0.0
05-03-2023	8	23.0	55.0	270.0	W	8.3	2.3	0.0	0.0
05-03-2023	9	24.4	53.0	315.0	NW	12.2	3.4	0.0	0.0
05-03-2023	10	26.0	52.0	315.0	NW	14.0	3.9	0.0	0.0
05-03-2023	11	27.6	51.5	315.0	NW	12.2	3.4	0.0	0.0
05-03-2023	12	29.2	51.2	315.0	NW	13.0	3.6	0.0	0.0
05-03-2023	13	30.3	50.8	288.0	WNW	16.2	4.5	0.0	0.0
05-03-2023	14	30.9	50.4	315.0	NW	8.6	2.4	0.0	0.0
05-03-2023	15	31.7	49.6	315.0	NW	16.9	4.7	0.0	0.0
05-03-2023	16	32.9	49.2	240.0	WSW	20.2	5.6	0.0	0.0
05-03-2023	17	32.1	48.6	245.0	WSW	16.0	4.5	0.0	0.0
05-03-2023	18	31.4	49.5	315.0	NW	15.8	4.4	0.0	0.0
05-03-2023	19	29.5	52.0	90.0	E	13.3	3.7	0.0	0.0
05-03-2023	20	27.1	54.6	195.0	SSW	11.9	3.3	0.0	0.0
05-03-2023	21	24.7	57.0	45.0	NE	9.7	2.7	0.0	0.0
05-03-2023	- 22	23.2	59.0	360.0	N	1.4	0.4	0.0	0.0
05-03-2023	- 23	21.0	61.0	225.0	SW	1.4	0.4	0.0	0.0
05-03-2023	- 24	20.2	64.0	115.0	ESE	5.0	1.4	0.0	0.0
06-03-2023	-1	19.4	63.0	165.0	SES	0.7	0.2	0.0	0.0
06-03-2023	-2	18.9	64.5	155.0	SES	6.8	1.9	0.0	0.0

Date	Time	Temperature ${ }^{6} \mathrm{C}$	$\begin{gathered} \text { RH } \\ (\%) \end{gathered}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m/s		
06-03-2023	3	18.5	67.0	270.0	W	9.7	2.7	Cover	0.0
06-03-2023-2023	4	18.1	66.0	22.0	NNE	5.8	1.6	0.0	0.0
-06-03-2023	6	18.9	63.0	360.0	N	9.4	2.6	0.0	0.0
06-03-2023	7	20.5	61.6	225.0	SW	4.0	1.1	0.0	0.0
06-03-2023	8	21.8	58.0	166.0	SES	7.9	$\frac{2.2}{3}$	0.0	0.0
06-03-2023	9	23.2	56.7	225.0	SW	13.0	3.6	0.0	0.0
06-03-2023	10	24.9	56.2	315.0	NW	$\frac{15.8}{20.5}$	4.4	0.0	0.0
06-03-2023	11	27.1	54.6	315.0	NW	23.8	6.6	0.0	0.0
06-03-2023	12	28.5	53.2	255.0	WSW	23.0	6.4	0.0	0.0
-06-03-2023	13	29.8	52.1	315.0	NW	25.9	7.2	0.0	0.0
06-03-2023	15	31.1	51.4	285.0	WNW	24,8	6.9	0.0	0.0
06-03-2023	16	32.1	50.6	290.0	WNW	19.4	5.4	0.0	0.0
06-03-2023	17	32.0	47.6	135.0	WNW	13.3	3.7	0.0	0.0
06-03-2023	18	31.2	48.0	180.0	S	7.9	2.2	0.0	0.0
06-03-2023	19	29.2	49.0	65.0	ENE	12.6	0.5	0.0	0.0
06-03-2023	21	24.3	57.0	360.0	N	19.1	5.3	0.0	0.0
06-03-2023	23	21.3	62.0	360.0	N	18.4	5.1	0.0	0.0
06-03-2023	24	19.7	70.3	115.0	ESE	19.4	5.4	0.0	0.0
07-03-2023	1	18.2	71.0	120.0	ESE	16.6	4.6	0.0	0.0
07-03-2023	2	17.6	72.0	360.0	ESE	9.0	2.5	0.0	0.0
07-03-2023	3	17.2	72.5	360.0	N	3.2	1.6	0.0	0.0
07-03-2023	4	16.4	73.0	360.0	N	5.0	0.9	0.0	0.0
07-03-2023	5	15.8	73.5	360.0	N	13.3	3.7	0.0	0.0
07-03-2023	7	18.9	74.0	225.0	SW	16.6	4.6	0.0	0.0
07-03-2023	9	24.1	72.6	225.0	SW	8.3	2.3	0.0	0.0
07-03-2023	10	26.3	70.0	155.0	NES	12.2	3.4	0.0	0,0
07-03-2023	11	27.4	68.6	270.0	SES	19.8	5.5	0.0	0.0
07-03-2023	12	29.1	66.5	315.0	NW	17.6	4.9	0.0	0.0
07-03-2023	13	30.4	65.0	315.0	NW	19.1	5.3	0.0	0.0
07-03-2023	14	31.1	64.5	255.0	WSW	13.3	6.6	0.0	0.0
07-03-2023	15	31.6	64.0	315.0	NW	15.8	4.4	0.0	0.0
07-03-2023	16	33.1	63.5	315.0	NW	19.8	5.5	0.0	0.0
07-03-2023	18	32.7	63.3	255,0	WSW	13.3	3.7	0.0	0.0
07-03-2023	19	29.1	-58.2	258.0	WSW	16.2	4.5	0.0	0.0
07-03-2023	20	27.4	-56.8	180.0	S	12.6	3.5	0,0	0.0
07-03-2023	21	26.1	59.4	65.0	ENE	1.8	0.5	0.0	0.0
07-03-2023	22	24.2	62.4	360.0	ENE	1.1	0.3	0.0	0.0
07-03-2023	23	21.9	64.3	-360.0	N	8.6	2.4	0.0	0.0
07-03-2023	24	20.3	66.5	65.0	ENE	17.3	0.4	0.0	0.0
08-03-2023	4	17.3	70.3	45.0 360.0	NE	2.2	0.6	0.0	0.0
08-03-2023	5	16.4	69.0	360.0	N	7.2	2.0	0.0	0.0
08-03-2023	6	17.9	70.0	360.0	ESE	8.6	2.4	0.0	0.0
08-03-2023	7	19.3	68.6	165.0	SES	2.9	0.8	0.0	0.0
08-03-2023	8	21.1	67.0	270.0	W	9.9	2.2	0.0	0.0
8-03-2023	10	24.4	63.0	255.0	WSW	18.0	5.0	0.0	0.0
08-03-2023	12	26.2	60.0	45.0	NE	21.6	6.0	0.0	0.0
8-03-2023	13	30.2	58.0	315.0	NW	15.8	4.4	0.0	0.0
08-03-2023	14	31.4	55.6	315.0	NW	13.3	3.7	0.0	0.0
08-03-2023	15	32.2	54.3	315.0	NW	18.7	5.2	0.0	0.0

Date	Time	Temperature ${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \mathrm{RH} \\ (\%) \end{gathered}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m / s		
78-03-2023	16	32.7	53.2	315.0	NW	9.4	2.6	0.0	0.0
08-03-2023	17	32.0	56.0	315.0	NW	13.3	3.7	0.0	0.0
08-03-2023	18	30.3	58.9	135.0	SE	16.9	4.7	0.0	0.0
08-03-2023	19	28.2	61.0	135.0	SE	18.0	5.0	0.0	0.0
08-03-2023	20	26.5	63.6	135.0	SE	15.8	4.4	0.0	0.0
08-03-2023	21	24.1	66.6	20.0	NNE	13.3	3.7	0.0	0.0
08-03-2023	22	22.2	68.4	30.0	NNE	8.3	2.3	0.0	0.0
08-03-2023	23	20.1	70.6	180.0	S	2.5	0.7	0.0	0.0
08-03-2023	24	18.8	72.1	60,0	ENE	13,0	3.6	0.0	0.0
09-03-2023	1	17.6	69.0	360.0	N	2.2	0.6	0.0	0.0
09-03-2023	2	16.4	68.0	360.0	N	9.7	2.7	0.0	0.0
09-03-2023	3	15.4	67.0	165.0	SES	2.2	0.6	0.0	0.0
09-03-2023	4	15.2	70.0	168.0	SES	6.5	1.8	0.0	0.0
09-03-2023	5	14.6	71.0	167.0	SES	2.1	0.6	0.0	0.0
09-03-2023	6	16.2	71.0	163.0	SES	10.8	3.0	0.0	0.0
09-03-2023	7	17.5	69.0	168.0	SES	13.3	3.7	0.0	0.0
09-03-2023	8	19.5	67.0	45.0	NE	15.1	4.2	0.0	0.0
09-03-2023	9	22.1	65.0	270.0	W	18.0	5.0	0.0	0.0
09-03-2023	10	23.7	63.0	45.0	NE	19.4	5.4	0.0	0.0
09-03-2023	11	25.6	57.0	315.0	NW	21.6	6.0	0.0	0.0
09-03-2023	12	27.4	54.2	315.0	NW	19.8	5.5	0.0	0.0
09-03-2023	13	29.3	52.3	315.0	NW	22.3	6.2	0.0	0.0
09-03-2023	14	30.6	50.6	315.0	NW	20.5	5.7	0.0	0.0
09-03-2023	15	30.8	49.9	315.0	NW	16.9	4.7	0.0	0.0
09-03-2023	16	29.9	49.2	315.0	NW	17.6	4.9	0.0	0.0
09-03-2023	17	29.3	48.6	315.0	NW	18.7	5.2	0.0	0.0
09-03-2023	18	27.6	48.0	135.0	SE	18.0	5.0	0.0	0.0
09-03-2023	19	26.1	50.0	135.0	SE	9.7	2.7	0.0	0.0
09-03-2023	20	24.3	54.0	360.0	N	4.2	1.2	0.0	0.0
09-03-2023	21	22.4	58.0	45.0	NE	21.6	6.0	0.0	0.0
09-03-2023	22	21.2	63.0	360.0	N	4.2	1.2	0.0	0.0
09-03-2023	23	19.7	65.0	360.0	N	1.4	0.4	0.0	0.0
09-03-2023	24	18.6	69.0	108.0	ESE	2.1	0.6	0.0	0.0
70-03-2023	1	17.9	71.0	110.0	ESE	2.2	0.6	0.0	0.0
10-03-2023	2	17.4	71.0	135.0	SE	7.2	2.0	0.0	0.0
10-03-2023	3	16.8	68.0	135.0	SE	10.8	3.0	0.0	0.0
10-03-2023	4	16.2	65.0	335.0	NWN	10.8	3.0	0.0	0.0
10-03-2023	5	15.3	62.0	135.0	SE	14.4	4.0	0.0	0.0
10-03-2023	6	16.1	62.0	135.0	SE	1.8	0.5	0.0	0.0
10-03-2023	7	18.2	59.0	45.0	NE	7.2	2.0	0.0	0.0
10-03-2023	8	20.3	57.6	270.0	W	8.4	2.3	0.0	0.0
10-03-2023	9	22.6	55.0	315.0	NW	14.4	4.0	0.0	0.0
10-03-2023	10	24.2	54.0	315.0	NW	18.0	5.0	0.0	0.0
10-03-2023	11	25.7	52.0	315.0	NW	13.0	3.6	0.0	0.0
10-03-2023	12	27.1	50.0	315.0	NW	8.4	2.3	0.0	0.0
10-03-2023	13	28.0	49.7	315.0	NW	18,0	5.0	0.0	0.0
10-03-2023	14	28.9	48.6	315.0	NW	14.4	4.0	0.0	0.0
10-03-2023	15	30.3	48.3	315.0	NW	10.8	3.0	0.0	0.0
10-03-2023	16	31.2	47.8	315.0	NW	13.0	3.6	0.0	0.0
10-03-2023	17	31.0	47.6	315.0	NW	2.2	0.6	0,0	0.0
10-03-2023	18	28,9	49.0	135.0	SE	14.4	4.0	0.0	0.0
10-03-2023	19	28.1	52.2	135.0	SE	10.8	3.0	0.0	0.0
10-03-2023	20	26.7	54.0	333.0	NWN	4.0	1.1	0.0	0.0
10-03-2023	21	25.1	56.0	332.0	NWN	2.1	0.6	0.0	0.0
10-03-2023	22	23.6	58.0	110.0	ESE	14.4	4,0	0.0	0.0
10-03-2023	23	22.0	63.0	225.0	SW	1.8	0.5	0.0	0.0
10-03-2023	24	20.6	65.0	315.0	NW	9.1	2.5	0.0	0.0
T-03-2023	1	19.7	68.0	166.0	SES	4.7	1.3	0.0	0.0
11-03-2023	2	19.1	68.0	110.0	ESE	10.5	2.9	0.0	0.0
11-03-2023	- 3	18.7	68.0	225.0	SW	2.1	0.6	0.0	0.0
11-03-2023	14	18.5	69.0	148.0	SES	14.4	4.0	0.0	0.0

Date	Time	Temperature $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { RH } \\ & (\%) \end{aligned}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m / s		
11-03-2023	5	19.6	70.0	151.0	SES	18.0	5.0	0.0	0.0
11-03-2033	7	20.9	70.0	180.0	S	10.8	3.0	0.0	0.0
11-03-2023	8	23.7	64.0	270.0	W	3.6	1.0	0.0	0.0
T1-03-2023	9	25.5	61.0	270.0	W	2.5	0.7	0.0	0.0
11-03-2023	10	27.1	59.0	270.0	W	12.6	$\frac{3.5}{2.5}$	0.0	0.0
11-03-2023	11	28.8	58.0	45.0	NE	7.2	2.5	0.0	0.0
11-03-2023	12	29.7	55.0	315.0	NW	7.2	2.0	0.0	0.0
11-03-2023	13	30.5	53.0	315.0	NW	14.4	4.0	0.0	0.0
1-03-2023	14	31.3	51.3	270.0	W	16.2	4.5	0.0	0.0
7-03-2023	16	32.2	49.0	315.0	NW	7.9	2.2	0.0	0.0
11-03-2023	17	33.3	47.0	1315.0	SW	14.4	4.0	0.0	0.0
11-03-2023	18	31.4	48.0	255.0	WSW	1.8.	0.5	0.0	0,0
11-03-2023	19	29.2	52.0	315.0	NW	12.6	3.5	0.0	0.0
11-03-2023	20	27.2	53.0	315.0	NW	13.3	4.0	0.0	0.0
11-03-2023	21	25.6	54.0	315.0	NW	8.6	3.7	0.0	0.0
11-03-2023	22	23.3	59.0	315.0	NW	2.6	2.4	0.0	0.0
12-03-2023	2	20.0	69.0	345.0	NWN	10.8	3.0	0.0	0.0
12-03-2023	3	19.8	70.0	90.0	E	2.1	0.6	0.0	0.0
12-03-2023	4	18.9	72.0	225.0	SW	1,4	0.4	0.0	0.0
12-03-2023	5	19.4	72.0	160.0	SW	18.0	5.0	0.0	0.0
12-03-2023	6	20.1	68.0	165.0	SES	6.5	1.8	0.0	0.0
12-03-2023	7	21.4	65.0	45.0	NE	14.4	3.0	0.0	0.0
12-03-2023	8	23.3	67.0	45.0	NE	18.0	4.0	0.0	0.0
12-03-2023	10	24.8	65.0	45.0	NE	18.0	5.0	0.0	0.0
12-03-2023	10	26.7	62.0	255.0	WSW	17.3	4.8	0.0	0.0
12-03-2023	12	28.4	60.0	254.0	WSW	25.6	7.1	0.0	0.0
12-03-2023	13	30.7	58.0	315.0	NW	17.3	4.8	0.0	0.0
12-03-2023	14	31.8	55.0	315.0	NW	18.7	5.2	0.0	0.0
12-03-2023	15	33.2	51.0	315.0	NW	18.4	5.1	0.0	0.0
12-03-2023	16	34.2	51.0	315.0	NW	14.6	4.1	0.0	0.0
12-03-2023	17	34.4	51.0	315.0	NW	15.3	3.8	0.0	0.0
$\frac{12-03-2023}{12-03-2023}$	18	33.1	53.0	315.0	NW	15.3	4.3	0.0	0.0
12-03-2023	20	31.2	57.0	290.0	WNW	2.8	0.8	0.0	0.0
12-03-2023	21	27.3	61.0	290.0	WNW	2.2	0.6	0.0	0.0
12-03-2023	22	25.2	65.0	272.0	$\frac{\text { WSW }}{\text { W }}$	1.8	0.5	0.0	0.0
12-03-2023	23	23.1	-65.0	$\underline{270.0}$	W	2.5	0.7	0.0	0.0
12-03-2023	24	21.7	-67.0	135.0 135.0	SE	2.1	0.6	0.0	0.0
13-03-2023	1	21.5	$\stackrel{69.0}{70.0}$	$\underline{225.0}$	SW	2.5	0.7	0.0	0.0
13-03-2023	2	21.3	71.4	360.0	N	1.8	0.5	0.0	0.0
13-03-2023	3	21.4	72.5	180.0	S	1.8	0.5	0.0	0.0
13-03-2023	4	21.9	73.0	17.0	NNE	7.2	0.4	0.0	0.0
13-03-2023	5	22.6	74.0	45.0	NE	2.5	2.0	0.0	0,0
13-03-2023	7	23.3	74.5	270.0	W	3.6	0.7	0.0	0.0
13-03-2023	8	24, 2	75.0	180.0	S	2.2	0.6	0.0	0.0
13-03-2023	9	26.5	73.0 72.0	21.0	NNE	-3.6	1.0	0.0	0.0
13-03-2023	10	28.1	70.8	45.0 360.0	NE	7.2	2.0	0.0	0.0
13-03-2023	11	29.6	-69.6	360.0	N	1.8	0.5	0.0	0.0
3-03-2023	12	30.9	68.3	315.0	NW	9.7	2.7	0.0	0.0
13-03-2023	13	32.3	66.2	315.0	NW	13.3	3.7	0.0	0.0
13-03-2023	14	33.4	62.6	315.0	NW	7.9	2.2	0.0	0.0
13-03-2023	16	34.8	55.7	315.0	NW	3.2	0.9	0.0	0.0
	17	35.1	53.4	315.0	NW	14.4	4.0	0.0	0.0

Date	Time	Temperature $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{RH} \\ (\%) \\ \hline \end{gathered}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m / s		
13-03-2023	18	-33.4	51.7	45.0	NE	2.2	0.6	0.0	0.0
73-03-2023	19	31.5	51.0	45.0	NE	18,0	5.0	0.0	0.0
13-03-2023	20	30.1	56.0	225.0	SW	5.6	1.5	0.0	0.0
13-03-2023	21	28.2	60.0	18.0	NNE	4.9	1.4	0.0	0.0
13-03-2023	22	25.7	63.0	225.0	SW	18.0	5.0	0.0	0.0
13-03-2023	23	23.6	65.0	225.0	SW	3.6	1.0	0.0	0.0
13-03-2023	24	22.2	66.3	225.0	SW	14.4	4.0	0.0	0.0
14-03-2023	1	21.9	67.6	180.0	S	3.6	1.0	0.0	0.0
14-03-2023	2	21.6	69.2	135.0	SE	4.9	1.4	0.0	0.0
14-03-2023	3	21.5	71.2	135.0	SE	2.2	0.6	0.0	0.0
14-03-2023	4	22.1	72.6	135.0	SE	3.2	0.9	0.0	0.0
14-03-2023	5	22.6	73.3	270.0	W	8.3	2.3	0.0	0.0
14-03-2023	6	23.1	74.2	270.0	W	9.0	2.5	0.0	0.0
14-03-2023	7	23.8	75.1	135.0	SE	2.2	0.6	0.0	0.0
14-03-2023	8	25.0	73.2	225.0	SW	6.8	1.9	0.0	0.0
14-03-2023	9	26.3	71.7	180.0	S	11.5	3.2	0.0	0.0
14-03-2023	10	27.6	68.6	315.0	NW	9.0	2.5	0.0	0.0
14-03-2023	11	29.2	66.3	315.0	NW	5.8	1.6	0.0	0.0
14-03-2023	12	30.4	64.2	315.0	NW	5.4	1.5	0.0	0.0
14-03-2023	13	32.1	62.7	315.0	NW	9.1	2.5	0.0	0.0
14-03-2023	14	33.1	61.8	315.0	NW	12,5	3.5	0.0	0.0
14-03-2023	15	34,0	58.4	315.0	NW	15.8	4.4	0.0	0.0
14-03-2023	16	34.4	55.6	315.0	NW	15.3	4.3	0.0	0.0
[4-03-2023]	17	34.7	54.4	315.0	NW	8.3	2.3	0.0	0.0
14-03-2023	18	32.4	57.3	315.0	NW	16.2	4.5	0.0	0.0
14-03-2023	19	30.7	58.8	135.0	SE	8.4	2.3	0.0	0.0
14-03-2023	20	28.3	60.3	135.0	SE	9.8	2.7	0.0	0.0
14-03-2023	21	25.7	61.4	135.0	SE	8.4	2.3	0.0	0.0
14-03-2023	22	23.9	63.0	135.0	SE	2.8	0.8	0.0	0.0
14-03-2023	23	22.7	64.2	345.0	NWN	2.2	0.6	0.0	0.0
14-03-2023	24	21.6	66.5	135.0	SE	2.1	0.6	0.0	0.0
15-03-2023	1	21.2	69.0	135.0	SE	2.5	0.7	0.0	0.0
15-03-2023	2	20.8	69.0	225.0	SW	1.8	0.5	0.0	0.0
15-03-2023	3	20.4	68.0	242.0	WSW	2.8	0.8	0.0	0.0
15-03-2023	4	20.1	73.0	270.0	W	4.2	1.2	0.0	0.0
15-03-2023	5	20.2	68.0	135.0	SE	5.4	1.5	0.0	0.0
15-03-2023	6	21.4	69.0	135.0.	SE	4.9	1.4	0.0	0.0
15-03-2023	7	23.5	67.0	32.0	NNE	2.5	0.7	0.0	0.0
15-03-2023	8	25.6	68.0	32.0	NNE	9.8	2.7	0.0	0.0
15-03-2023	9	28.2	64.0	180.0	S	2.2	0.6	0.0	0.0
15-03-2023	10	30,1	65.0	315.0	NW	9.9	2.7	0.0	0.0
15-03-2023	Π	31.0	63.0	45.0	NE	9.3	2.6	0.0	0.0
[5-03-2023	12	32.3	58.0	315.0	NW	2.5	0.7	0,0	0.0
15-03-2023	13	33.0	56.0	315.0	NW	13.4	3.7	0.0	0.0
15-03-2023	14	34.2	51.0	270.0	W	12.8	3.5	0.0	0.0
15-03-2023	15	34.9	49.5	270.0	W	10.8	3.0	0.0	0.0
15-03-2023	16	35.3	48.4	245.0	WSW	2.2	0.6	0.0	0.0
15-03-2023	17	35.2	48.0	255.0	WSW	3.6	1.0	0.0	0.0
15-03-2023	18	33.7	50.0	315.0	NW	8.6	2.4	0.0	0.0
15-03-2023	19	30.9	51.0	135.0	SE	9.3	2.6	0.0	0.0
15-03-2023	20	28.8	52.0	135.0	SE	2.5	0.7	0.0	0.0
15-03-2023	21	26.5	52.0	330.0	NWN	9.3	2.6	0.0	0.0
15-03-2023	22	24.6	57.0	340.0	NWN	1.7	0.5	0.0	0.0
15-03-2023	23	23.2	63.0	135.0	SE	1.7	0.5	0.0	0.0
15-03-2023	24	22.2	66.0	135.0	SE	2.2	0.6	0.0	0.0
16-03-2023	1	21.9	66.0	225.0	SW	2.2	0.6	0.0	0.0
16-03-2023	2	21.7	69.0	225.0	SW	5.2	1.5	0.0	0.0
16-03-2023	3	21.5	69.0	180.0	S	1.8	0.5	0.0	0.0
16-03-2023	4	21.3	73.0	270.0	W	2.9	0.8	0.0	0.0
16-03-2023	5	21.8	70.0	255.0	WSW	4.6	1.3	0.0	0.0
16-03-2023	16	22.5	66.0	45.0	NE	2.2	0.6	0.0	0.0

Date	Time	$\begin{array}{\|c} \hline \text { Temperature } \\ \left.\mathbf{(}^{0} \mathrm{C}\right) \\ \hline \end{array}$	$\begin{aligned} & \text { RH } \\ & \text { (\%) } \end{aligned}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m / s		
16-03-2023	$\frac{7}{8}$	23.7	63.0	45.0	NE	4.1	1.1	0.0	0.0
16-03-2023	$\frac{8}{9}$	25.2	61.0	270.0	W	2.9	0.8	0.0	0.0
16-03-2023	10	28.8	59.0	270.0	W	9.9	2.7	0.0	0.0
16-03-2023	11	31.3	51.0	315.0	NW	12.2	3.4	0.0	0.0
16-03-2023	12	33.0	50.0	225.0	SW	7.9	2.2	0,0	0.0
16-03-2023	13	34.1	48.0	315.0	NW	5.2	1.5	0.0	0.0
16-03-2023	14	34.8	47.7	315.0	NW	13.3	3.7	0.0	0.0
16-03-2023	15	35.3	47.3	315.0	NW	15.8	4.4	0.0	0.0
16-03-2023	17	35.6	48.0	315.0	NW	7.9	2.2	0.0	0.0
16-03-2023	18	33.4	49.0 50.0	315.0	NW	16.6	4.6	0.0	0.0
16-03-2023	19	31.4	54.0	315.0	NW	11.5	3.2	0.0	0.0
16-03-2023	20	29.7	58.0	65.0	ENE	$\frac{15.1}{2.3}$	4.2	0.0	0.0
16-03-2023	21	27.5	59.0	1350	SE	2.3	0.6	0.0	0.0
16-03-2023	22	24,8	63.0	270.0	W ${ }^{\text {W }}$	0.6	0.5	0.0	0.0
16-03-2023	23	23.4	66.0	270.0	W	1.2	0.3	0.0	0.0
17-03-2023	2	21.7	67.0	255.0	WSW	3.6	1.0	0.0	0.0
17-03-2023	2	21.2	69,0	360.0	N	2.9	0.8	0.0	0.0
177-03-2023	3	21.4	74.4	165.0	SES	4.3	1.2	2.0	0.0
17-03-2023	4	21.8	76.2	166.0	SES	0.6	0.2	2.0	0.0
17-03-2023	5	22.3	77.6	45.0	NE	6.18	1.7	2.0	0.0
17-03-2023	6	23.6	78.0	225.0	SW	3.6	3.0	2.0	0.0
17-03-2023	8	24.8	79.4	225.0	SW	14.4	4.0	4.0	0.0
17-03-2023	9	27.4	80.2	$\underline{2250.0}$	SW	8.1	2.3	6.0	0.2
17-03-2023	10	28.7	78.7	180.0	S	1.8	0.5	7.0	1.1
17-03-2023	11	29.6	76.3	65.0	SNE	14.4	4.0	7.0	0.6
-17-03-2023	12	31.2	74.2	45.0	ENE	7.9	2.2	5.0	0.1
[7-03-2023	13	31.9	72.3	180.0	$\frac{\mathrm{NE}}{\mathrm{S}}$	2.2	0.6	4.0	0.0
\|7-03-2023	14	32.8	68.8	315.0	NW	4.3	1.2	3.0	0.0
17-03-2023	15	33.5	66.7	315.0	NW	$\frac{14.4}{3.6}$	4.0	2.0	0.0
17-03-2023	16	34.2	64.5	315.0	NW	3.6	1.0	2.0	0.0
17-03-2023	18	32,3 30.8	61.4	65.0	ENE	2.2	0.6	0.0	0.0
17.03-2023	20	$\frac{30.8}{28.7}$	58.9	327.0	ENE	3.6	1.0	0.0	0.0
17-03-2023	21	26.4	59.0	3275.0	NWW	5.2	1.5	0.0	0.0
\|17-03-2023	23	22.7	62.0	45.0	NE	$\underline{9.4}$	2.6	0.0	0.0
18-03-2023	2	21.7	-69.0	180.0	S	2.5	0.7	3.0	0.0
18-03-2023	3	21,6	$\frac{71.5}{74.0}$	$\underline{180.0}$	S	- 12	1.6	4.0	0.0
18-03-2023	4	21.9	75.6	180.0	S	1.2	0.3	5.0	0.0
18-03-2023	5	22.4	77.0	315.0	NW	2,2	0.6	5.0	0.0
18-03-2023	7	23.3	78.0	-315.0	NW	4.3	$\underline{1.2}$	6.0	0.3
18-03-2023	8	25.6	-79.4	- 4121.0	NE	15.5	4.3	7.0	1.1
18-03-2023	9	27.6	81.5	$\xrightarrow{121.0}$	ESE	3.6	1.0	8.0	2.3
18-03-2023	11	30.7	76.5	245.0	WSW	8.1	2.3	7.0	0.6
18-03-2023	12	31.5	73.5	315.0	NW	2.5	0.7	6.0	0.2
18-03-2023	14	32.8	71.1	315.0 315.0	NW	5.8	1.6	3.0	0.0
18-03-2023	15	34.6	67.5	$\frac{315.0}{28.0}$	NW	14.4	4.0	2.0	0.0
18-03-2023	16	35.6	58.6	- 45.0	NNE	1,8	0.5	0.0	0.0
18-03-2023	17	36.2	54.4	45.0 90.0	NE	7.9	2.2	0.0	0.0
18-03-2023	18	34.1	52.3	246.0	WSW	1.8	0.5	0.0	0.0
8-03-2023	19	32.2	55.0	270,0	W	2.2	1.5	0.0	0.0

Date	Time	Temperature $\left({ }^{0} \mathrm{C}\right)$	$\begin{gathered} \text { RH } \\ (\%) \\ \hline \end{gathered}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)	
				in angle	in letter	Km/hrs	m / s			
18-03-2023	20	-29.7	58.0	135.0	SE	5.4	1.5	0.0		0.0
18-03-2023	21	27.8	60.0	135.0	SE	2.2	0.6	0.0		0.0
18-03-2023	22	25.4	65.0	360.0	N	0.6	0.2	0.0		0.0
18-03-2023	23	23.3	67.0	115.0	ESE	2.5	0.7	0.0		0.0
18-03-2023	24	21.4	69.0	110.0	ESE	1.5	0.4	0.0		0.0
19-03-2023	1	21.3	69.0	116.0	ESE	2.2	0.6	0.0		0.0
19-05-2023	2	21.1	73.0	120.0	ESE	9.4	2.6	0.0		0.0
19-03-2023	3	21.4	73.0	225.0	SW	1.5	0.4	0.0		0.0
19-03-2023	4	21.8	70.0	270.0	W	5.0	1.4	0.0		0.0
19-03-2023	5	22.6	66.0	115.0	ESE	2.5	0.7	0.0		0.0
19-03-2023	6	23.5	63.0	45.0	NE	5.8	1.6	0.0		0.0
19-03-2023	7	24.6	60.0	135.0	SE	2.5	0.7	0.0		0.0
19-03-2023	8	26.0	59.0	315.0	NW	1.8	0.5	0.0		0.0
19-03-2023	9	27.3	56.0	180.0	S	7.9	2.2	0.0		0.0
19-03-2023	10	28.7	54.0	270.0	W	15.8	4.4	0.0		0.0
19-03-2023	11	29.8	53.0	270.0	W	4.5	1.2	0.0		0.0
19-03-2023	12	31.1	51.0	240.0	WSW	2.0	0.6	0.0		0.0
19-03-2023	13	32.4	49.0	315.0	NW	6.1	1.7	0.0		0.0
19-03-2023	14	33.3	48.4	315.0	NW	13.3	3.7	0.0		0.0
19-03-2023	15	34.4	48.1	315.0	NW	4.5	1.2	0.0		0.0
19-03-2023	16	34.9	47.3	315.0	NW	13.0	3.6	0.0		0.0
19-03-2023	17	35.3	47.6	315.0	NW	6.0	1.7	0.0		0.0
19-03-2023	18	33,5	50.0	135.0	SE	9.5	2.6	0.0		0.0
19-03-2023	19	31.6	51.0	180.0	S	4.3	1.2	0.0		0.0
19-03-2023	20	29.2	55.0	360.0	N	2.5	0.7	0.0		0.0
19-03-2023	21	27.7	59.0	105.0	ESE	2.2	0.6	0.0		0.0
19-03-2023	22	25.1	65.0	155.0	SES	1.5	0.4	0.0		0.0
19-03-2023	23	23.6	67.0	167.0	SES	6.1	1.7	0.0		0.0
19-03-2023	24	22.2	70.0	168.0	SES	3.0	0.8	0.0		0.0
20-03-2023	1	21.9	72.0	195.0	SSW	9.4	2.6	0.0		0.0
20-03-2023	2	21.7	74.5	270.0	W	1.4	0.4	0.0		0.0
20-03-2023	3	22.0	75.7	248.0	WSW	2.2	0.6	2.0		0.0
20-03-2023	4	22.7	77.5	180.0	S	9.0	2.5	4.0		0.0
20-03-2023	5	23.3	78.4	315.0	NW	7.9	2.2	5.0		0.2
20-03-2023	6	24.5	79.1	315.0	NW	5.4	1.5	7.0		0.6
20-03-2023	7	25.7	79.4	135.0	SE	2.5	0.7	7.0		0.9
20-03-2023	8	27.1	76.7	135.0	SE	3.6	1.0	6.0		0.1
20-03-2023	9	28.4	74.5	315.0	NW	1.8	0.5	4.0		0.0
20-03-2023	10	29.7	73.2	270.0	W	2.5	0.7	2.0		0.0
20-03-2023	11	31.1	71.6	315.0	NW	6.0	1.7	2.0		0.0
20-03-2023	12	32.6	69.3	315.0	NW	2.2	0.6	0.0		0.0
20-03-2023	13	34.1	66.5	315.0	NW	5.4	1.5	0.0		0.0
20-03-2023	14	35.2	62.6	315.0	NW	5.5	1.5	0.0		0.0
20-03-2023	15	35.9	59.6	315.0	NW	2.2	0.6	0.0		0.0
20-03-2023	-16	36.7	56.4	315.0	NW	5.5	1.5	0.0		0.0
20-03-2023	17	36.2	53.7	238.0	WSW	9.4	2.6	0.0		0.0
20-03-2025	-18	35.1	52.0	135.0	SE	4.3	1.2	0.0		0.0
20-03-2023	-19	33.5	53.0	135.0	SE	2.0	0.6	0.0		0.0
20-03-2023	-20	31.4	57.0	31.0	NNE	3.0	0.8	0.0		0.0
20-03-2023	-21	29.3	61.0	135.0	SE	9.4	2.6	0.0		0.0
20-03-2023	- 22	27.2	63.0	135.0	SE	1.5	0.4	0.0		0.0
20-03-2023	- 23	24.6	64.0	135.0	SE	5.0	1.4	0.0		0.0
20-03-2023	- 24	23.1	67.0	135.0	SE	2.5	0.7	0.0		0.0
21-03-2023	-1	22.7	70.0	270.0	W	1.4	0.4	0.0		0.0
21-03-2023	- 2	22.6	72.3	270.0	W	2.0	0.6	0.0		0,0
21-03-2023	- 3	22.8	74.4	301.0	WNW	6.1	1.7	2.0		0.0
21-03-2023	3 4	23.4	75.5	135.0	SE	1.8	0.5	3.0		0.0
21-03-2023	3 5	24.3	76.8	135.0	SE	4.7	1.3	4.0		0.0
21-03-2023	-6	24.9	78.4	242.0	WSW	3.6	1.0	6.0		0.3
21-03-2023	37	26.2	79,1	180,0	S	8.6	2.4	7.0		0.6
21-03-2023	-8	27.5	78.8	180.0	S	2.5	0.7	6.0		0.2

Date	Time	Temperature(C)	$\begin{gathered} \text { RH } \\ (\%) \\ \hline \end{gathered}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m/s		
$\frac{21-03-2023}{21-03-2023}$	9	28.9	76.6	315.0	NW	1.8	0.5	6.0	0.0
$\frac{21-03-2023}{21-03-2023}$	10	30.2	73.4	180.0	S	9.7	2.7	4.0	0.0
$\frac{1-03-2023}{21-03-2023}$	1	31.5	71.2	45.0	NE	4.0	1.1	3.0	0.0
21-03-2023	13	32.8	68.8	315.0	NW	3.0	0.8	2.0	0.0
21-03-2023	14	34.7	66.7	315.0	NW	5,5	1.5	0.0	0.0
21-03-2023	15	35.6	63.6	315.0	NW	10.4	2.9	0.0	0.0
21-03-2023	16	36.2	62.4	315.0	NW	3.6	2.5	0.0	0.0
21-03-2023	17	36.6	61.7	315.0	NW	5.5	1.5	0,0	0.0
21-03-2023	18	34.2	60.8	360.0	N	12.6	3.5	0.0	0.0
\| 1 1-03-2023	19	32.3	58.8	90.0	E	4.0	1.1	0.0	0.0
2]-03-2023	21	30.1	57.4	135.0	SE	3.0	0.8	0.0	0.0
21-03-2023	22	28.1	57.0	135.0	SE	13.0	3.6	0.0	0.0
21-03-2023	23	23.4	67.0	135.0	SE	2.5	0.7	0.0	0.0
- $21-03-2023$	24	22.2	70.0	135.0	SE	1.0	2.3	0.0	0.0
22-03-2023	1	22.0	71.2	289.0	WNW	2.5	0.7	0.0	0.0
22-03-2023	2	21.7	70.4	45.0	NE	10.8	3.0	0.0	0.0
22-03-2023	4	21.1	69.0	225.0	SW	2.0	0.6	0.0	0.0
22-03-2023	5	20.6	68.0	45.0	NE	4.0	1.1	0.0	0.0
22-03-2023	6	22.2	66.0	315.0	NW	1.8	0.5	0,0	0.0
22-03-2023	8	26.4	62.0	45.0	NE	9.4	2.6	0.0	0.0
22-03-2023	10	28.1	57.0	225.0	SW	2.0	0.6	0.0	0.0
22-03-2023	11	30.8	54.0	35.0	NE	3.6	1.0	0.0	0.0
22-03-2023	12	32.3	53.1	315.0	NW	9.5	2.6	0.0	0.0
22-03-2023	13	33.9	51.7	315.0	NW	12.6	3.5	0.0	0.0
22-03-2023	14	35.0	51.2	315.0	NW	16.2	4.5	0.0	0.0
22-03-2023	15	36.1	49.7	315.0	NW	23.8	1.7	0.0	0.0
$\begin{array}{\|l\|} \hline 22-03-2023 \\ \hline 22-03-2023 \end{array}$	16	36.7	48.6	315.0	NW	5.5	1.5	0.0	0.0
$\begin{array}{\|l\|} 22-03-2023 \\ \hline 22-03-2023 \\ \hline \end{array}$	17	36.3	49.6	315.0	NW	18.7	5.2	0.0	0.0
22-03-2023	19	35.1	52.1	135.0	SE	4.0	1.1	0.0	0.0
22-03-2023	20	31.3	53.0	315.0	NW	13.3	3.7	0.0	0.0
22-03-2023	21	28.8	58.0	135.0	SE	2.0	0.6	0.0	0.0
22-03-2023	22	26.4	59.0	166.0	SES	1.0	0.3	0.0	0.0
22-03-2023	23	24.3	60.0	286.0	WNW	9.7	$\frac{0.3}{2.7}$	0.0	0.0
22-03-2023	24	23.1	63.0	245.0	WSW	1.0	-2.7	0.0	0.0
		22.7	66.0	246.0	WSW	2.9	0.8	0.0	0.0
23-03-2023	3	22.6	66.0	248.0	WSW	2.5	0.7	0.0	0.0
23-03-2023	4	22.5	70.0	249.0	WSW	9.7	2.7	0.0	0.0
23-03-2023	5	23.7	67.0	251.0	$\frac{\text { WSW }}{\text { NE }}$	6.1	1.7	0.0	0.0
23-03-2023	6	24.3	67.0	185.0	NE		1.0	0.0	0.0
23-03-2023	7	25.2	61.0	135.0	SE	2.5	0.7	0.0	0.0
$\frac{23-03-2023}{23-03-2023}$	8	26.6	59.0	135.0	SE	4.0	1.1	0.0	0.0
23-03-2023	10	30.1	56.0	315.0	NW	12.2	3.4	0.0	0.0
23-03-2023	11	30.9	54.0	315.0	NW	5.0	1.4	0.0	0.0
23-03-2023	12	32.1	53.2	315.0	NW	2.2	0.6	0.0	0.0
23-03-2023	14	34.9	52.0	315.0	NW	7.9	2.2	0.0	0.0
23-03-2023	15	36.5	50.6	315.0 270.0	NW	16.2	4.5	0.0	0.0
23-03-2023	16	36.7	47.9	270.0	W	$\frac{20.5}{90}$	5.7	0.0	0.0
23-03-2023	17	36.0	49.0	270.0	W	18.7	2.5	0.0	0.0
23-03-2023	18	35.3	47.6	180.0	S	18.7	5.2	0.0	0.0
23-03-2023	19	32.1	48.3	289.0	WNW	11.9	3.7	0.0	0.0
23-03-2023	20	29.8	50.0	135.0	SE	1.0	0.3	0.0	0.0
23-03-2023	21	27.6	53.0	360.0	N	5.5	1.5	0.0	0.0

Date	Time	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \mathrm{RH} \\ & (\%) \\ & \hline \end{aligned}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m / s		
23-03-2023	22	25.6	58.0	120.0	ESE	13.3	3.7	0.0	0.0
23-03-2023	23	24.0	62.4	225.0	SW	1.5	0.4	0.0	0.0
23-03-2023	24	22.7	64.7	315.0	NW	1.8	0.5	0.0	0.0
24-03-2025	1	22.5	68.2	315.0	NW	4.0	1.1	0.0	0.0
24-03-2023	2	22.2	71.2	315.0	NW	6.1	1.7	0.0	0.0
24-03-2023	3	21.6	73.0	315.0	NW	1.0	0.3	0.0	0.0
24-03-2023	4	21.0	74.5	122.0	ESE	2.0	0.6	2.0	0.0
24-03-2023	5	21.2	76.4	225.0	SW	13.0	3.6	3.0	0.0
24-03-2023	6	22.9	77.2	180.0	S	3.5	1.0	4.0	0.0
24-03-2023	7	24.6	78.4	315.0	NW	9.0	2.5	6.0	0.3
24-03-2023	8	26.5	79.2	225.0	SW	2.0	0.6	7.0	0.9
24-03-2023	9	28.3	80.1	225.0	SW	5.4	1.5	8.0	1.4
24-03-2023	10	29.7	80.4	315.0	NW	13.0	3.6	8.0	1.7
24-03-2023	11	31.1	78.7	315.0	NW	14.0	3.9	7.0	0.6
24-03-2023	12	32.8	75.5	315.0	NW	13.0	3.6	6.0	0.2
24-03-2023	13	34.3	72.2	315.0	NW	10.8	3.0	4.0	0.0
24-03-2023	14	35.5	68.6	315.0	NW	4.5	1.3	3.0	0.0
24-03-2023	15	36.5	65.6	315.0	NW	15.1	4.2	2.0	0.0
24-03-2023	16	36.7	62,3	315.0	NW	7.9	2.2	0.0	0.0
24-03-2023	17	36.2	59.6	315.0	NW	7.9	2.2	0.0	0.0
24-03-2023	18	35.0	57.4	315.0	NW	13.3	3.7	0.0	0.0
24-03-20231	19	34.1	54.4	315.0	NW	7.9	2.2	0.0	0.0
24-03-2023	20	32.4	53.6	315.0	NW	13.3	3.7	0.0	0.0
24-03-2023	21	31.0	57.0	315.0	NW	7.9	2.2	0.0	0.0
24-03-2023	22	28.6	60.0	285.0	WNW	1.1	0.3	0.0	0.0
24-03-2023	23	25.7	65.0	315.0	NW	3.0	0.8	0.0	0.0
24-03-2023	24	23.4	67.0	285.0	WNW	5.8	1.6	0.0	0.0
25-03-2023	1	23.2	67.0	135.0	SE	9.0	2.5	0.0	0.0
25-03-2023	2	22,7	70.0	225.0	SW	12.6	3.5	0.0	0.0
25-03-2023	3	22.5	70.0	333.0	NWN	3.6	1.0	0.0	0.0
25-03-2023	4	22,6	66.0	345.0	NWN	8.3	2.3	0.0	0.0
25-03-2023	5	23.3	63.0	135.0	SE	9.4	2.6	0.0	0.0
25-03-2023	6	24.5	60.0	270.0	W	2.5	0.7	0.0	0.0
25-03-2023	7	25.7	58.0	112.0	ESE	2.0	0.6	0.0	0.0
25-03-2023	8	27.1	56.0	116.0	ESE	3.6	1.0	0.0	0.0
25-03-2023	9	28.4	54.0	180.0	S	3.6	1.0	0.0	0.0
25-03-2023	10	29.6	52.0	315.0	NW	10.8	3.0	0.0	0.0
25-03-2023	11	31.1	53.0	315.0	NW	14.4	4.0	0.0	0.0
25-03-2023	12	32.4	49.0	45.0	NE	18.0	5.0	0.0	0.0
25-03-2023	13	34.0	48.0	315.0	NW	10.8	3.0	0.0	0,0
25-03-2023	14	34.4	47.7	180.0	S	18.0	5.0	0.0	0.0
25-03-2023	15	36.2	48.0	315.0	NW	18.0	5.0	0.0	0.0
25-03-2023	16	36.7	47.6	315.0	NW	15.1	4.2	0.0	0.0
25-03-2023	17	36,1	47.8	285.0	WNW	18.0	5.0	0.0	0.0
25-03-2023	18	35.6	48.9	315.0	NW	14.4	4.0	0.0	0.0
25-03-2023	19	34.3	52.3	90.0	E	3.6	1.0	0.0	0.0
25-03-2023	20	32.2	55.0	300.0	WNW	10.8	3.0	0,0	0.0
25-03-2023	21	30.3	59.0	180.0	S	1.0	0.3	0.0	0.0
25-03-2023	22	28.0	64.0	180.0	S	1.0	0.3	0.0	0.0
25-03-2023	23	26.0	66.0	180.0	S	1.8	0.5	0.0	0.0
25-03-2023	24	23.7	67.0	65.0	ENE	3.6	1.0	0.0	0.0
26-03-2023	1	22.8	67.0	75.0	ENE	3.6	1.0	0.0	0.0
26-03-2023	2	22.5	66.0	115.0	ESE	3.6	1.0	0.0	0.0
26-03-2023	3	22.3	66.0	360.0	N	3.0	0.8	0.0	0.0
26-03-2023	4	22.1	70.0	360.0	N	1.0	0.3	0.0	0.0
26-03-2023	5	22.0	70.0	315.0	NW	3.0	0.8	0.0	0.0
26-03-2023	6	23.4	71.0	315.0	NW	3.2	0.9	0.0	0.0
26-03-2023	7	25.2	68.0	25.0	NNE	1.8	0.5	0.0	0.0
26-03-2023	8	27.3	66.0	360.0	N	3.6	1.0	0.0	0.0
26-03-2023	9	29.4	64.0	116.0	ESE	18.0	5.0	0.0	0.0
26-03-2023	10	30.5	65.0	166.0	SES	10.8	3.0	0.0	0.0

Date	Time	$\begin{gathered} \text { Temperature } \\ \left.{ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{aligned} & \text { RH } \\ & (\%) \end{aligned}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m / s		
26-03-2023	11	31.8	64.0	59.0	ENE	9.5	2.6	0.0	0.0
26-03-2023	12	32.6	61.0	315.0	NW	1.8	0.5	0.0	0.0
26-03-2023	13	33.7	56.0	315.0	NW	14.4	4.0	0.0	0.0
26-03-2023	14	35.1	55.0	315.0	NW	7.9	2.2	0.0	0.0
26-03-2023	16	36.2	53.0	315.0	NW	15.5	4.3	0.0	0.0
26-03-2023	17	36.3	51.0	270.0	W	10.5	2.9	0.0	0.0
26-03-2023	18	35.2	51.0	225.0	SW	13.9	3.9	0.0	0.0
26-03-2023	19	34.7	54.0	90.0	E	3.6	1.0	0.0	0.0
26-03-2023	20	32.1	58.0	148.0	SES	2.0	0.6	0.0	0.0
$\frac{26-03-2023}{26-03-2023}$	21	30.7	62.0	159.0	SES	1.0	0.3	0.0	0.0
$\frac{26-03-2023}{26-03-2023}$	22	28.9	68.0	135.0	SE	5.5	1.5	0.0	0.0
26-03-2023	24	25.1	72.0	1750	ESE	8.5	2.4	0.0	0.0
27-03-2023	I	24.7	73.4	270.0	W	2.0	0.6	0.0	0.0
27-03-2023	2	23.2	74.4	245.0	WSW	13.0	3.6	0.0	0.0
27-03-2023	3	23.0	76.0	315.0	NW	1.0	0.3	2.0	0.0
27-03.2023	4	22.4	77.2	315.0	NW	12.2	3.4	3.0	0.0
27-03-2023	5	22.5	77.4	315.0	NW	2.5	0.7	4.0	0.0
-27-03-02023	7	23,9	78.4	180.0	S	8.6	2.4	6.0	0.2
27-03-2023	8	25.5	79.2	298.0	WNW	4.5	1.2	7.0	0.4
27-03-2023	9	27.6	78.6	315.0	NW	5.5	1.5	7.0	0.6
27-03-2023	10	29.9	73.7	270.0	NW	7.9	2.2	6.0	0.3
27-03-2023	II	31.3	71.2	90.0	W	7.9	2.2	5.0	0.1
27-03-2023	12	33.1	69.3	45.0	NE	10.8	3.0	3.0	0.0
27-03-2023	13	34.1	66.6	315.0	NW	12.6	0.9	4.0	0.0
27-03-2023	14	35.0	63.4	315.0	NW	18.0	5.0	2.0	0.0
27-03-2023	15	35.4	61.2	180.0	S	2.2	0.6	0.0	0.0
27-03-2023 $27-032023$	16	36.4	58.7	45.0	NE	18,0	5.0	0.0	0.0
- $27-03 \cdot 2023$	17	36.7	56.5	315.0	NW	10.9	3.0	0.0	0.0
27-03-2023	18	35.4	53.7	180.0	S	5.0	1.4	0.0	0.0
27-03-2023	19	33.6	53.0	315.0	NW	2.5	0.7	0.0	0.0
27-03-2023	21	31.4	57.0	315.0	NW	14.4	4.0	0.0	0.0
27-03-2023	22	27.3	66.0	45.0	NE	2.2	0.6	0.0	0.0
27-03-2023	23	24.8	68.0	338.0	NWN	3.6	1.0	0.0	0.0
27-03-2023	24	23.9	71.0	315.0	NW	$\frac{10.8}{4.3}$	3.0	0.0	0.0
28-03-2023	1	23.5	72.0	315.0	NW	3.2	0.9	0.0	0.0
28-03-2023	2	23.1	74.3	315.0	NW	10.8	3.0	0.0	0.0
28-03-2023	4	22.9	75.4	315.0	NW	8.6	2.4	2.0	0.0
28-03-2023	5	22.5	76.6	225.0	SW	2.2	0.6	3.0	0.0
28-03-2023	6	24.1	77.8	45.0	NE	5.5	1.5	4.0	0.0
28-03-2023	7	25.9	79.9	210.0	SSW	5.0	1.4	5.0	0.0
28-03-2023	8	28.1	80.1	135.0	SE	2.7	2.7	6,0.	0.4
28-03-2023	9	29.4	79.2	90.0	E	1.8	0.5	8.0	0.8
28-03-2023	10	30.2	77.6	45.0	NE	10.8	3.0	6.0	1.5
28-03-2023	12	31.6	74.4	315.0	NW	3.0	0.8	5.0	0.0
28-03-2023	13	32.5	71.3	135.0	SE	8.6	2.4	3.0	0.0
28-03-2023	14	35.4	63.4	3150.0	NW	1.8	0.5	2.0	0.0
28-03-2023	15	36.3	59.6	315.0	NW	10.8	3.0	0.0	0.0
28-03-2023	16	36.5	56.3	315.0	NW	9.5	$\underline{2.6}$	0.0	0.0
28-03-2023	17	35.2	53.2	315.0	NW	14.4	4.0	0.0	0.0
28-03-2023	18	33.7	50.6	256.0	WSW	2.9	0.8	0.0	0.0
28-03-2023	20	32.1	49.4	346.0	NWN	14.4	4.0	0.0	0.0
28-03-2023	21	38.4	51.0	135.0	SE	10.8	3.0	0.0	0.0
28-03-2023	22	27.2	59.0	135.0	SE	13.7	3.8	0.0	0.0
28-03-2023	23	25.1	61.0	270.0	W	10.8	3.0	0.0	0.0

Date	Time	Temperature $\left.{ }^{6} \mathrm{C}\right)$	$\begin{gathered} \text { RH } \\ (\%) \end{gathered}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m / s		
28-03-2023	24	23.3	64.0	135.0	SE	3.6	1.0	0.0	0.0
29-03-2023	1	21.4	67.0	135.0	SE	4.0	1.1	0.0	0.0
29-03-2023	2	20.2	67.0	329.0	NWN	2.0	0.6	0.0	0.0
29-03-2023	3	19.4	71.0	135.0	SE	1.0	0.3	0.0	0.0
29-03-2023	4	18.8	71.0	346.0	NWN	1.0	0.3	0.0	0.0
29-03-2023	5	18.3	68.0	315.0	NW	9.0	2.5	0.0	0.0
29-03-2023	6	19.4	65.0	45.0	NE	2.9	0.8	0.0	0.0
29-03-2023	7	21.6	62.0	165.0	SES	5.5	1.5	0.0	0.0
29-03-2023	8	23.4	60.0	45.0	NE	3.6	1.0	0.0	0.0
29-03-2023	9	25.5	58.0	315.0	NW	2.2	0.6	0.0	0.0
29-03-2023	10	27.1	57.0	315.0	NW	3.6	1.0	0.0	0.0
29-03-2023	11	28.2	55.0	315.0	NW	3.6	1.0	0.0	0.0
29-03-2023	12	29.6	54.0	315.0	NW	10.8	3.0	0.0	0.0
29-03-2023	13	31.3	53.0	315.0	NW	5.0	1.4	0.0	0.0
29-03-2023	14	32.4	51.7	315.0	NW	7.9	2.2	0.0	0.0
29-03-2023	15	34.2	51.4	315.0	NW	5.0	1.4	0.0	0.0
29-03-2023	16	35.6	50.7	285.0	WNW	10.8	3.0	0.0	0.0
29-03-2023	17	36.2	49.9	295.0	WNW	14.4	4.0	0.0	0.0
29-03-2023	18	35.3	52.0	135.0	SE	13.7	3.8	0.0	0.0
29-03-2023	19	33.4	55.0	135.0	SE	10.8	3.0	0.0	0.0
29-03-2023	20	31.2	59.0	135.0	SE	1.5	0.4	0.0	0.0
29-03-2023	21	29.7	63.0	135.0	SE	2.0	0.6	0.0	0.0
29-03-2023	22	27.2	64.0	135.0	SE	1.0	0.3	0.0	0.0
29-03-2023	23	25.1	66.0	135.0	SE	12.6	3.5	0.0	0.0
29-03-2023	24	23.2	68.0	135.0	SE	10.8	3.0	0.0	0.0
30-03-2023	1	21.3	69.0	45.0	NE	7.9	2.2	0.0	0.0
30-03-2023	2	19.9	70.0	165.0	SES	5.8	1.6	0.0	0.0
30-03-2023	3	19.1	71.0	148.0	SES	2.5	0.7	0.0	0.0
30-03-2023	4	18.4	72.0	270.0	W	1.0	0.3	0.0	0.0
30-03-2023	5	17.6	74.0	315.0	NW	8.0	2.2	0.0	0.0
30-03-2023	6	19.1	75.0	315.0	NW	7.9	2.2	0.0	0.0
-30-03-2023	7	20.2	73.0	315.0	NW	11.9	3.3	0.0	0.0
30-03-2023	8	23.2	70.0	135.0	SE	12.6	3.5	0.0	0.0
30-03-2023	9	24.4	64.0	315.0	NW	5.5	1.5	0.0	0.0
30-03-2023	10	26.1	63.0	270.0	W	3.6	1.0	0.0	0.0
30-03-2023	11	28.2	64.0	270.0	W	3.6	1.0	0.0	0.0
30-03-20223	12	29.4	59.0	270.0	W	9.0	2.5	0.0	0.0
30-03-2023	13	31.4	55.0	315.0	NW	3.6	1.0	0.0	0.0
30-03-2023	14	33.4	50.0	315.0	NW	3.6	1.0	0.0	0.0
30-03-2023	15	34.5	50.0	315.0	NW	3.6	1.0	0.0	0.0
30-03-2023	16	36.2	49.0	270.0	W	9.0	2.5	0.0	0.0
30-03-2023	17	35.2	49.0	242.0	WSW	6.0	1.7	0.0	0.0
-30-03-2023	18	33.2	49.0	270.0	W	15.8	4.4	0.0	0.0
30-03-2023	19	31.2	52.0	315.0	NW	9.0	2.5	0.0	0.0
30-03-2023	20	28.8	53.0	289.0	WNW	9.4	2.6	0.0	0.0
30-03-2023	21	27.4	54.0	135.0	SE	9.0	2.5	0.0	0.0
30-03-2023	22	26.2	54.0	135.0	SE	4.0	1.1	0.0	0.0
30-03-2023	23	24.6	59.0	135.0	SE	2.5	0.7	0.0	0.0
30-03-2023	24	23.3	62.4	135.0	SE	1.0	0.3	0.0	0.0
31-03-2023	1	21.4	64.2	135.0	SE	2.5	0.7	0.0	0.0
31-03-2023	2	20.1	66.2	135.0	SE	1.5	0.4	0.0	0.0
31-03-2023	3	19.2	68.2	135.0	SE	2.2	0.6	0.0	0.0
31-03-2023	4	18.2	69.6	135.0	SE	9.4	2.6	0.0	0.0
31-03-2023	5	17.4	71.1	19.0	NNE	12.6	3.5	0.0	0.0
31-03-2023	6	17.1	72.6	25.0	NNE	13.3	3.7	0.0	0.0
31-03-2023	7	18.5	74.2	135.0	SE	15.5	4.3	2.0	0.0
31-03-2023	8	20.4	76.3	156.0	SES	16.9	4.7	3.0	0.0
31-03-2023	9	22.3	77.4	45.0	NE	2.2	0.6	5.0	0.0
31-03-2023	10	24.1	78.2	270.0	W	8.0	2.2	6.0	0.6
31-03-2023	11	26.6	79.2	270.0	W	13.3	3.7	7.0	0.9
31-0)3-2023	12	28.4	78.4	245.0	WSW	9.0	2.5	7.0	0.4

Date	Time	$\begin{array}{\|c} \hline \text { Temperature } \\ \left.{ }^{0} \mathrm{C}\right) \\ \hline \end{array}$	RH$(\%)$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
31-03-2023				in angle	in letter	Km/hrs	m/s		
31-03-2023	14	31.2	75.2	315.0	NW	7.0	1.9	6.0	0.2
31-03-2023	15	34.6	72.7	315.0	NW	2.2	0.6	5.0	0.0
31-03-2023	16	35.4	67.7	315.0 315.0	NW	10.8	3.0	4.0	0.0
31-03-2023	17	36.7	64.4	315.0	NW	7.9	2.2	2.0	0.0
31-03-2023	18	34.6	62.3	315.0	NW	14,4	4.0	0.0	0.0
31-03-2023	19	33.2	61.0	315.0	NW	16.6	4.6	0.0	0,0
31-03-2023	20	32.0	60.6	315.0	NW	14.5	4.3	0.0	0.0
31-03-2023	21	30.6	62.4	315.0	NW	$\underline{14.4}$	4.0	0.0	0.0
-31-03-2023	22	29.9	66.5	315.0	NW	12.6	3.7	0.0	0.0
31-03-2023	24	28.4	68.8	225.0	SW	1.5	0.4	0.0	0.0
01-04-2023	1	25.6	72.0	315.0	NW	9.0	2.5	0.0	0.0
01-04-2023	2	23.6	75.4	315.0	NW	9.4	2.6	2.0	0.0
01-04-2023	3	22.4	76.0	315.0	NW	9.0	2.5	3.0	0.0
01-04-2023	4	22.2	78.3	315.0	NW	10.8	3.0	4.0	0.0
01-04-2023	5	23.1	79.2	135.0	NW	12.6	3.5	6.0	0.0
01-04-2023	6	24.4	80.2	135.0	SE	9.4	2.6	7.0	0.3
01-04-2023	7	26.1	80.6	135.0	SE	5.4	1.5	7.0	0.4
01-04-2023	8	27.7	80.9	135.0	SE	7.9	2.2	8.0	1.4
01-04-2023	9	29.4	78.9	315.0	NW	8.6	2.4	8.0	2.2
01-04-2023	10	31.1	76.2	315.0	NW	3.6	1.0	7.0	0.7
01-04-2023	12	32.2	73.4	315.0	NW	11.9	2.7	5.0	0.3
01-04-2023	13	35, 2	71.1	315.0	NW	14.4	4.0	2.0	0.0
01-04-2023	14	37.5	64.9	315.0	NW	14.4	4.0	2.0	0.0
01-04-2023	15	38.7	62.1	315.0	NW	18.0	5.0	0.0	0.0
01-04-2023	17	39.2	55.4	315.0	NW	13.2	3.7	0.0	0.0
01-04-2023	19	37.7	53.2	240.0	WSW	15.1	4.2	0.0	0.0
01-04-2023	20	31.3	55.0	245:0	WSW	9.7	2.7	0.0	0.0
01-04-2023	21	28.6	58.0	255.0	NW	8.3	2.3	0.0	0.0
01-04-2023	22	26.4	63.0	135.0	WSW	7.2	2.0	0.0	0.0
01-04-2023	23	24.4	69.0	135.0	SE	10.8	3.0	0.0	0.0
02-04-2023-2023	1	22.1	71.0	135.0	SE	10.8	3.0	0.0	0.0
02-04-2023	3	21.7	71.0	25.0	NNE	18.0	5.0	0.0	0.0
02-04-2023	4	20.7	71.0	31.0 16.0	NNE	14.4	4.0	0.0	0.0
02-04-2023	5	20.9	71.0 67.0	16.0	NNE	4.3	1.2	0.0	0.0
02-04-2023	6	22.2	67.0	15.0	NNE	$\frac{10.8}{3}$	3.0	0.0	0.0
02-04-2023	7	23.4	$\frac{65.0}{62.0}$	180.0	SES	3.7	1.0	0.0	0.0
2-04-2023	8	25,2	60.0	45.0	SES	10.8	3.0	0.0	0.0
2-04-2023-2023	9	26.9	56.0	45.0	NE	15.5	4.3	0.0	0.0
2-04-2023-2023	10	28.4	54.0	45.0	NE	12.2	3.4	0,0	0.0
2-04-2023	12	30.3	52.0	210.0	SSW	12.2	3.4	0.0	0.0
2-04-2023	13	33.0	48.0	270.0	W W	13.3	3.7	0.0	0.0
2-04-2023	15	36.2	48.0	315.0	NW	16.2	4.5	0.0	0.0
2-04-2023	17	$\frac{37.2}{370}$	49.0	315.0	NW	21.6	6.0	0.0	0.0
2-04-2023	18	37.0	49.0	315.0	NW	18.0	5.0	0.0	0.0
2-04-2023	19	33.3	53.0	3340.0	NWN	14.4	4.0	0.0	0.0
2-04-2023	20	32.1	58.0	3445.0	NWN	13.0	3.6	0.0	0.0
2-04-2023	21	31.1	63.0	345.0	NWE	16.9	4.7	0.0	0.0
2-04-2023	22	28.8	63.0	135.0	SE	9.7	2.7	0.0	0.0
02-04-2023	23	27.5	66.0	135.0	SE	4.9	1.4	0.0	0.0
3-04-2023	1	26.4	69.0	135.0	SE	1.9	0.5	0.0	0.0

Date	Time	Temperature $\left.{ }^{6} \mathrm{C}\right)$	$\begin{aligned} & \mathrm{RH} \\ & (\%) \end{aligned}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m / s		
03-04-2023	2	26.2	73.0	135.0	SE	4.9	1.4	0.0	0.0
03-04-2023	3	26.3	73.0	15.0	NNE	10.8	3.0	0.0	0,0
03-04-2023	4	26.8	75.0	180.0	S	14.4	4.0	2.0	0.0
03-04-2023	5	27.5	76,0	180.0	S	1.9	0.5	3.0	0.0
03-04-2023	6	28.2	77.4	225.0	SW	10.8	3.0	4.0	0.0
03-04-2023	7	28.9	77.7	155.0	SES	14.4	4.0	6.0	0.2
03-04-2023	8	30.1	78.9	165.0	SES	1.9	0.5	6.0	0.4
03-04-2023	9	30.7	79.2	45.0	NE	4.3	1.2	6.0	0.5
03-04-2023	10	31.4	77.6	270.0	W	4.3	1.2	6.0	0.3
03-04-2023	II	33.0	74.4	315.0	NW	9.0	2.5	5.0	0.0
03-04-2023	12	34.3	71.3	315.0	NW	8.3	2.3	4.0	0.0
03-04-2023	13	35.6	68.6	315.0	NW	12.6	3.5	2.0	0.0
03-04-2023	14	36.4	65.2	315.0	NW	14.4	4.0	2.0.	0.0
03-04-2023	15	36.9	62.3	315.0	NW	18.0	5.0	0.0	0.0
05-04-2023	16	37.0	58.6	315.0	NW	15.8	4.4	0.0	0.0
03-04-2023	17	37.3	55.4	180.0	S	19.4	5.4	0.0	0.0
03-04-2023	18	37.0	52.2	135.0	SE	13.7	3.8	0.0	0.0
03-04-2023	19	35.2	53.4	45.0	NE	15.5	4.3	0.0	0.0
03-04-2023	20	33.0	55.8	333.0	NWN	13.7	3.8	0.0	0.0
03-04-2023	21	30.9	58.5	135.0	SE	15.1	4.2	0.0	0.0
03-04-2023	22	28.7	60.0	135.0	SE	7.9	2.2	0.0	0.0
03-04-2023	23	27.3	63.0	135.0	SE	18.0	5.0	0.0	0.0
03-04-2023	24	25.4	65.0	25.0	NNE	14,4	4.0	0.0	0.0
04-04-2023	1	25.0	68.0	180.0	S	10.8	3.0	0.0	0.0
04-04-2023	2	24.3	71.0	180.0	S	3.6	1.0	0.0	0.0
04-04-2023	3	24.0	71.0	180.0	S	3,6	1.0	0.0	0.0
04-04-2023	4	23.6	71.0	112.0	ESE	3.7	1.0	0.0	0.0
04-04-2023	5	24.5	68.0	360.0	N	13.3	3.7	0.0	0.0
04-04-2023	6	26.4	66.0	225.0	SW	15.8	4.4	0.0	0.0
04-04-2023	7	27.6	59.0	155.0	SES	17.6	4.9	0.0	0.0
04-04-2023	8	28.7	55.0	158.0	SES	14.4	4.0	0.0	0.0
04-04-2023	9	29.9	53.0	45.0	NE	19.4	5.4	0.0	0.0
04-04-2023	10	30.7	52.0	270.0	W	15.1	4.2	0.0	0.0
04-04-2023	T	32.8	50.0	270.0	W	20.2	5.6	0.0	0.0
04-04-2023	12	34.6	48.0	270.0	W	22.7	6.3	0.0	0.0
04-04-2023	13	36,1	48.0	245.0	WSW	24.1	6.7	0.0	0.0
04-04-2023	14	36.7	48.0	315.0	NW	16.9	4.7	0.0	0,0
04-04-2023	15	37.9	47.0	315.0	NW	19.8	5.5	0.0	0.0
04-04-2023	16	38.2	47.0	315.0	NW	15.8	4.4	0.0	0.0
04-04-2023	17	38.1	47.0	315.0	NW	15.1	4.2	0.0	0.0
04-04-2023	18	37.3	49.0	315.0	NW	13.7	3.8	0.0	0.0
04-04-2023	19	35.6	52.0	135.0	SE	13.0	3.6	0.0	0.0
04-04-2023	20	33.2	56.0	135.0	SE	10.8	3.0	0.0	0.0
04-04-2023	21	31.2	60.0	135.0	SE	1.9	0.5	0.0	0.0
04-04-2023	22	29.1	64.0	335.0	NWN	5.6	1.5	0.0	0.0
04-04-2023	23	27.8	67.0	340.0	NWN	12.6	3.5	0.0	0.0
04-04-2023	24	26.6	69.0	135.0	SE	15.1	4.2	0.0	0.0
05-04-2023	1	26.2	69.0	135.0	SE	14.4	4.0	0.0	0.0
05-04-2023	2	25.9	73.0	15.0	NNE	9.3	2.6	0.0	0.0
05-04-2023	3	26.0	73.0	26.0	NNE	1.9	0.5	0.0	0.0
05-04-2023	4	26.7	73.0	180.0	S	10.8	3.0	0.0	0.0
05-04-2023	5	27.4	70.0	135.0	SE	1.9	0.5	0.0	0.0
05-04-2023	6	28.2	67.0	303,0	WNW	4.3	1.2	0.0	0.0
05-04-2023	7	29.0	64.0	135.0	SE	7,2	2.0	0.0	0.0
05-04-2023	8	29.7	64.0	270.0	W	10.4	2.9	0.0	0.0
05-(04-2023	9	31.1	60.0	315.0	NW	14.4	4.0	0.0	0.0
05-04-2023	10	32.0	58.0	315.0	NW	13.0	3.6	0.0	0.0
05-04-2023	I]	33.0	56.0	315.0	NW	12.6	3.5	0.0	0.0
05-04-2023	-12	34.2	54.0	270.0	W	8.6	2.4	0.0	0.0
05-04-2023	-13	35.8	50.0	315.0	NW	14.4	4.0	0.0	0.0
05-04-2023	14	36.5	50.0	315.0	NW	13.7	3.8	0.0	0.0

Date	Time	Temperature (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \text { RH } \\ (\%) \end{gathered}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m/s		
05-04-2023	15	37.4	49.0	315.0	NW	11.9	3.3	0.0	0.0
05-04-2023	16	38.0	50.0	315.0	NW	14.4	4.0	0.0	0.0
05-04-2023	17	38.1	50.0	315.0	NW	21.6	6.0	0.0	0.0
05-04-2023	18	36.6	53.0	135.0	SE	18.0	5.0	0.0	0.0
05-04-2023	19	34.3	54.0	135.0	SE	22.7	6.3	0.0	0.0
05-04-2023	20	32.1	58.0	116.0	ESE	18.7	5.2	0.0	0.0
05-04-2023	22	30.3	62.0	123.0	ESE	16.9	4.7	0.0	0.0
05-(04-2023	23	27.5	70.0	168.0	SES	18.0	5.0	0.0	0.0
05-04-2023	24	26.0	73.0	135.0	SE	19.8	5.5	0.0	0.0
06-04-2023	1	25.7	72.0	135.0	SE	16.9	4.7	0.0	0.0
06-04-2023	2	25.3	72.0	135.0	SE	8.3	2.3	0.0	0.0
06-04-2023	3	24.8	72.0	33.0	NNE	1.2	0.3	0.0	0.0
06-04-2023	5	24.5	71.0	135.0	SE	2.5	0.7	0.0	0.0
06-04-2023	6	24.4	68.0	19.0	NNE	7.9	2.2	0.0	0.0
06-04-2023	7	27.9	66.0	123.0	ESE	3.1	0.9	0.0	0.0
06-04-2023	8	29.5	58.0	135.0	SE	3.6	1.0	0.0	0.0
06-04-2023	9	30.7	58.0	315.0	NW	9.9	1.7	0.0	0.0
06-04-2023	10	31.6	52.0	225.0	SW	11.7	3.3	0.0	0.0
06-04-2023	11	32.9	50.0	160.0	SES	16.6	4.6	0.0	0.0
$\frac{06-04-2023}{06-04-2023}$	12	34.3	48.0	166.0	SES	18.7	5.2	0.0	0.0
06-04-2023	14	35.9	50.0	158.0	SES	15.8	4.4	0.0	0.0
06-04-2023	15	38.6	46.3	225.0	SWW	18.7	5.2	0.0	0.0
06-04-2023	16	39.6	47.0	315.0	NW	13.3	3.7	0.0	0.0
06-04-2023	17	40.3	49.0	315.0	NW	18.0	5.0	0.0	0.0
06-04-2023	18	38.1	49.0	135.0	SE	20.2	5.6	0.0	0.0
06-04-2023	19	35.4	53.0	225.0	SW	22.7	6.3	0.0	0.0
06-04-2023	21	33.1	58.0	225.0	SW	25.9	7.2	0.0	0.0
06-04-2023	22	27.8	63.0	225.0	SW	17.3	4.8	0.0	0.0
06-(04-2023	23	26.5	70.0	225.0	SW	11.5	3.2	0.0	0.0
06-04-2023	24	24.4	71.0	135.0	SE	4.9	1.4	0.0	0.0
07-04-2023	1	23.7	73.0	135.0	SE	14.0	3.9	0.0	0.0
07-04-2023	2	23.1	74.0	135.0	SE	1.8	0.5	0.0	0.0
07-04-2023	3	22.4	73.2	135.0	SE	1.2	0.3	0.0	0.0
07-04-2023	4	22.2	72.2	135.0	SE	5.4	1.5	0.0	0.0
07-04-2023	5	22.9	71.0	58.0	ENE	3.7	1.0	0.0	0.0
07-04-2023	6	24.2	70.7	135.0	SE	10.8	3.0	0.0	0.0
07-04-2023	8	26.5	73.0	135.0	SE	10.8	3.0	0.0	0.0
07-04-2023	9	30.3	72.0	135.0	SE	8.0	2.2	0.0	0.0
07-04-2023	10	31.8	$\underline{67.5}$	3715.0	NW	13.0	3.6	0.0	0.0
07-04-2023	11	33.5	63.0	315.0	NW	23.8	6.6	0.0	0.0
07-04-2023	12	35.3	58.5	315.0	NW	26.3	7.3	0.0	0.0
07-04-2023	13	36.6	55.6	315.0	NW	22.3	6.2	0.0	0.0
07-04-2023	14	38.2	54.0	315.0	NW	20.2	5.6	0.0	0.0
07-04-04-2023	15	39.3	51.5	315.0	NW	25.6	7.1	0.0	0.0
07-04-2023	17	39.7	$\frac{50.5}{50.0}$	115.0	ESE	26.3	7.3	0.0	0.0
07-04-2023	18	38.6	53.0	270.0	W	20.2	5.6	0.0	0.0
07-04-2023	19	36.2	56.0	165.0	SES	17.3	4.8	0.0	0.0
07-04-2023	20	33.6	61.0	335.0	NWN	19.4	5.4	0.0	0.0
07-04-2023	21	30.9	63.0	270.0	W	15.1	4.2	0.0	0.0
077-04-2023	22	28.6	67.0	270.0	W	13.3	3.7	0.0	0.0
07-04-2023	24	27.6	70.0	270.0	W	10.1	2.8	0.0	0.0
08-04-2023	T	26.7	72.1	270.0	W	1.2	0.3	0.0	0.0
08-04-2023	2	26.2	73.0	135.0	W	4.3	1.2	0,0	0.0
08-04-2023	3	26.3	74.2	360.0	$\frac{\mathrm{SE}}{\mathrm{N}}$	11.9	3.3	0.0	0,0

Date	Time	Temperature$\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { RH } \\ (\%) \\ \hline \end{gathered}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m / s		
08-04-2023	4	26.8	72.0	360.0	N	3.2	0.9	0.0	0.0
08-04-2023	5	27.5	70.0	135.0	SE	4.3	1.2	0.0	0.0
08-04-2023	6	28.1	71.0	135.0	SE	15.5	4.3	0.0	0.0
08-04-2023	7	28.8	74.0	180.0	S	9.7	2.7	0.0	0.0
08-04-2023	8	29.6	72.0	115.0	ESE	13.0	3.6	0.0	0.0
08-04-2023	9	30.5	72.4	45.0	NE	8.6	2.4	0.0	0.0
08-04-2023	10	31.3	67.5	225.0	SW	19.4	5.4	0.0	0.0
08-04-2023	11	32.7	65.0	156.0	SES	23.4	6.5	0.0	0.0
08-04-2023	12	34.4	62.5	148.0	SES	18.7	5.2	0.0	0.0
08-04-2023	13	36.0	58.6	315.0	NW	20.5	5.7	0.0	0.0
08-04-2023	14	37.5	55.5	165.0	SES	16.9	4.7	0.0	0.0
08-(4-2023	15	38.6	53.0	148.0	SES	18.4	5.1	0.0	0.0
08-04-2023	16	39.7	51.0	315.0	NW	23.8	6.6	0.0	0.0
08-04-2023	17	40.2	50.0	315.0	NW	20.5	5.7	0.0	0.0
08-04-2023	18	39.9	47.0	135.0	SE	16.9	4.7	0.0	0.0
08-04-2023	19	37.8	51.0	135.0	SE	19.8	5.5	0.0	0.0
08-04-2023	20	35.4	54.0	270.0	W	15.8	4.4	0.0	0.0
08-04-2023	21	33.1	58.0	315.0	NW	13.3	3.7	0.0	0.0
08-04-2023	22	30.6	62.0	315.0	NW	9.7	2.7	0.0	0.0
08-04-2023	23	28.3	66.0	258.0	WSW	9.0	2.5	0.0	0.0
08-04-2023	24	26.3	69.0	315.0	NW	3.6	1.0	0.0	0.0
09-04-2023	1	25.6	72.0	110.0	ESE	3.6	1.0	0.0	0.0
09-04-2023	2	25.3	72.0	225.0	SW	4.9	1.4	0.0	0.0
09-04-2023	3	25.1	72.0	115.0	ESE	7.9	2.2	0.0	0.0
09-04-2023	4	24.8	72.0	330.0	NWN	9.7	2.7	0.0	0.0
09-04-2023	5	24.7	68.0	270.0	W	5.8	1.6	0.0	0.0
099-04-2023	6	26.4	66.0	168.0	SES	11.5	3.2	0.0	0.0
09-04-2023	7	28.1	60.0	225.0	SW	3.6	1.0	0.0	0.0
09-04-2023	8	29.6	55.0	225.0	SW	10.8	3.0	0.0	0.0
09-04-2023	9	30.6	53.0	225.0	SW	14.4	4.0	0.0	0.0
09-04-2023	10	31.4	51.0	270.0	W	18.0	5.0	0.0	0.0
09-04-2023	11	32.6	49.0	255.0	WSW	15.8	4.4	0.0	0.0
09-(04-2023	12	34.1	48.0	315.0	NW	18.7	5.2	0.0	0.0
09-04-2023	13	35.5	51.0	315.0	NW	16.9	4.7	0.0	0.0
09-04-2023	14	36.4	50.4	315.0	NW	15.8	4.4	0.0	0.0
09-04-2023	15	37.3	49.9	315.0	NW	8,0	2.2	0.0	0.0
09-04-2023	16	38.7	49.4	315.0	NW	8.6	2.4	0.0	0,0
09-04-2023	17	38.2	48.6	315.0	NW	13,3	3.7	0.0	0.0
09-04-2023	18	36.5	50.0	135.0	SE	15.8	4.4	0.0	0.0
09-04-2023	19	33.8	54.0	135.0	SE	14.0	3.9	0.0	0.0
09-04-2023	20	32.2	58.0	135.0	SE	12.2	3.4	0,0	0.0
09-04-2023	21	30.8	63.0	328.0	NWN	13.3	3.7	0.0	0.0
09-04-2023	22	29.4	64.0	135.0	SE	18.0	5.0	0.0	0.0
09-04-2023	23	28.7	67.0	135.0	SE	3.6	1.0	0.0	0.0
09-04-2023	24	27.8	67.0	135.0	SE	1.8	0.5	0.0	0.0
10-04-2023	1	27.5	70.0	135.0	SE	5.4	1.5	0.0	0.0
10-04-2023	2	27.3	73.0	341.0	NWN	12.6	3.5	0.0	0.0
10-04-2023	3	27.2	73.0	15.0	NNE	9.0	2.5	0.0	0.0
10-04-2023	4	27.5	73.0	180.0	S	10.4	2.9	0.0	0.0
10-04-2023	5	27.9	70.0	180.0	S	4.9	1.4	0.0	0.0
10-04-2023	6	28.5	70.0	180.0	S	1.8	0.5	0.0	0.0
10-04-2023	7	29.2	68.0	152.0	SES	11.5	3.2	0.0	0.0
10-04-2023	8	30.1	65.0	270.0	W	3.6	1.0	0.0	0.0
10-04-2023	9	31.1	60.0	315.0	NW	14.4	4.0	0.0	0.0
10-04-2023	10	31.8	58.0	315.0	NW	18.0	5.0	0.0	0.0
10-04-2023	11	33.1	56.0	315.0	NW	18.7	5.2	0.0	0.0
70-64-2023	12	34.9	55.0	315.0	NW	22.7	6.3	0.0	0.0
10-04-2023	13	36.6	53.0	315.0	NW	20.2	5.6	0.0	0.0
10-04-2023	14	38.1	50.0	315.0	NW	15.5	4.3	0.0	0.0
10-04-2023	15	39.6	48.0	315.0	NW	14.0	3.9	0.0	0.0
10-04-2023	16	40.8	49.0	315.0	NW.	13.0	3.6	0.0	0.0

Date	Time	Temperature (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \text { RH } \\ (\%) \end{gathered}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m / s		
10-04-2023	17	41.4	50.0	315.0	NW	18.0	5.0	0	0.0
10-04-2023	18	38.8	52.0	270.0	W	21.6	6.0	0.0	0.0
10-04-2023	20	33.7	55.0	3155.0	NW	18.0	5.0	0.0	0.0
10-04-2023	21	31.6	63.0	270.0	WS	16.9	4.7	0.0	0.0
10-04-2023	22	30.1	65.0	270.0	W	4.0	3.6	0.0	0.0
10-04-2023	23	28.4	67.0	270.0	W	4.0	1.1	0.0	0.0
10-04-2023	24	27.7	70.0	270.0	W	10.8	3.0	0.0	0.0
11-04-2023	1	27.2	71.3	245.0	WSW	3.1	0.9	0.0	0.0
11-04-2023	2	26.6	73.0	225.0	SW	12.6	3.5	0.0	0.0
11-04-2023	4	26.2	74.6	45.0	NE	14.4	4.0	2.0	0.0
11-04-2023	5	25.4	76.5	270.0	W	10.8	3.0	2.0	0.0
11-04-2023	6	27.1	77.7	15.0	NNE	9.4	2.6	4.0	0.0
11-04-2023	7	28.4	78.3	135.0	SE	7.9	$\underline{1.2}$	5.0	0.0
11-04-2023	8	30.5	78.9	180.0	S	10.8	3.0	6.0	0.2
11-04-2023	11	33.5	77.3	180.0	S	14.4	4.0	6.0	0.4
11-04-2023	12	35.7	74.1	180.0	SSE	18.0	5.0	6.0	0.2
11-04-2023	13	37.7	68.8	$\underline{156.0}$	WSW	21.6	6.0	4.0	0.0
11-04-2023	14	38.6	65.4	247.0	WSW	25.6	7.0	3.0	0.0
11-04-2023	15	39.5	62.2	315.0	NW	18.0	5.0	0	0.0
11-04-2023	16	40.5	57.8	315.0	NW	18.0	5.0	0.0	0.0
11-04-2023	17	41.2	54.3	315.0	NW	21.6	6.0	0.0	0.0
11-04-2023	18	39.6	51.3	135.0	SE	21.6	6.0	0.0	0.0
T1-04-2023	19	36.7	51.8	135.0	SE	25.2	7.0	0.0	0.0
11-04-2023	21	33.7	53.0	135.0	SE	21.6	6.0	0.0	0.0
11-04-2023	22	28.2	53.0	135.0	SE	14.4	4.0	0.0	0.0
\|11-04-2023	23	27.1	63.0	135.0	NWN	13.3	3.7	0.0	0.0
\|1-04-2023	24	25.6	65.0	135.0	SE	7.2	2.5	0,0	0.0
12-04-2023	1	24.4	65.0	135.0	SE	5.4	2.5	0.0	0.0
-12-04-2023	3	22,3	68.0	156.0	SES	1.2	0.3	0.0	0.0
12-04-2023.	5	21.6	68.0	168.0	SES	7.2	2.0	0.0	0.0
12-04-2023	6	22.7	68.0	333.0	NWN	3.2	0.9	0.0	0.0
12-04-2023	7	23.7	63.0	115.0	ESE	10.8	3.0	0.0	0.0
12-04-2023	8	25.2	58.0	225.0	SW	14.4	4.0	0.0	0.0
12-04-2023	9	26.7	56.0	45.0	NE	18.0	5.0	0.0	0.0
12-04-2023 12-04-2023	10	28.4	54.0	210.0	SSW	9.4	2.6	$\underline{0.0}$	0.0
12-04-2023	11	31.1	52.0	315.0	NW	14.4	4.0	0.0	0.0
12-04-2023	12	33.2	51.0	315.0	NW	18.0	5.0	0.0	0.0
12-04-2023	14	35.2	50.0	315.0	NW	16.6	4.6	0.0	0.0
12-04-2023	15	38.6	49.0 50.0	315.0	NW	21.6	6.0	0.0	0.0
12-04-2023	16	39.7	$-\frac{50.0}{48.0}$	-180.0	NW	25.2	7.0	0.0	0.0
$\frac{12-04-2023}{12-04-2023}$	17	40.2	51.0	45.0	NE	19.4	4.6	0.0	0.0
12-04-2023	18	38.4	52.0	303.0	WNW	17.3	5.4	0.0	0,0
12-04-2023	-19	36.7	55.0	303.0	WNW	22.7	4.8	0.0	0.0
12-04-2023	20	34.3	59.0	329.0	NWN	14.4	4.0	0.0	0.0
12-04-2023	22	32.2	61.0	289.0	WNW	9.0	2.5	0.0	0.0
12-04-2023	23	28.4	64.0	293.0 225.0	WNW	6.1	1.7	0.0	0.0
12-04-2023	24	27.5	66.0	270.0	SW	9.0	2.5	0.0	0.0
13-04-2023	1	26.8	70.0	166.0	SES	4.7	1.3	0.0	0.0
13-04-2023	2	26.5	73.0	45.0	NE	2.5	1.4	0.0	0.0
13-04-2023	4	26.7	73.0	225.0	SW	1.9	0.5	0.0	0.0
13-04-2023	5	27.2	73.0	315.0	NW	9.0	2.5	0.0	0.0
			70.0	270.0	W	10.4	2.9	0.0	0.0

Date	Time	$\begin{gathered} \text { Temperature } \\ \left(^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{RH} \\ (\%) \end{gathered}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m/s		
15-04-2023	19	37.6	58.0	90.0	E	20.2	5.6	0.0	0.0
15-04-2023	20	34.4	62.0	327.0	NWN	15.5	4.3	0.0	0.0
15-04-2023	22	32.8	64.0	270.0	W	8.6	2.4	0.0	0.0
15-04-2023	23	27.5	69.6	270.0	W	5.4	1.5	0.0	0.0
15-04-2023	24	26.4	70.4	255.0	WSW	10.8	3.0	0.0	0.0
16-04-2023	1	26.3	71.1	257.0	WSW	16.2	3.5	0.0	0.0
16-04-2023	2	26.0	71.6	315.0	NW	9.0	2.5	0.0	0.0
16-04-2023	4	25.8	72.2	135.0	SE	5.4	1.5	0.0	0.0
16-04-2023	5	26.7	70.6	135.0	SE	13.0	3.6	0.0	0.0
16-04-2023	6	29.3	68.6	270.0	NW	11.9	3.3	0.0	0.0
16-04-2023	7	29.8	67.3	135.0	SE	17.7	4.9	0.0	0.0
16-(4)-2023	8	30.4	65.5	270.0	W	15.5	4.3	0.0	0.0
16-04-2023	10	31.7 33.3	64.4	270.0	W	18.0	5.0	0.0	0.0
16-04-2023	11	35.2	61.4	315.0	NW	13.3	3.7	0.0	0.0
16-04-2023	12	37.2	58.0	315.0	NW	11.7	3.3	0.0	0,0
16-04-2023	13	38.2	56.0	315.0	NW	15.8	4.4 5.6	0.0	0.0
16-04-2023	14	38.9	55.0	315.0	NW	23.4	6.5	0.0	0.0
16-04-2023	16	39.6	53.0	315.0	NW	25.6	7.1	0.0	0.0
T6-04-2023	17	40.6	52.0	315.0	NW	22.7	6.3	0.0	0.0
16-04-2023	18	39.2	52.0	135.0	NW	16.9	4.7	0.0	0.0
16-04-2023	19	37.8	55.0	135.0	SE	13.3	3.7	0.0	0.0
16-04-2023	20	35.6	58.0	135.0	SE	2.5	2.7	0.0	0.0
16-04-2023	21	32.4	62.0	333.0	NWN	1.2	0.3	0.0	0.0
16-04-2023	22	29.3	67.0	345.0	NWN	4.7	1.3	0.0	0.0
17-04-2023	1	26.7	71.1	45.0	NE	1,2	0.3	0.0	0.0
17-04-2023	2	26.5	72.1	303.0	WNW	5.8	1.6	0.0	0.0
17-04-2023	3	25.2	72.6	3335.0	NWN	11.9	3.3	0.0	0.0
17-04-2023	4	24.4	73.1	315.0	NW	15.1	4.2	0.0	0.0
17-04-2023	5	24.2	71.3	255.0	WSW	2.2	0.6	0.0	0.0
17-04-2023	7	25.8	70.7	250.0	WSW	12.6	3.5	0.0	0.0
17-04-2023	8	27.4	74.0	2488.0	WSW	15.8	4.4	0.0	0.0
17-04-2023	9	32.2	71.0	315.0	NW	13.3	3.7	0.0	0.0
17-04-2023	10	33.7	67.5	315.0	NW	16.2	4.5	0.0	0.0
17-04-2023	11	35.4	65.0	270.0	W	25.2	7.0	0.0	0.0
17-04-2023	13	37.1	62.0	315.0	NW	27.0	7.5	0.0	0.0
17-04-2023	14	38.8	58.0	225.0	SW	20.2	5.6	0.0	0.0
17-04-2023	15	39.4	51.0	135.0	NW	13.7	3.8	0.0	0.0
17-04-2023	16	39.8	50.5	315.0	NW	16.2	4.5	0.0	0.0
17-04-2023	18	40.2	50.0	-315.0	NW	15.8	4.4	0.0	0.0
17-04-2023	19	40.1	54.0	270.0 270.0	W	13.7	3.8	0.0	0.0
17-04-2023	20	36.3	56.0	135.0	SE	11.9	3.3	0.0	0.0
17-04-2023	21	33.2	60.0	315.0	NW	10.8	3.0	0.0	0.0
17.04-2023 $17.04-2023$ 1704	22	31.0	64.0	270.0	W	11.9	3.3	0.0	0.0
17-04-2023	24	28.3	66.0	293.0	WNW	13.0	3.6	0.0	0.0
18-04-2023	1	25.9	69.0	$\underline{135.0}$	SE	1.9	0.5	0.0	0.0
18-04-2023	2	25,4	68.0	270.0	SSW	10.8	3.0	0.0	0.0
18-04-2023	6	26.6	66.0	225.0	SW	9.4	2.6	0.0	0.0
18-04-2023	7	27.1	$\frac{63.0}{63.0}$	315.0	NW	9.0	2.5	0.0	0.0
				135.0		11.9	3.3	0.0	0.0

Date	Time	Temperature ($\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { RH } \\ (\%) \end{gathered}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m / s		
$\frac{20-04-2023}{20-04-2023}$	21	30.0	62.0	135.0	SE	1.2	0.3	0.0	0.0
$\frac{20-04-2023}{20-04-2023}$	22	28.0	67.0	135.0	SE	9.3	2.6	0.0	0.0
20-04-2023	24	27.0	70.0	270.0	W	3.1	0.9	0.0	0.0
21-04-2023	1	25.9	73.0	270.0	W	12.6	3.5	0.0	0.0
21-04-2023	2	25.0	68.0	329.0	SWN	8.3	2.3	0.0	0.0
21-04-2023	3	24.9	68.0	135.0	NWN	1.2	0.3	0.0	0.0
21-04-2023	4	24.5	64.0	135.0	SE	15.4	4.2	0.0	0.0
21-04-2023	5	24.6	64.0	135.0	SE	10.8	3.0	0.0	0.0
21-04-2023	6	25.5	61.0	135.0	SE	4.9	1.4	0.0	0.0
21-04-2023	7	26.6	59.0	327.0	NWN	8.6	2.4	0.0	0,0
21-04-2023	8	28.1	57.0	135.0	SE	3.1	0.9	0.0	0.0
21-04-2023	10	31.1	55.0	315.0	NW	13.3	3.7	0.0	0.0
21-04-2023	1	33.0	50.0	315.0	NW	21.6	5.0	0.0	0.0
21-04-2023	12	35.5	49.0	315.0	NW	18.7	5.2	0.0	0.0
21-04-2023	13	37.2	49.0	315.0	NW	20.9	5.8	0.0	0.0
21-04-2023	14	38.7	47.0	315.0	NW	23.8	6.6	0.0	0.0
21-04-2023	16	39.2	47.0	315.0	NW	20.9	5.8	0.0	0.0
21-04-2023	17	39.6	47.0	270.0	W	21.6	6,0	0,0	0.0
21-04-2023	18	38.2	48.0	303.0	WNW	18.7	5.2	0.0	0.0
21-04-2023	19	36.6	56.0	303.0	WNW	17.3	4.8	0.0	0.0
2I-04-2023	21	34.2	54.0	135.0	SE	13.0	3.6	0.0	0.0
21-04-2023	22	32.1	58.0	330.0	NWN	9.7	2.7	0.0	0.0
21-04-2023	23	27.1	63.0	270.0	WE	4.8	1.6	0.0	0.0
21-04-2023	24	26.4	66.0	315.0	NW	4.3	1.2	0.0	0.0
\| 22-04-2023	1	26.0	66.0	270.0	W	4.9	1.4	0.0	0.0
22-04-2023	3	25.6	65.0	135.0	SE	2.5	0.7	0.0	0.0
22-04-2023	4	25.0	68.0	270.0	W	8.3	2.3	0.0	0.0
22-(4-2023	5	25.5	65.0	195.0	NEW	11.9	3.3	0.0	0.0
22-04-2023		28.5	60.0	116.0	ESE	1.8	0.5	0.0	0.0
22-04-2023	8	29.9	59.0	135.0	SE	9.3	2.6	0.0	0.0
22-04-2023	10	33.0	57.0	315.0	NW	4.0	1.1	0.0	0.0
22-04-2023	11	35.0	52.0	315.0	NW	16.2	4.5	0.0	0.0
22-04-2023	12	36.2	50.0	315.0	NW	12.6	3.5	0.0	0.0
$\frac{22-04-2023}{22-04-2023}$	13	37.3	50.0	315.0	NW	9.4	2.6	0.0	0.0
22-04-2023	15	38.3	51.0 50.0	315.0	NW	12.6	-3.5	0.0	0.0
22-04-2023	16	39.4	50.0	270.0	SE	2.5	0.7	0.0	0.0
$\frac{22-04-2023}{22-04-2023}$	17	39.7	50.0	303.0	WNW	$\frac{13.0}{9.4}$	3.6	0.0	0.0
22-04-2023	18	39.2	53.0	135.0	SE	8.6	2.4	0.0	0.0
22-04-2023	20	38.0	57.0	135.0	SE	3.7	1.0	0.0	0.0
22-04-2023	21	35.0	60.0	135.0	SE	1.9	0.5	0.0	0.0
22-04-2023	22	29.3	68.0	270.0	SE	3.6	1.0	0.0	0.0
22-04-2023	24	27.0	73.0	225.0	SW	8.6	2.4	0.0	0.0
23-04-2023	2	26.5	73.0	304.0	WNW	4.0	1.1	0.0	0.0
23-04-2023	3	26.0	73.0 72.0	242.0 315.0	WSW	3.1	0.9	0.0	0.0
23-04-2023	4	25.4	71.0	315.0	NW	4.3	1.2	0.0	0.0
23-04-2023	6	26.6	73.0	315.0	NW	13.7	3.8	0.0	0.0
23-04-2023	8	27.8	70.0	315.0	NW	16.2	4.5	0.0	0.0
23-04-202.3	9	30.2	62.0	315.0	SE	3.6	1.0	0.0	0.0
						2.5	0.7	0.0	0.0

Date	Time	$\begin{array}{\|c\|} \hline \text { Temperature } \\ \left(^{\circ} \mathrm{C}\right) \\ \hline \end{array}$	$\begin{gathered} \text { RH } \\ (\%) \end{gathered}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m/s		
23-04-2023	10	-31.8	58.0	315.0	NW	7.9	2.2	0.0	0.0
23-04-2023	11	34.1	56.0	90.0	E	10.8	3.0	0.0	0.0
23-04-2023	12	36.2	55.0	180.0	S	14.4	4.0	0.0	0.0
23-04-2023	13	37.3	54.0	90.0	E	18.0	5.0	0.0	0.0
23-04-2023	14	38.4	53.0	225.0	SW	18.0	5.0	0.0	0.0
23-04-2023	15	39.4	52.0	90.0	E	14.4	4.0	0.0	0.0
23-04-2023	16	39.9	52.0	90.0	E	12.2	3.4	0.0	0.0
-23-04-2023	17	40.4	50.0	315.0	NW	15.5	4.3	0.0	0.0
23-04-2023	18	40.6	51.0	135.0	SE	11.9	3.3	0.0	0.0
23-04-2023	19	38.1	54.0	90.0	E	9.0	2.5	0.0	0.0
23-04-2023	20	35.7	56.0	135.0	SE	10.8	3.0	0.0	0.0
23-04-2023	21	33.1	61.0	327.0	NWN	7.9	2.2	0.0	0.0
23-04-2023	22	29.8	64.0	290.0	WNW	4.9	1.4	0.0	0.0
23-04-2023	23	27.6	67.0	315.0	NW	18.0	5.0	0.0	0.0
23-04-2023	24	26.5	73.0	90.0	E	5.8.	1.6	0.0	0.0
24-04-2023	1	26.4	73.0	225.0	SW	3.1	0.9	0.0	0.0
24-04-2023	2	26.3	74.2	225.0	SW	9.0	2.5	0.0	0.0
24-04-2023	3	26.5	75.2	225.0	SW	0.6	0.2	0.0	0.0
24-04-2023	4	27.1	76.7	225.0	SW	10.8	3.0	0.0	0.0
24-04-2023	5	27.6	78.5	135.0	SE	10.8	3.0	0.0	0.0
24-04-2023	6	28.2	79.2	135.0	SE	14.4	4.0	0.0	0.0
24-04-2023	7	28.6	79.3	135.0	SE	10.8	3.0	0.0	0.0
24-04-2023	8	28.9	78.8	135.0	SE	13.0	3.6	0.0	0.0
24-04-2023	9	30.1	76.4	315.0	NW	15.8	4.4	0.0	0.0
24-04-2023	10	32.0	73.2	315.0	NW	14.4	4.0	0.0	0.0
24-04-2023	11	34.5	69.6	315.0	NW	18.0	5.0	0.0	0.0
24-04-2023	12	36.9	67.6	315.0	NW	21.6	6.0	0.0	0.0
24-04-2023	13	38.5	65.4	315.0	NW	18.0	5.0	0.0	0.0
24-04-2023	14	39.5	63.2	315.0	NW	19.8	5.5	0.0	0.0
24-04-2023	15	40.6	60.6	315.0	NW	16.9	4.7	0.0	0.0
24-04-2023	16	40.2	58.6	315.0	NW	21.6	6.0	0.0	0.0
24-04-2023	17	40.0	56.3	315.0	NW	15.8	4.4	0.0	0.0
24-04-2023	18	39.9	54.3	290.0	WNW	10.8	3.0	0.0	0.0
24-04-2023	19	37.3	51.7	180.0	S	10.8	3.0	0.0	0.0
24-04-2023	20	34.4	54.0	315.0	NW	9.0	2.5	0.0	0.0
24-04-2023	21	32.1	55.0	315.0	NW	12.6	3.5	0.0	0.0
24-04-2023	22	29.2	58.0	245.0	WSW	11.5	3.2	0.0	0.0
24-04-2023	23	27.5	62.3	74.0	ENE	7.9	2.2	0.0	0.0
24-04-2023	24	27.0	64.6	315.0	NW	9.0	2.5	0.0	0.0
25-04-2023	1	26.8	68.6	135.0	SE	1.9	0.5	0.0	0.0
25-04-2023	2	26.5	71.3	135.0	SE	3.1	0.9	0.0	0,0
25-04-2023	3	26.0	74.3	180.0	S	1.2	0.3	0.0	0.0
25-04-2023	4	25.5	75.2	23.0	NNE	4.7	1.3	0.0	0.0
25-04-2023	5	25.0	76.5	135.0	SE	3.6	1.0	0.0	0.0
25-04-2023	6	25.6	77.3	270.0	W	10.8	3.0	0.0	0.0
25-04-2023	7	27.0	74.4	135.0	SE	10.8	3.0	0.0	0,0
25-04-2023	8	28.5	72.3	135.0	SE	14.4	4.0	0.0	0.0
25-14-2023	9	29.9	70.6	315.0	NW	4.0	1.1	0.0	0.0
25-04-2023	10	31.5	68.3	315.0	NW	9.9	2.7	0.0	0.0
25-04-2023	11	33.5	64.4	315.0	NW	8.0	2.2	0.0	0.0
25-04-2023	12	35.2	58.6	315.0	NW	9.3	2.6	0.0	0.0
25-04-2023	13	36.3	52.0	15.0	NNE	19.1	5.3	0.0	0.0
25-04-2023	14	37.8	51.0	225.0	SW	21.0	5.8	0.0	0.0
25-04-2023	15	39.2	50.0	163.0	SES	3,6	1.0	0.0	0.0
25-04-2023	16	39.6	50.0	24.0	NNE	8.6	2.4	0.0	0.0
25-04-2023	17	39.8	50.0	225.0	SW	3.6	1.0	0.0	0.0
25-04-2023	18	39.9	53.0	165.0	SES	9.3	2.6	0.0	0.0
25-04-2023	19	37.4	56.0	90.0	E	3.2	0.9	0.0	0.0
25-04-2023	20	34.2	59.0	315.0	NW	3.7	1.0	0.0	0.0
25-04-2023	21	31.4	63.0	270.0	W	1.9	0.5	0.0	0.0
25-04-2023	-22	28.5	70.0	135.0	SE	1.2	0.3	0.0	0.0

Date	Time	$\begin{gathered} \hline \text { Temperature } \\ \left(^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \text { RH } \\ & (\%) \end{aligned}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m / s		
25-04-2023	23	$\frac{27.0}{265}$	70.0	347.0	NWN	4.7	1.3	0.0	0.0
25-04-2023	1	26.5	73.0	346.0	NWN	2.5	0.7	0.0	0.0
26-04-2023	2	25.5	73.0	90.0	E	1.9	0.5	0.0	0.0
26-04-2023	3	25.0	75.0	135.0	SE	3.6	1.0	0.0	0.0
26-04-2023	4	24.5	76.2	135.0	SE	10.6	3.0	0.0	0.0
26-04-2023	5	24.6	76.6	135.0	SE	4.9	1.4	0.0	0.0
26-04-2023	6	26.0	77.2	330.0	NWN	3.1	0.9	0.0	0.0
26-04-2023	8	27.6	77.7	270.0	W	3.6	1.0	0.0	0.0
26-04-2023	9	29.1	78.7	165.0	SES	9.9	2.7	0.0	0.0
26-04-2023	10	32.0	73.6	45.0	WE	3.6	1.0	0.0	0.0
26-04-2023	12	36.4	70.6	315.0	NW	14.4	4.0	0.0	0.0
26-04-2023	14	38.0	68.6	315.0	NW	16.2	4.5	0.0	0.0
26-04-2023	15	39.5	66.4	69.0	ENE	3,6	1.0	0.0	0.0
26-04-2023	16	40.2	62.2	315.0	NW	18.0	5.0	0.0	0.0
26-04-2023	17	40.0	59.6	135.0	NE	21.6	6.0	0.0	0.0
26-04-2023	18	39.9	56.7	180.0	S	9.0	2.5	0.0	0.0
26-04-2023	20	37.0	56.0	315.0	NW	7.9	2.2	0.0	0.0
26-04-2023	21	33.5	59.0	270.0	W	2.5	0.7	0.0	0.0
26-04-2023	22	29.0	64.0	327.0	$\frac{\text { NWN }}{\text { SE }}$	3.6	1.0	0.0	0.0
26-04-2023	23	28.0	67.0	327.0	SWN	1.2	0.3	0.0	0.0
26-04-2023	24	26.9	70.0	135.0	SE	1.2	0.3	0.0	0.0
27-04-2023	2	26.5	73.0	25.0	NNE	3.1	0.9	0.0	0.0
27-04-2023	4	26.4	72.0	180.0	S	1.9	0.5	0.0	0.0
27-04-2023	6	26.8	73.0	330.0	NWN	5.8	1.6	0.0	0.0
27-04-2023	7	27.8	70.0	1336.0	NWN	4.9	1.4	0.0	0.0
27-04-2023	8	28.5	67.0	315.0	NW	4.9	1.4	0.0	0.0
27-04-2023	9	30.0	62.0	315.0	NW	3.6	1.0	0.0	0.0
27-04-2023	11	34,5	54.0	315.0	NW	2.5	0.7	0.0	0.0
27-04-2023	12	36,0	53.0	315.0	NW	2.9	0.8	0.0	0.0
27-04-2023	14	37.5	51.0	315.0	NW	8.0	2.2	0.0	0.0
$\frac{27-04-2023}{27-04-2023}$	15	39.4	48.0	315.0 315.0	NW	2.2	0.6	0.0	0.0
27-04-2023	16	39.5	48.0	315.0	NW	2.5	2.4	0.0	0.0
27-04-2023	17	39.5	48.0	270,0	W	9.9	2.7	0.0	0.0
27-04-2023	19	37.9	52.0	\bigcirc	WNW	3.6	1.0	0.0	0.0
27-04-2023	20	32.0	58.0	300.0	WNW	1.8	0.5	0.0	0.0
27-04-2023	22	28.7	67.0	270.0	W	4.3	1.2	0.0	0.0
28-04-2023	$\stackrel{1}{1}$	27.4	70.9	135.0	SE	1.9	0.5	0.0	0.0
28-04-2023	2	26.8	73.0	18000	S	3.6	1.0	0.0	0.0
28-04-2023	3	26.6	74.5	315.0	NW	0.6	0.2	0.0	0.0
28-04-2023	4	26.7	76.4	225.0	NW	4.3	1.2	0.0	0.0
28-04-2023	5	27.2	77.2	135.0	SE	4.7	1.3	2.0	0.0
28-04-2023	6	27.6	77.8	135.0	SE	3.6	1.0	3.0	0.0
28-04-2023	7	28.2	78.4	135.0	SE	1.9	3.5	4.0	0.0
28-04-2023	8	29.3	79.0	135.0	SE	10.8	3.0	6.0	0.4
28-04-2023	10	29.9	77.3	315.0	NW	14.4	4.0	5.0	0.1
28-04-2023	11	31.6	74.2	315.0	NW	18.0	5.0	0.0	0.0
		34,0	72.2	315.0	NW	21.6	6.0	4.0	0.0

Date	Time	Temperature $\left.{ }^{\circ} \mathrm{C}\right)$	RH (\%)	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m / s		
28-04-2023	12	36.4	69.5	315.0	NW	18.0	5.0	2.0	0.0
28-04-2023	13	38.0	67.3	315.0	NW	23.4	6.5	0.0	0.0
28-44-2023	14	39.0	64.3	270.0	W	18.0	5.0	0.0	0.0
28-04-2023	15	39.9	62.2	240.0	WSW	14.4	4.0	0.0	0.0
28-04-2023	16	40.8	59.2	315.0	NW	14.4	4.0	0.0	0.0
28-04-2023	17	41.6	57.2	315.0	NW	9.3	2.6	0.0	0.0
28-04-2023	18	39.6	56.6	345.0	NWN	10.8	3.0	0.0	0.0
28-04-2023	19	37.3	56.0	346.0	NWN	2.2	0.6	0.0	0.0
28-04-2023	20	34.6	59.0	135.0	SE	5.6	1.5	0.0	0.0
28-04-2023	21	32.3	64.0	135.0	SE	10.8	3.0	0.0	0.0
28-04-2023	22	29.7	68.0	270.0	W	1.2	0.3	0.0	0.0
28-04-2023	23	28.1	70.0	45.0	NE	3.7	1.0	0.0	0.0
28-04-2023	24	26.8	73.0	315.0	NW	15.1	4.2	0.0	0.0
29-04-2023	1	26.6	73.0	315.0	NW	13.0	3.6	0.0	0.0
29-04-2023	2	26.4	73.0	45.0	NE	3.1	0.9	0.0	0.0
29-04-2023	3	26.7	73.0	45.0	NE	5.0	1.4	0.0	0.0
29-04-2023	4	27.1	70.0	45.0	NE	4.3	1.2	0.0	0.0
29-04-2023	5	27.7	70.0	135.0	SE	3.7	1.0	0.0	0.0
29-04-2023	6	28.1	70.0	135.0	SE	10.8	3.0	0.0	0.0
29-04-2023	7	28.7	67.0	135.0	SE	4.0	1.1	0.0	0.0
29-04-2023	8	29.3	64.0	135.0	SE	4.3	1.2	0.0	0.0
29-04-2023	9	30.2	62.0	315.0	NW	3.1	0.9	0.0	0.0
29-04-2023	10	31.8	61.0	315.0	NW	9.0	2.5	0.0	0.0
29-04-2023	11	34.3	56.0	315.0	NW	13.0	3.6	0.0	0.0
29-04-2023	12	36.1	53.0	315.0	NW	14.0	3.9	0.0	0.0
29-04-2023	13	37.7	52.0	315.0	NW	14.4	4.0	0.0	0.0
29-04-2023	14	38.4	51.0	315.0	NW	18.0	5.0	0.0	0.0
29-04-2023	T5	39.2	50.0	315.0	NW	23.4	6,5	0.0	0.0
29-04-2023	16	39.7	50.0	315.0	NW	4.3	1.2	0.0	0.0
29-04-2023	17	40.3	50.0	315.0	NW	7.9	2.2	0.0	0.0
29-04-2023	18	39.2	53.0	135.0	SE	10.8	3.0	0.0	0.0
-29-04-2023	19	38.3	58.0	135.0	SE	3.6	1.0	0.0	0.0
29-04-2023	20	37.0	62.0	315.0	NW	2.5	0.7	0.0	0.0
29-04-2023	21	33.5	65.0	45.0	NE	1.8	0.5	0.0	0.0
29-04-2023	22	31.1	69.0	327.0	NWN	1.8	0.5	0.0	0.0
29-04-2023	23	28.4	70.0	135.0	SE	1.2	0.3	0.0	0.0
30-04-2023	24	27.0	72.0	328.0	NWN	5.4	1.5	0.0	0.0
30-04-2023	1	26.5	73.0	328.0	NWN	3.1	0.9	0.0	0.0
30-04-2023	2	26.0	74.5	242.0	WSW	1.8	0.5	2.0	0.0
30-04-2023	3	25.5	76.0	242.0	WSW	2.2	0.6	4.0	0.0
30-04-2023	4	25.8	77.2	135.0	SE	10.8	3.0	5.0	0.0
30-04-2023	5	26.4	78.3	328.0	NWN	7.9	2.2	6.0	0.2
30-04-2023	6	26.8	78.8	135.0	SE	7.2	2.0	6.0	0.4
30-04-2023	7	28.0	79.3	120.0	ESE	4.0	1.1	7.0	0.8
30-04-2023	8	29.8	80.1	17.0	NNE	8.6	2.4	7.0	0.3
30-04-2023	9	31.1	78.7	315.0	NW	2.9	0.8	8.0	0.9
30-04-2023	10	33.5	76.3	315.0	NW	10.8	3.0	6.0	0.2
30-04-2023	11	35.9	73.2	315.0	NW	11.7	3.3	4.0	0.0
30-04-2023	12	37.5	69.7	315.0	NW	8.6	2.4	3.0	0.0
30-04-2023	13	38.5	66.4	255.0	WSW	14.4	4.0	0.0	0.0
30-04-2023	14	39.2	63.3	135.0	SE	10,8	3.0	0.0	0.0
30-04-2023	15	39.7	59.2	315.0	NW	14.4	4.0	0.0	0.0
30-04-2023	16	40.2	56.6	315.0	NW	3.6	1.0	0.0	0.0
30-04-2023	17	40.6	53.4	315.0	NW	10.8	3.0	0.0	0.0
30-04-2023	18	39.4	52.3	329.0	NWN	3.6	1.0	0.0	0.0
30-04-2023	19	38.6	54.0	213.0	SSW	10.8	3.0	0.0	0.0
30-04-2023	20	35.7	57.0	270.0	W	3.6	1.0	0.0	0.0
30-04-2023	21	33,2	62.0	270.0	W	3.1	0.9	0.0	0.0
30-04-2023	22	30.7	65.0	270.0	W	2.5	0.7	0.0	0.0
30-04-2023	23	28.2	68.0	315.0	NW	3.7	1.0	0.0	0.0
30-04-2023	24	26.6	71.0	287.0	WNW	3.6	1.0	0.0	0.0

Date	Time	$\begin{gathered} \text { Temperature } \\ \left.\mathbf{~}^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \mathrm{RH} \\ (\%) \\ \hline \end{gathered}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m / s		
01-05-2023	1	26.4	72.4	315.0	NW	3.3	0.9	0.0	0.0
-01-05-2023	2	26.0	74.3	315.0	NW	8.3	2.3	2.0	0.0
01-05-2023	4	$\frac{25.8}{26.2}$	75.6	135.0	SE	1.6	0.4	4.0	0.1
01-05-2023	5	26.9	78.5	135.0	SE	7.2	2.0	5.0	0.3
01-05-2023	6	27.8	79.2	135.0	SE	14.4	4.0	6.0	0.5
01-05-2023	7	28.6	77.3	135.0	SE	$\frac{11.5}{7.9}$	$\frac{3.2}{2.2}$	7.0	0.8
01-05-2023	8	29.7	73.2	225.0	SW	16.2	4.5	6.0	0.4
01-05-2023	9	31.2	71.1	45.0	NE	11.8	3.3	4.0	0.0
01-05-2023	10	33.2	68.6	45.0	NE	14.4	4.0	2.0	0.0
01-05-2023	11	34.8	65.4	45.0	NE	18.0	5.0	0.0	0.0
01-05-2023	12	36.6	62.3	195.0	SSW	15.1	4.2	0.0	0.0
01-05-2023	13	38.1	59.4	270.0	W	20.2	5.6	0.0	0.0
01-05-2023	15	38.8	56.4	270.0	W	23.0	6.4	0.0	0.0
71-05-2023	16	39.9	49.7	270.0	W	16,9	4.7	0.0	0.0
01-05-2023	17	40.2	49.0	45.0	NE	13.0	3.6	0.0	0.0
01-05-2023	18	38.3	52.0	135.0	SE	7.9	2.2	0.0	0.0
01-05-2023	19	36.1	55.5	135.0	SE	3.1	0.9	0.0	0.0
$\frac{01-05-2023}{01-05-2023}$	21	33.3	58.7	328.0	NWN	13.0	3.6	0.0	0.0
01-05-2023	22	30.7	63.2	135.0	SE	4.7	1.3	0.0	0.0
07-05-2023	23	27.0	$\frac{60.5}{692}$	135.0	SE	0.8	0.2	0.0	0.0
01-05-2023	24	26.5	70.2	328.0 135.0	NWN	9.7	2.7	0.0	0.0
02-05-2023	1	26.0	71.2	328.0	NWN	16.9	4.7	0.0	0.0
02-05-2023	5	24.9	75.7	135.0	SE	14.4	4.0	5.0	0.0
02-05-2023	7	26,4	77.0	135.0	SE	10.8	3.0	6.0	0.4
02-05-2023	8	27.9	78.0	270.0	W	7.6	2.1	7.0	0.5
02-05-2023	9	30.5	80.2	270.0	NW	9.4	2.6	8.0	1.3
02-05-2023	10	32.0	81.1	315.0	NW	14.4	4.0	8.0	1.6
02-05-2023	Π	34.1	78.7	315.0	NW	21.6	6.0	7.0	2.2
02-05-2023	12	36.2	76.3	315.0	NW	15.8	4.4	4.0	0.9
02-05-2023	13	37.7	74.2	315.0	NW	18.0	5.0	3.0	0.0
-02-05-2023	14	39.4	71.4	315.0	NW	16.6	4.6	2.0	0.0
-02-05-2023	15	40.1	68.8	315.0	NW	15.8	4.4	0.0	0.0
02-05-2023	17	40.7	66.6	180.0	S	13.3	3.7	0.0	0.0
02-05-2023	18	31.4	65.4	315.0 315.0	NW	20.2	5.6	0.0	0.0
02-05-2023	19	37.7	62.2	90.0	NW	14.9	4.1	0.0	0.0
02-05-2023	20	34.6	60.7	135.0	SE	10.8	4.0	0.0	0.0
02-05-2023	21	31.3	58.6	135.0	SE	9.0	3.5	0.0	0.0
02-05-2023	24	27.4 27.0	66.0	135.0	SE	8.3	2.3	0.0	0.0
03-05-2023	1	26.7	69.3	135.0 315.0	SW	4.7	1.3	0.0	0.0
03-05-2023	3	25.9	73.3	315.0	NW	7.9	$\frac{2.2}{15}$	0.0	0.0
03-05-2023	4	25.6	74.5	315.0	NW	3.1	0.5	0.0	0.0
03-05-2023	5	27.1	76.2	270.0	W	9.4	2.6	0.0	0.0
03-05-2023	6	28.6	77.3	225.0	SW	3.9	1.1	0.0	0.0
03-05-2023	8	29.5	-78.7	180.0	S	13.0	3.6	0.0	0.0
03-05-2023	9	30.6	79.3	360.0	N	9.4	2.6	0.0	0.0
03-05-2023	10	34.5	-77.6	1225.0	ESE	11.0	3.0	0.0	0.0
03-05-2023	Π	37.1	72.2	225.0	SW	15.8	4.4	0.0	0.0
03-05-2023	12	39.5	70.6	315.0	NW	13.0	3.6	0,0	0.0
03-05-2023	13	40.5	67.6	315.0	NW	13.0	4.5	0.0	0.0

Date	Time	Temperature$\left.{ }^{0} \mathrm{C}\right)$	$\begin{gathered} \text { RH } \\ (\%) \end{gathered}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m/s		
03-05-2023	14	41.0	64.3	135.0	SE	18.7	5.2	0,0	0.0
03-05-2023	15	42.0	62.2	315.0	NW	16.9	4.7	0.0	0.0
03-05-2023	16	42.2	60.6	315.0	NW	8.6	2.4	0.0	0.0
03-05-2023	17	42.5	58.6	315.0	NW	13.3	3.7	0.0	0.0
03-05-2023	18	40.1	56.5	135.0	SE	18.0	5.0	0.0	0.0
03-05-2023	19	37.4	54.7	135.0	SE	21.6	6.0	0.0	0.0
03-05-2023	20	34.7	58.2	135.0	SE	18.0	5.0	0.0	0.0
03-05-2023	21	31.8	61.2	270.0	W	14.4	4.0	0.0	0.0
05-05-2023	22	29.6	63.6	135:0	SE	14.4	4.0	0.0	0.0
03-05-2023	23	28.2	66.3	135.0	SE	15.8	4.4	0.0	0.0
04-05-2023	24	27.3	69.6	315.0	NW	18.0	5.0	0.0	0.0
04-05-2023	1	26.6	71.4	315.0	NW	15.8	4.4	0.0	0.0
04-05-2023	2	26.2	73.2	315.0	NW	18.0	5.0	0.0	0.0
04-05-2023	3	25.7	74.7	135.0	SE	13.3	3.7	0.0	0.0
04-05-2023	4	25.4	76.2	135.0	SE	7.9	2.2	0.0	0.0
04-05-2023	5	25.5	77.6	225.0	SW	13.7	3.8	0.0	0.0
04-05-2023	6	27.6	78.6	225.0	SW	16.2	4.5	0,0	0.0
04-05-2023	7	28.9	78.3	135.0	SE	10.8	3.0	0.0	0.0
04-05-2023	8	30.4	75.6	135.0	SE	14.4	4.0	0.0	0.0
04-05-2023	9	32.5	73.2	315.0	NW	18.0	5.0	0.0	0.0
04-05-2023	10	34.1	71.2	315.0	NW	15.8	4.4	0.0	0.0
04-05-2023	11	36.9	68.7	315.0	NW	16.9	4.7	0.0	0.0
04-05-2023	12	38.9	66.5	315.0	NW	15.8	4.4	0.0	0.0
04-05-2023	13	39.6	64.3	315.0	NW	20.2	5.6	0.0	0.0
04-05-2023	14	39.9	62.3	315.0	NW	19.1	5.3	0.0	0.0
04-05-2023	15	40.6	60.2	315.0	NW	23.0	6.4	0.0	0.0
04-05-2023	16	41.3	58.6	315.0	NW	19.1	5.3	0.0	0.0
04-05-2023	17	42.1	56.4	315.0	NW	16.9	4.7	0.0	0.0
04-05-2023	18	40.3	54.6	225.0	SW	13.3	3.7	0.0	0.0
04-05-2023	19	39.4	56.7	90.0	E	15.8	4.4	0.0	0.0
04-05-2023	20	35.7	59.0	315.0	NW	7.9	2.2	0.0	0.0
04-05-2023	21	32.3	63.2	315.0	NW	7.2	2.0	0.0	0.0
04-05-2023	22	29.6	68.0	328.0	NWN	7.9	2.2	0.0	0.0
04-05-2023	23	27.8	69.0	270.0	W	1.6	0.4	0.0	0.0
04-05-2023	24	27.0	71.0	270.0	W	9.4	2.6	0.0	0.0
05-05-2023	1	26.6	72.2	270.0	W	7.9	2.2	0.0	0.0
05-05-2023	2	26.1	73.0	135.0	SE	10.8	3.0	0.0	0.0
05-05-2023	3	25.8	74.4	270.0	W	14.4	4.0	0.0	0.0
05-05-2023	4	25.5	75.2	135.0	SE	1.6	0.4	2.0	0.0
05-05-2023	5	25.0	76.6	135.0	SE	10.1	2.8	3.0	0.0
05-05-2023	6	25.9	77.8	340.0	NWN	14.4	4.0	4.0	0.0
05-05-2023	7	28.4	79.2	333.0	NWN	8.6	2.4	7.0	0.5
05-05-2023	8	30.0	80.2	135.0	SE	13.0	3.6	7.0	0.8
05-05-2023	9	32.9	78.6	270.0	W	16.2	4.5	6.0	0.4
05-05-2023	10	34.6	74.3	315.0	NW	20.2	5.6	6.0	0.2
05-05-2023	11	35.6	71.1	289.0	WNW	18.4	5.1	2.0	0.0
05-05-2023	12	37.2	68.6	315.0	NW	22.7	6.3	0.0	0.0
05-05-2023	13	38.4	65.4	315.0	NW	20.5	5.7	0.0	0.0
05-05-2023	14	39.3	62.2	315.0	NW	16.6	4.6	0.0	0.0
05-05-2023	15	40.4	59.3	225.0	SW	19.8	5.5	0.0	0.0
05-05-2023	16	41.2	55.6	90.0	E	16.9	4.7	0.0	0.0
05-05-2023	17	42.1	52.2	315.0	NW	18.0	5.0	0.0	0.0
05-05-2023	18	40.7	53.0	270.0	W	18.0	5.0	0.0	0.0
05-05-2023	19	37.7	57.0	90.0	E	14.4	4.0	0.0	0.0
05-05-2023	20	35.6	59.0	45.0	NE	13.0	3.6	0.0	0.0
05-05-2023	21	32.6	65.0	45.0	NE	14.4	4.0	0.0	0.0
05-05-2023	22	30.4	68.0	270.0	W	2.4	0.7	0.0	0.0
05-05-2023	23	28.5	69.0	240.0	WSW	4.7	1.3	0.0	0.0
05-05-2023	24	27.6	71.0	255.0	WSW	13.0	3.6	0.0	0.0
06-05-2023	1	27.0	70.0	270.0	W	18.0	5.0	0.0	0.0
06-05-2023	2	27.2	70.0	65.0	ENE	7.9	2.2	0.0	0.0

Date	Time	Temperature $\left({ }^{(1)}\right.$	$\begin{aligned} & \text { RH } \\ & (\%) \end{aligned}$	Direction		Wind Speed		Cloud	Rainfall (mm)
				in angle	in letter	Km/hrs	m/s		
06-05-05-2023	3	27.5	69.0	115.0	ESE	15.8	4.4	0.0	0.0
\|06-05-2023	5	$\frac{28.3}{28.8}$	68.0	225.0	SW	13.7	3.8	0.0	0.0
06-05-2023	6	29.4	68.0	315.0	NW	10.8	3.0	0.0	0.0
06-05-2023	7	30.2	62.0	315.0	NW	14.4	4.0	0.0	0.0
06-05-2023	8	31.3	60.0	327.0	NWN	11.9	3.6	0.0	0.0
06-05-2023	9	32.5	58.0	315.0	NW	11.0	3.0	0.0	0.0
\|06-05-2023	10	34.9	55.0	315.0	NW	15.5	4.3	0.0	0.0
06-05-2023	12	37.0	54.0.	315.0	NW	15.1	4.2	0.0	0.0
06-05-2023	13	38.6	52.0	315.0	NW	14.4	4.0	0.0	0.0
06-05-2023	14	49.5	53.0	315.0 315.0	NW	13.3	3.7	0.0	0.0
06-05-2023	15	41.0	50.0	315.0	NW	15.1	4.2	0.0	0.0
06-05-2023	16	41.1	50.0	315.0	NW	17.3	5.0	0.0	0.0
06-05-2023	17	40.5	49.0	315.0	NW	20.2	5.6	0.0	0.0
06-05-2023	18	38.0	52.0	270.0	W	16.9	4.7	0.0	0.0
06-05-2023	19	36.0	55.0	270.0	W	13.3	3.7	0.0	0.0
06-05-2023	21	33.5	59.0	116.0	ESE	15.1	4.2	0.0	0.0
06-05-2023	22	28.6	62.0	225.0	SW	1.6	0.4	0.0	0.0
06-05-2023	23	27.1	67.0 69.0	225.0	SW	3.6	1.0	0.0	0.0
06-05-2023	24	26.5	70.0	225.0	SW	10.8	3.0	0.0	0.0
07-05-2023	1	26.0	71.0	225.0	SW	14.4	0.2	0.0	0.0
07-05-2023	2	25.5	71.0	155.0	SES	3.4	4.0	0.0	0.0
07-05-2023	3	25.2	70.0	165.0	SES	7.9	2.2	0.0	0.0
07-05-2023	4	25.0	69.0	45.0	NE	13.3	3.7	0.0	0.0
$\begin{array}{\|} 07-05-2023 \\ \hline 07-05-2023 \end{array}$	5	25.1	68.0	315.0	NW	13.0	3.6	0.0	0.0
07-05-2023	7	26.4	66.0	270.0	W	15.5	4.3	0.0	0.0
07-05-2023	8	29.6	60.0	270.0	W	18.0	5.0	0.0	0.0
07-05-2023	9	31.2	58.0	328.0	NWN	8.6	2.4	0.0	0.0
07.05-2023	10	33.5	53.0	315.0	NW	14.4	4.0	0.0	0.0
07-05-2023	T	35.6	$52.0{ }^{-}$	290.0	WNW	13.0	3.6	0.0	0.0
07-05-2023	12	37.9	52.0	135.0	SE	19.8	$\frac{4.5}{5.5}$	0.0	0.0
07-05-2023	13	39.5	53.0	15.0	NNE	15.8	4.4	0.0	0.0
07-05-2023	15	40.1	51.0	20.0	NNE	23.8	6.6	0.0	0.0
07-05-2023	16	41.2	50.0	$\frac{315.0}{315.0}$	NW	20.3	5.6	0.0	0.0
07-05-2023	17	42.2	50.0	315.0	NW	20.5	5.7	0.0	0.0
07-05-2023	18	40.0	53.0	328.0	NWN	15.1	4.2	0.0	0.0
07-05-2023	19	37.5	56.0	135.0	NWN	18.7	5.2	0.0	0.0
$\begin{aligned} & 07-05-2023 \\ & 07-05-2023 \\ & \hline \end{aligned}$	20	34.5	59.0	329.0	NWN	11.8	4.0	0.0	0.0
07-05-2023	21	31.0	63.0	225.0	SW	7.8	2.2	0.0	0.0
07-05-2023	23	29.0	68.0	328.0	NWN	16.2	4.5	0.0	0.0
07-05-2023	24	26.9	- 70.0	135.0	SE	5.0	1.4	0.0	0.0
08-05-2023	1	26.6	71.0	270.0	NWN	1,6	0.4	0.0	0.0
08-05-2023	2	26.2	72.0	328.0	NWN	9.4	1.1	0.0	0.0
08-05-2023	4	25.9	73.4	135.0	SE	11.9	- 3.3	0.0	0.0
88-05-2023	5	25.6	74.0	135.0	SE	9.7	2.7	2.0	0.0
08-05-2023	6	27.1	75.0	135.0	SE	16.9	4.7	4.0	0.2
08-05-2023	7	28.4	73.2	135.0	SE	11.9	3.3	5.0	0.1
08-05-2023	8	29.9	71.1	135.0	SE	- 5.5	1.5	6.0	0.3
88-05-2023	9	31.2	68.6	25.0	ENE	$\frac{12.5}{3.1}$	3.5	4,0	0.0
08-05-2023	10	32.9	65.6	180.0		3.1	0.9	2.0	0.0
88-05-2023-2023	IT	35.0	63.7	180.0	S	18.0	5.0	0.0	0.0
88-05-2023	12	36.9	62.4	180.0	S	10.2	4.1	0.0	0.0
8-05-2023	13	38.6	61.2	360.0	N	11.0	2.8	0.0	0.0
8-05-2023	15	39.2	58.9	210.0	SSW	9.4	2.6	0.0	0.0
		39.4	58.2	315.0	NW	16.9	4.7	0.0	0.0

Date	Time	Temperature ${ }^{6} \mathrm{C}$	$\begin{gathered} \text { RH } \\ (\%) \\ \hline \end{gathered}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m / s		
08-05-2023	16	39.5	56.3	315.0	NW	8.6	2.4	0.0	0.0
08-05-2023	17	39.5	54.2	315.0	NW	14.4	4.0	0.0	0.0
08-05-2023	18	39.0	53.0	328.0	NWN	18.0	5.0	0.0	0.0
08-05-2023	19	37.0	56.0	135.0	SE	21.6	6.0	0.0	0.0
08-05-2023	20	34.0	59.0	290.0	WNW	17.3	4.8	0.0	0.0
08-05-2023	21	31.6	64.0	135.0	SE	14.8	4.1	0.0	0.0
08-05-2023	22	29.2	68.0	315.0	NW	12.2	3.4	0.0	0.0
08-05-2023	23	27.6	69.0	328.0	NWN	11.2	3.1	0.0	0.0
08-05-2023	24	26.6	71.0	135.0	SE	1.6	0.4	0.0	0.0
09-05-2023	1	26.2	73.0	135.0	SE	9.4	2.6	0.0	0.0
09-05-2023	2	25.6	74.5	270.0	W	3.9	1.1	0.0	0.0
09-05-2023	3	25.1	75.2	242.0	WSW	11.9	3.3	0.0	0.0
09-05-2023	4	24.9	73.1	270.0	W	9.7	2.7	0.0	0.0
09-05-2023	5	25.2	71.3	135.0	SE	7.9	2.2	0.0	0.0
09-05-2023	6	26.5	69.3	135.0	SE	13.3	3.7	0.0	0.0
09-05-2023	7	27.9	66.0	301.0	WNW	9.0	2.5	0.0	0.0
09-05-2023	8	29.5	63.1	135.0	SE	20.2	5.6	0.0	0.0
09-05-2023	9	30.6	61.2	315.0	NW	17.4	4.8	0.0	0.0
09-05-2023	10	33.2	58.6	20.0	NNE	15.6	4.3	0.0	0.0
09-05-2023	11	35.9	54,4	115.0	ESE	12.2	3.4	0.0	0.0
-09-05-2023	12	37.7	52.0	225.0	SW	17.3	4.8	0.0	0.0
09-05-2023	13	39.2	53.0	315.0	NW	18.0	5.0	0.0	0.0
09-05-2023	14	39.8	53.0	315.0	NW	16.9	4.7	0.0	0.0
09-05-2023	15	40.4	50.0	315.0	NW	21.6	6.0	0.0	0.0
09-05-2023	16	41.3	49.0	315.0	NW	18.0	5.0	0.0	0.0
09-05-2023	17	41.8	50.0	315.0	NW	23.8	6.6	0.0	0.0
09-05-2023	18	40.1	53.0	238.0	WSW	19.1	5.3	0.0	0.0
09-05-2023	19	38.4	57.0	180.0	S	15.1	4.2	0.0	0.0
09-05-2023	20	36.1	61.0	330.0	NWN	1.6	0.4	0.0	0.0
09-05-2023	21	33.7	62.0	270.0	W	8.6	2.4	0.0	0.0
09-05-2023	22	31.2	66.0	135.0	SE	20.2	5.6	0.0	0.0
09-05-2023	23	28.5	67.0	135.0	SE	13.7	3.8	0.0	0.0
09-05-2023	24	27.4	70.0	330.0	NWN	9.7	2.7	0.0	0.0
10-05-2023	1	27.1	72.1	315.0	NW	2.2	0.6	0.0	0.0
10-05-2023	2	26.9	74.5	285.0	WNW	5.4	1.5	0.0	0.0
10-05-2023	3	26.5	76.7	315.0	NW	1.6	0.4	0.0	0.0
10-05-2023	4	26.2	73.2	315.0	NW	8.3	2.3	0.0	0.0
10-05-2023	5	26.1	71.0	135.0	SE	11.9	3.3	0.0	0.0
10-05-2023	6	27.2	68.7	135.0	SE	7.9	2,2	0.0	0.0
10-05-2023	7	28.5	64.5	270.0	W	17.3	4.8	0.0	0,0
10-05-2023	8	29,6	61.4	270.0	W	13.3	3.7	0.0	0.0
10-05-2023	9	31.4	58.6	315.0	NW	13.0	3.6	0.0	0.0
10-05-2023	10	34.1	56.5	315.0	NW	8.6	2.4	0.0	0.0
10-05-2023	11	36.3	54.5	315.0	NW	9.4	2.6	0.0	0.0
10-05-2023	12	37.8	52.1	315.0	NW	14.1	3.9	0.0	0.0
10-05-2023	13	39.6	50.9	315.0	NW	18.0	5.0	0.0	0.0
10-05-2023	14	41.1	49.5	315.0	NW	16.9	4.7	0.0	0.0
10-05-2023	15	41.8	48.6.	315.0	NW.	19.1	5.3	0.0	0.0
10-05-2023	16	42.2	48.2	270.0	W	19.8	5.5	0.0	0.0
10-05-2023	17	41.6	47.7	315.0	NW	18.0	5.0	0.0	0.0
10-05-2023	18	39.1	48.8	315.0	NW	14.4	4.0	0.0	0.0
10-05-2023	19	37.5	50.0	135.0	SE	14.4	4.0	0.0	0.0
10-05-2023	20	34, 1	55.0	135.0	SE	8.6	2.4	0.0	0.0
10-05-2023	21	31.6	58.0	315.0	NW	10.8	3.0	0.0	0.0
10-05-2023	22	29.1	63.0	315.0	NW	1.6	0.4	0.0	0.0
10-05-2023	23	28.0	66.0	289.0	WNW	3.6	1.0	0.0	0.0
10-05-2023	24	26.8	68.0	225.0	SW	3.6	1.0	0.0	0.0
T1-05-2023	1	26.6	69.0	270.0	W	8.6	2.4	0.0	0.0
11-05-2023	2	26.1	70.0	135.0	SE	14.4	4.0	0.0	0.0
11-05-2023	3	25.9	70.0	135.0	SE	3.6	1.0	0.0	0.0
11-05-2023	4	25.5	69.0	270.0	W	3.6	1.0	0.0	0.0

Date	Time	Temperature ${ }^{6} \mathrm{C}$)	$\begin{aligned} & \text { RH } \\ & \text { (\%) } \end{aligned}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m/s		
11-05-2023	5	25.6	68.0	135.0	SE	$\frac{\mathrm{K}}{7.9}$	2.2	Cover	0.0
11-05-2023	6	26.9	66.0	270.0	W	12.6	3.5	0.0	0.0
11-05-2023	8	28.4	60.0	303.0	WNW	14.4	4.0	0.0	0.0
11-05-2023	9	29.9	59.0	135.0	SE	18.1	5.0	0.0	0.0
11-05-2023	10	31.9	54.0	135.0	SE	12.9	3.6	0.0	0.0
11-05-2023	11	36.5	53.0	327.0	NWN	14.9 1	4.1	0.0	0.0
11-05-2023	12	38.1	52.0	290.0	WNW	24.1	5.0	0.0	0.0
1-05-2023	13	39.4	53.0	315.0	NW	23.4	6.5	0.0	0.0
11-05-2023	14	40.0	51.0	315.0	NW	21.6	6.0	0.0	0.0
-1-05-2023	16	40.9	50.0	315.0	NW	17.6	4.9	0.0	0.0
11-05-2023	17	41.0	50.0	270.0	W	19.8	5.5	0.0	0.0
11-05-2023	18	39.1	53.0	135.0	SE	17.	4.0	0.0	0.0
11.05-2023	19	36.9	56.0	135.0	SE	14.8	4.1	0.0	0.0
11-05-2023	20	34.5	59.0	327.0	NWN	11.5	3.2	0.0	0.0
11-05-2023	21	31.0	63.0	328.0	NWN	1.6	0.4	0.0	0.0
11-05-2023	22	29.5	68.0	344.0	NWN	8.6	2.4	0.0	0.0
-11-05-2023	24	27.4	69.0	345.0	NWN	13.3	3.7	0.0	0.0
12-05-2023	1	27.2	70.0	135.0	SE	3.6	1.0	0.0	0.0
12-05-2023	2	26.9	71.0	270.0	W	11.5	$\frac{2.2}{3}$	0.0	0.0
12-05-2023	3	26.5	72.0	270.0	W	1.6	0.4	0.0	0.0
12-05-2023 $12 \cdot 05-2023$	4	26,1	74.4	135.0	SE	8.6	2.4	2.0	0.0
$\frac{12-05-2023}{12-05-2023}$	5	26.2	76.2	135.0	SE	10.8	3.0	2.0	0.0
12-05-2023	7	27.4	77.3	330.0	NWN	11.9	3.3	4.0	0.0
12-05-2023	8	30.1	78.2	345.0	$\frac{\mathrm{NWN}}{\text { SE }}$	11.5	3.2	5.0	0.2
12-05-2023	9	32.0	75.6	315.0	NW	8.6	2.4	6.0	0.3
12-05-2023	10	33.7	71.2	315.0	NW	15.8	4.4	4.0	0.4
$\frac{\text { 12-05-2023 }}{12-05-2023}$	11	35.1	68.6	315.0	NW	19.8	5.5	2.0	0.0
12-05-2023	12	36.5	64.3	315.0	NW	17.0	4.7	0.0	0.0
$\frac{12-05-2023}{12-05-2023}$	13	37.3	61.2	315.0	NW	18.0	5.0	0.0	0.0
12-05-2023	15	38.4	59.0	315.0	NW	21.6	6.0	0.0	0.0
12-05-2023	16	39.7	59.0	315.0	NW	18.7	5.2	0.0	0.0
12-05-2023	17	41.0	64.0	315.0	NW	13.3	3.7	0.0	0.0
12-05-2023	19	36.5	66.7	328.0	NWN	14.4	4.0	0.0	0.0
12-05-2023	21	34.0	67.4	330.0	NWN	8.3	2.3	0.0	0.0
12-05-2023	22	31.2	68.2	315.0	NW	1.6	0.4	0.0	0.0
12-05-2023	23	27.5	70.2	328.0	SE	11.8	3.3	0.0	0.0
12-05-2023	24	27.0	70.7	315.0	NW	3.9	$\underline{1.1}$	-0.0	0.0
13.05-2023		26.6	71.0	31.0	NNE	14.4	4.0	0.0	0.0
13-05-2023	2	26.4	72.2	31.0	NNE	18.0	5.0	0.0	0.0
13-05-2023	4	26.5	73.0	315.0	NW	9.0	2.5	0.0	0.0
13-05-2023	5	27.7	$\frac{71.1}{69.3}$	135.0	SE	0.8	0.2	0.0	0.0
13-05-2023	6	27.7	67.7	$\xrightarrow{135.0}$	SE	8.6	2.4.	0.0	0.0
13-05-2023	7	28.4	66.6	135.0	SE	14.4	4.0	0.0	0.0
13-05-2023	8	29.6	64.0	135.0	SE	14.4	4.0	0.0	0.0
13-05-2023	9	31.1	63.0	315.0	NW	18.0	5.0	0.0	0.0
13-05-2023	11	33.0	62.0	45.0	NE	18.0	5.0	0.0	0.0
13.05-2023	12	36.5	55.0	315.0	NW	23.8	6.6	0.0	0.0
13-05-2023	13	38.0	54.0	180.0	S	18.0	5.0	0.0	0.0
13-05-2023	14	39.6	53.0	90.0	E	18.0	5.0	0.0	0.0
13-05-2023	15	41.1	51.0	90.0	E	16.2	4.5	0.0	0.0
13-05-2023	16	42.1	50.0	180.0	S	18.7	5.2	0.0	0.0
13-05-2023	17	42.8	50.0	180.0	S	16.6	4.6	0.0	0.0

Date	Time	Temperature $\left({ }^{0} \mathrm{C}\right)$	$\begin{gathered} \text { RH } \\ (\%) \\ \hline \end{gathered}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m / s		
13-05-2023	18	39.6	53.0	45.0	NE	13.0	3.6	0.0	0.0
13-05-2023	19	37.4	56.0	45.0	NE	11.9	3.3	0.0	0.0
13-05-2023	20	34.5	59.0	23.0	NNE	0.9	0.3	0.0	0.0
13-05-2023	21	31.0	63.0	360.0	N	12.6	3.5	0.0	0.0
13-05-2023	22	29.0	68.0	120.0	ESE	11.5	3.2	0.0	0.0
13-05-2023	23	27.5	66.0	315.0	NW	12.6	3.5	0.0	0.0
13-05-2023	24	26.8	69.0	225.0	SW	1.8	0.5	0.0	0.0
14-05-2023	1	26.5	70.0	225.0	SW	3.6	1.0	0.0	0.0
14-05-2023	2	26.1	71.0	315.0	NW	14.4	4.0	0.0	0.0
14-05-2023	3	25.6	71.0	315.0	NW	9.0	2.5	0.0	0.0
14-05-2023	4	25.4	69.0	315.0	NW	12.6	3.5	0.0	0.0
14-05-2023	5	25.5	68.0	315.0	NW	20.5	5.7	0.0	0.0
14-05-2023	6	26.6	66.0	156.0	SES	22.7	6.3	0.0	0.0
14-05-2023	7	27.9	60.0	45.0	NE	8.3	2.3	0.0	0.0
14-05-2023	8	29.5	58.0	315.0	NW	16.2	4.5	0.0	0.0
14-05-2023	9	30.9	57.0	90.0	E	18.0	5.0	0.0	0.0
14-05-2023	10	33.5	53.0	45.0	NE	9.0	2.5	0.0	0.0
14-05-2023	11	36.0	53.0	270,0	W	14.4	4.0	0.0	0.0
14-05-2023	12	37.9	55.0	315.0	NW	20.2	5.6	0.0	0.0
14-05-2023	13	39.5	57.0	315.0	NW	18.0	5.0	0.0	0.0
14-05-2023	14	41.1	59.0	225.0	SW	17.6	4.9	0.0	0,0
14-05-2023	15	42.4	61.0	225.0	SW	18.0	5.0	0.0	0.0
14-05-2023	16	43.1	64.0	315.0	NW	14.4	4.0	0.0	0.0
14-05-2023	17	42.2	66.0	225.0	SW	7.8	2.2	0.0	0.0
14-05-2023	18	39.6	67.0	135.0	SE	8.3	2.3	0.0	0.0
14-05-2023	19	38.1	69.0	135.0	SE	11.9	3.3	0.0	0.0
14-05-2023	20	35.5	70.1	270.0	W	14.4	4.0	0.0	0.0
14-05-2023	21	32.0	70.7	225.0	SW	14.4	4.0	0.0	0.0
14-05-2023	22	29.0	71.4	121.0	ESE	1.6	0.4	0.0	0.0
14-05-2023	23	27.6	72.2	45.0	NE	8.6	2.4	0.0	0.0
14-05-2023	24	27.2	73.2	315.0	NW	12.6	3.5	0.0	0.0
15-05-2023	1	27.0	71.4	327.0	NWN	9.4	2.6	0.0	0.0
T5-05-2023	2	26.8	70.6	135.0	SE	3.9	1.1	0.0	0.0
15-05-2023	3	26.7	69.5	135.0	SE	10.6	2.9	0.0	0.0
15-05-2023	4	27.1	72.0	135.0	SE	4.2	1.2	0.0	0.0
15-05-2023	5	27.6	73.0	315.0	NW	15,3	4.3	0.0	0.0
15-05-2023	6	28.3	74.0	210.0	SSW	19.0	5.3	2.0	0.0
15-05-2023	7	29.2	75.0	315.0	NW	14.8	4.1	2.0	0.0
15-05-2023	8	29.8	76.0	135.0	SE	10.0	2.8	4.0	0.0
15-05-2023	9	31.5	77.0	315.0	NW	15,6	4.3	5.0	0.2
15-05-2023	10	32.5	77.6	315.0	NW	13.3	3.7	5.0	0.3
15-05-2023	11	35.0	75.4	315.0	NW	17.0	4.7	6.0	0.4
15-05-2023	12	36.9	73.2	315.0	NW	15.1	4.2	4,0	0.0
15-05-2023	13	38.5	71.0	315.0	NW	18.0	5.0	2.0	0.0
15-05-2023	14	39.6	68.6	270.0	W	21.6	6.0	0.0	0.0
15-05-2023	15	40.5	64.4	315.0	NW	18.0	5.0	0.0	0.0
75-05-2023	16	42.1	61.2	270.0	W	18.0	5.0	0.0	0.0
15-05-2023	17	42.4	58.4	270.0	W	18.0	5.0	0.0	0.0
15-05-2023	18	40.2	56.0	270.0	W	21.6	6.0	0.0	0.0
15-05-2023	19	37.6	56.0	270.0	W	25.2	7.0	0.0	0.0
15-05-2023	20	34.5	59.0	327.0	NWN	27.7	7.7	0.0	0.0
15-05-2023	21	31.0	63.0	135.0	SE	24.1	6.7	0.0	0.0
15-05-2023	22	29.0	68.0	135.0	SE	20.2	5.6	0.0	0.0
15-05-2023	23	28.1	70.0	135.0	SE	15.8	4.4	0.0	0.0
15-05-2023	24	26.9	70.0	135.0	SE	11.9	3.3	0.0	0.0
16-05-2023	1	26.6	70.0	15.0	NNE	10.8	3.0	0.0	0.0
16-05-2023	2	26.0	70.0	16.0	NNE	2.4	0.7	0.0	0.0
16-05-2023	3	25.6	71.0	19.0	NNE	14.4	4.0	0.0	0.0
16-05-2023	4	25.4	70.0	25.0	NNE	13.3	3.7	0.0	0.0
16-05-2023	5	25.5	68.0	270.0	W	14.4	4.0	0.0	0.0
16-05-2023	6	26.9	66.0	45.0	NE	21.6	6.0	0.0	0.0

Date	Time	$\begin{gathered} \text { Temperature } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \mathrm{RH} \\ (\%) \end{gathered}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m/s		
16-05-2023	8	28.6	60.0	135.0	SE	15.5	4.3	0	0.0
16-05-2023	8	30.1	$\frac{59.0}{58.0}$	135.0	SE	16.2	4.5	0.0	0.0
16-05-2023	10	34.5	58.0	315.0	NW	21.6	6.0	0.0	0.0
16-05-2023	11	36.0	53.0	315.0	NW	18.0	5.0	0.0	0.0
16-05-2023	12	37.5	51.0	90.0	E	$\underline{21.6}$	6.0	0.0	0.0
16-05-2023	13	38.9	53.0	290.0	WNW	17.0	5.0	0.0	0.0
16-05-2023	14	39.9	51.0	290.0	WNW	21.6	6.0	0.0	0.0
16-05-2023	15	40.4	49.0	315.0	NW	22.0	6.1	0.0	0.0
16-05-2023	17	41.0	48.0	315.0	NW	24.1	6.7	0.0	0.0
\|16-05-2023	18	39.8	49.0	135.0	SE	20.9	5.8	0.0	0.0
16-05-2023	19	37.6	51.0	90.0	E	16.6	5.3	0.0	0.0
16-05-2033	20	35.1	54.0	135.0	SE	14.8	4.1	0.0	0.0
16-05-2023	22	32.0	58.0	329.0	NWN	14.0	3.9	0.0	0.0
16-05-2023	23	28.5	64.0	$\underline{135.0}$	SE	11.9	3.3	0.0	0.0
16-05-2023	24	27.6	66.0	303.0	WNW	14.4	4.0	0.0	0.0
\|17-05-2023	2	26.6	69.2	301.0	WNW	11.2	3.1	0.0	0.0
77-05-2023	4	26.4	70.6	135.0	SE	1,6	0.4	0.0	0.0
T7-05-2023	5	26.5	$\frac{72.1}{73.4}$	135:0	SE	18.0	5.0	0.0	0.0
17-05-2023	6	28.7	75.2	270.0	W	19.1	5.3	0.0	0.0
17-05-2023	7	28.9	76.6	328.0	WWN	9.4	2.6	2.0	0.0
17-05-2023	8	29.4	78.7	135.0	SE	14.4	3.0	4.0	0.0
17-05-2023	9	31.4	79.4	315.0	NW	18.0	4.0	5.0	0.2
-17-05-2023	10	32.6	80.5	315.0	NW	21.6	5.0	6.0	0.4
17-05-2023	11	34,0	82.3	315.0	NW	18.0	6.0	7.0	1.1
17-05-2023	12	35.4	81.2	210.0	SSW	19.1	5.3	8.0	2.7
17-05-2023	14	37.1	80.3	270.0	W	16.9	4.7	7.0	1.4
17-05-2023	15	38.3	79.2	270.0	W	20.2	5.6	6.0	0.4
17-05-2023	16	40.6	75.6	240.0	WSW	23.4	6.5	6.0	0.2
17-05-2023	17	41.7	73.2	315.0	NW	16.9	4.7	4.0	0.0
17-05-2023	18	40.1	70.6	135.0	NW	15.1	4.2	3.0	0.0
17-05-2023	19	39.0	68.6	90.0	E	13.3	3.7	2.0	0.0
$17-05-2023$ $17-05-2023$	20	37.1	65.6	225.0	SW		3.2	0.0	0.0
17-05-2023	21	34,1	64.5	225.0	SW	6.1	4.4	0.0	0.0
17-05-2023	23	31.5	69.0	135.0	SE	1.6	0.4	0.0	0.0
17-05-2023	24	29.4	71.0	135.0	SE	14.4	4.0	0.0	0.0
18-05-2023	1	27.7	71.0	290.0	WNW	10.4	2.9	0.0	0.0
18-05-2023	2	27.5	71.0	2887.0	WNW	13.0	3.6	0.0	0.0
18-05-2023	4	27.9	70.0	289.0	WNW	11.6	$\frac{3.1}{0.4}$	0.0	0.0
18-05-2023	6	28.4	70.0	135.0	SE	9.4	2.6	0.0	0.0
18-05-2023	7	39.6	65.0	1350.0	SE	11.2	3.1	0.0	0.0
18-05-2023	8	31.1	63.0	1350.0		9.0	2.5	0.0	0.0
18-05-2023	9	32,2	61.0	327.0	SWN	12.5	3.5	0.0	0.0
18-05-2023	10	33.1	59.0	315.0	NW	17.6	4.9	0.0	0.0
18-05-2023	11	34.5	54.0	315.0	NW	18.0	5.0	0.0	0.0
18-05-2023	13	37.9	53.0	315.0	NW	14.4	4.0	0.0	0.0
18-05-2023	14	39.8	51.0	315.0	NW	16.2	4.5	0.0	0.0
$\frac{18-05-2023}{18-05-2023}$	15	40.5	50.7	315.0	NW	13.0	3.6	0.0	0.0
18-05-2023	16	41.1	52.0	315.0	NW	18.0	5.0	0.0	0.0
18-05-2023	17	41.4	52.0	315.0	NW	18.0	5.0	0.0	0.0
8-05-2023	19	40.2	56.0	345.0	NWN	14.4	4.0	0.0	0.0
		38.0	54.0	330.0	NWN	9.7	2.7	0.0	0.0

Date	Time	Temperature ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { RH } \\ & (\%) \end{aligned}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m / s		
18-05-2023	20	35.6	55.0	225.0	SW	14.4	4.0	0.0	0.0
78-05-2023	21	32.5	58.0	45.0	NE	18.0	5.0	0.0	0.0
18-05-2023	22	30.0	62.0	315.0	NW	1.6	0.4	0.0	0.0
18-05-2023	23	28.0	70.0	315.0	NW	18.0	5.0	0.0	0.0
18-05-2023	24	26.9	70.0	315.0	NW	14.4	4.0	0.0	0.0
19-05-2023	1	26.6	70.0	290.0	WNW	19.8	5.5	0.0	0.0
19-05-2023	2	26.4	71.0	135.0	SE	3.9	1.1	0.0	0.0
19-05-2023	3	26.1	72.5	135.0	SE	15.8	4.4	0.0	0.0
19-05-2023	4	26.0	74.0	110.0	ESE	24.1	6.7	2.0	0.0
19-05-2023	5	26,4	75.6	115.0	ESE	20.2	5.6	2.0	0.0
19-05-2023	6	27.8	77.0	160.0	SES	13.8	3.8	4.0	0.1
19-05-2023	7	29.4	74.3	155.0	SES	15.1	4.2	5.0	0.3
19.05-2023	8	31.2	72.2	168.0	SES	8.6	2.4	4.0	0.0
19-05-2023	9	33.5	69.4	45.0	NE	15.5	4.3	3.0	0.0
19-05-2023	10	35.0	66.6	270.0	W	17.2	4.8	2.0	0.0
19-05-2023	11	36.9	63.3	240.0	WSW	22.7	6.3	0.0	0.0
19-05-2023\|	12	38.5	59.2	250.0	WSW	18.0	5.0	0.0	0.0
19-05-2023	13	40.2	56.3	315.0	NW	21.6	6.0	0.0	0.0
19-05-2023	14	41.0	53.2	315.0	NW	19.4	5.4	0.0	0.0
19-05-2023]	15	42.5	55.0	315.0	NW	14.0	3.9	0.0	0.0
19-05-2023	16	42.4	55.0	315.0	NW	16.2	4.5	0.0	0.0
19.05-2023	17	42.2	57.0	180.0	S	12.5	3.5	0.0	0.0
19-05-2023	18	40.6	61.0	135,0	SE	17.6	4.9	0.0	0.0
19-05-2023	19	38.0	64.0	90.0	E	18.0	5.0	0.0	0.0
19-05-2023	20	35.0	69.0	238.0	WSW	1.6	0.4	0.0	0.0
19-05-2023	21	31.5	68.0	270.0	W	8.6	2.4	0.0	0.0
19-05-2023	22	29.6	69.0	270.0	W	19.4	5.4	0.0	0.0
19-05-2023	23	28.5	71.0	301.0	WNW	10.8	3.0	0.0	0.0
19-05-2023	24	27.2	70.0	338.0	NWN	9.7	2.7	0.0	0.0
-20-05-2023	1	26.6	69.0	270.0	W	10.8	3.0	0.0	0.0
20-05-2023	2	26.0	68.0	135.0	SE	7.9	2.2	0.0	0.0
20-05-2023	3	25.6	70.0	135.0	SE	1.6	0.4	0.0	0.0
20-05-2023	4	25,1	71.0	360.0	N	15.8	4.4	0.0	0.0
20-05-2023	5	25.2	71.0	225.0	SW	16.2	4.5	0.0	0.0
20-05-2023	6	26.6	70.0	168.0	SES	21.6	6.0	0.0	0.0
20-05-2023	7	27.9	69.0	45.0	NE	19.8	5.5	0.0	0.0
20-05-2023	8	29.5	68.0	45.0	NE	11.0	3.0	0.0	0.0
20-05-2023	9	32.4	64.0	315.0	NW	12.6	3.5	0.0	0.0
20-05-2023	10	34.5	59.0	315.0	NW	21.6	6.0	0.0	0.0
20-05-2023	11	36.9	56.0	315.0	NW	20.2	5.6	0.0	0.0
20-05-2023	12	39.1	56.0	90.0	E	16.9	4.7	0.0	0.0
20-05-2023	13	40.4	53.0	315.0	NW	16.2	4.5	0.0	0.0
20-05-2023	14	41.7	52.0	315.0	NW	21.6	6.0	0.0	0.0
20-05-2023	15	42.3	51.0	315.0	NW	18.7	5.2	0.0	0.0
20-05-2023	16	42.7	51.0	315.0	NW	17.6	4.9	0.0	0.0
20-05-2023	17	41.8	51.0	315.0	NW	15.8	4.4	0.0	0.0
20-05-2023	18	39.2	52.0	135.0	SE	11.8	3.3	0.0	0.0
20-05-2023	19	37.8	52.0	45.0	NE	13.3	3.7	0.0	0.0
20-05-2023	20	35.6	55.0	135.0	SE	4.7	1.3	0.0	0.0
20-05-2023	21	32.4	58.0	135.0	SE	18.0	5.0	0.0	0.0
20-05-2023	22	30.8	62.0	135.0	SE	1.6	0.4	0.0	0.0
20-05-2023	23	28.4	64.0	270.0	W	5.8	1.6	0.0	0.0
20-05-2023	24	26.8	66.0	45.0	NE	7.9	2.2	0.0	0.0
21-05-2023	1	25.7	69.0	45.0	NE	10.8	3.0	0.0	0.0
21-05-2023	2	24.4	69.0	256.0	WSW	14.4	4.0	0.0	0.0
21-05-2023	3	23.6	70.0	270.0	W	3.9	1.1	0.0	0.0
21-05-2023	4	23.1	70.0	315.0	NW	1.6	0.4	0.0	0.0
21-05-2023	5	22,2	71.0	315.0	NW	9.0	2.5	0.0	0.0
\|21-05-2023	6	23.8	71.0	15.0	NNE	13.3	3.7	0.0	0.0
21-05-2023	7	25.4	71.0	180.0	S	9.4	2.6	0.0	0.0
21-05-2023	8	27.8	71.0	315.0	NW	12.5	3.5	0.0	0.0

Date	Time	Temperature $\left(^{0} \mathrm{C}\right)$	$\begin{aligned} & \mathrm{RH} \\ & (\%) \end{aligned}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				im angle	in letter	Km/hrs	m/s		
21-05-2023	9	30.2	66.0	315.0	NW	2,5	0.7	0.0	0.0
21-05-2023	10	32.1	62.0	315.0	NW	11.5	3.2	0.0	0.0
21-05-2023	12	33.8	61.0	315.0	NW	11.2	3.1	0.0	0.0
21-05-2023	13	38.3	53.0	270.0	WW	16.6	4.6	0.0	0.0
21-05-2023	14	39.6	53.2	315.0	NW	23.0	6.4	0.0	0.0
21-05-2023	15	41.1	50.7	315.0	NW	$\underline{20.9}$	5.8	0.0	0.0
21-05-2023	16	42.4	53.0	315.0	NW	13.7	4.6	0.0	0.0
-21-05-2023	17	43.1	56.0	315.0	NW	16.2	4.5	0.0	0.0
\|21-05-2023	18	40.8	58.0	135.0	SE	18.0	5.0	0.0	0.0
21-05-2023	21	35.6	62.0	135.0	SE	15,1	4.2	0.0	0.0
21-05-2023	22	32.2	64.0	3156.0	NW	1.6	0.4	0.0	0.0
21-05-2023	23	28.0	70.0	255.0	WSW	14.4	4.0	0.0	0.0
21-05-2023	24	26.6	71.0	255.0	WSW	18.0	5.0	0.0	0.0
22-05-2023	1	26.4	72.3	270.0	W	18.0	5.4	0.0	0.0
22-05-2023	3	25.6	75.0	315:0	NW	9.4	2.6	2.0	0.0
22-05-2023	5	25.4	76.6	135.0	SE	12.6	3.5	3.0	0.0
22-05-2023	6	25.5	77.8	303.0	WNW	14.4	4.0	5.0	0.1
22-05-2023	7	28.0	79.7	3035.0	SE	18.0	5.0	6.0	0.4
22-05-2023	8	29.4	81.2	135.0	SE	16.9	4.7	8.0	0.7
22-05-2023	12	35.9	79.2	270.0	W	20.5	5.7	7.0	0.7
22-05-2023	13	40.5	77.6	315.0	NW	19.8	5.5	6.0	0.2
22-05-20231	14	41,6	69.3	290.0	WNW	16.9	4.7	4.0	0.2
22-05-2023	15	42.0	67.6	90.0	E	15.1	4.2	4.0	0.0
22-05-2023	16	42.0	63.3	315.0	NW	18.0	$\frac{5.0}{5.0}$	3.0	0.0
22-05-2023	17	41.1	58.6	315.0	NW	19.3	5.4	0.0	0.0
22-05-2023	19	39.0	56.2	135.0	SE	9.4	2.6	0.0	0.0
22-05-2023	20	34.2	54.4	328.0	NW	13.0	3.6	0.0	0.0
- $22-05-2023$	23	27.7	66.0	270.0	W	10.8	3.0	0.0	0.0
23-05-2023	2	26.4	69.0	135.0	SE	14.4	4.0	0.0	0.0
23-05-2023	2	25.5	71.0	270.0	W	0.8	0.2	0.0	0.0
23-05-2023	3	25.4	74.0	270.0	W	7.9	2.2	0.0	0.0
23-05-2023	4	25, 1	75.0	303.0		1.6	0.4	2.0	0.0
23-05-2023	5	25.2	76.3	303,0	WNW	13.3	3.7	3.0	0.0
23-05-2023	6	26.4	77.2	270.0	W	10.8	3.0	5.0	0.1
23-05-2023	7	27.9	73.8	225.0	SW	14.4	4.0	5.0	0.3
23-05-2023	8	29.5	72.1	292.0	WNW	18.0	5.0	3.0	0.0
23-05-2023	10	31.1	69.6	292.0	WNW	7.9	2.2	2.0	0.0
23-05-2023	II	33.0	66.7	2925.0	WNW	18.0	5.0	0.0	0.0
23-05-2023	12	38.9	64.2	27.0	SW	19.8	5.5	0.0	0.0
23-05-2023	T3	40.1	59.7	270.0	W	24.1	6.7	0.0	0.0
23-05-2023	14	41.4	57.2	315.0	NW	13.5	5.5	0.0	0.0
23-05-2023	15	42.1	54.5	315.0	NW	7.9	3.2	0.0	0.0
23-05-2023	16	42.7	52.3	315.0	NW	11.5	3.2	0.0	0.0
23-05-2023	17	42.2	51.0	315.0	NW	15.1	4.2	0.0	0.0
23-05-2023	19	39.8	$\frac{52.0}{54.0}$	135.0	SE	9.4	2.6	0.0	0.0
23-05-2023	20	35.5	55.0	135.0	SE	8.6	2.4	0.0	0.0
23-05-2023	21	32.0	58.0	270.0	W	12.9	3.5	0.0	0.0

Date	Time	Temperature $\left.{ }^{\circ} \mathrm{C}\right)$	RH (\%)	Direction		Wind Speed		Cloud Cover	Rainfall (mm)	
				in angle	in letter	Km/hrs	m / s			
23-05-2023	22	29.6	61.0	315.0	NW	1.6	0.4	0.0		0.0
23-05-2023	23	28.1	67.0	315.0	NW	13.3	3.7	0.0		0.0
23-05-2023	24	26.9	70.0	211.0	SSW	9.7	2.7	0.0		0.0
24-05-2023	1	26.6	70.0	45.0	NE	16.9	4.7	0.0		0.0
24-05-2023	2	26.1	70.0	135.0	SE	3.9	1.1	0.0		0.0
24-05-2023	3	25.6	68.0	135.0	SE	1.6	0.4	0.0		0.0
24-05-2023	4	25.4	68.0	135.0	SE	12.6	3.5	0.0		0.0
24-05-2023	5	25.5	68.0	301.0	WNW	11.9	3.3	0.0		0.0
24-05-2023	6	26.9	66.0	135.0	SE	5.5	1.5	0.0		0.0
24-05-2023	7	28.4	64.0	288.0	WNW	14.4	4.0	0.0		0.0
24-05-2023	8	29.9	62.0	180.0	S	21.6	6.0	0.0		0.0
24-05-2023	9	31.4	60.0	284.0	WNW	18.0	5.0	0.0		0.0
24-05-2023	10	33.3	56.0	315.0	NW	18.0	5.0	0.0		0.0
24-05-2023	11	35.2	51.0	315.0	NW	18.0	5.0	0.0		0.0
24-05-2023	12	36.8	48.0	315.0	NW	18.0	5.0	0.0		0.0
24-05-2023	13	38.4	49.0	315.0	NW	18.0	5.0	0.0		0.0
24-05-2023	14	39.6	50.0	315.0	NW	18.0	5.0	0.0		0.0
24-05-2023	15	40.2	49.0	73.0	ENE	24,1	6.7	0.0		0.0
24-05-2023	16	41.4	49.0	315.0	NW	22.7	6.3	0.0		0.0
24-05-2023	17	42.2	49.0	315.0	NW	20.9	5.8	0.0		0.0
24-05-2023	18	41.0	52.0	90.0	E	14.4	4.0	0.0		0.0
24-05-2023	19	39.0	55.0	90.0	E	18.0	5.0	0.0		0.0
24-05-2023	20	36.0	58.0	135.0	SE	10.8	3.0	0.0		0.0
24-05-2023	21	32.5	58.0	135.0	SE	0.8	0.2	0.0		0.0
24-05-2023	22	30.1	62.0	225.0	SW	10.8	3.0	0.0		0.0
24-05-2023	23	28.5	67.0	225.0	SW	8.6	2.4	0.0		0.0
24-05-2023	24	27.1	70.0	315.0	NW	7.9	2.2	0.0		0.0
25-05-2023	1	26.9	70.0	315.0	NW	12.6	3.5	0.0		0.0
25-05-2023	2	26.6	71.4	45.0	NE	2.2	0.6	0.0		0.0
25-05-2023	3	26.1	73.4	156.0	SES	16.9	4.7	0.0		0.0
25-05-2023	4	26.0	75.2	135.0	SE	0.8	0.2	2.0		0.0
25-05-2023	5	25.9	76.0	303.0	WNW	7.2	2.0	4.0		0.0
25-05-2023	6	26.9	77.4	135.0	SE	14.4	4.0	5.0		0,0
25-05-2023	7	27.6	78.2	45.0	NE	12.2	3.4	6.0		0.2
25-05-2023	8	29.5	79.3	315.0	NW	13.3	3.7	7.0		0.4
25-05-2023	9	31.0	80.2	315.0	NW	8.6	2.4	8.0		0.7
25-05-2023	10	33.1	81.4	315.0	NW	15.5	4.3	8.0		1.4
25-05-2023	11	35.2	83.1	315.0	NW	18.0	5.0	8.0		2.2
25-05-2023	12	36.7	80.7	315.0	NW	15.5	4.3	8.0		1.9
25-05-2023	13	38.3	78.7	315.0	NW	13.3	3.7	7.0		0.6
25-05-2023	14	39.2	76.3	315.0	NW	15.8	4.4	6.0		0.3
25-05-2023	15	39.8	74.4	315.0	NW	18.0	5.0	4.0		0.0
25-05-2023	16	41.1	71.7	315.0	NW	21.6	6.0	3.0		0.0
25-05-2023	17	41.7	68.6	270.0	W	16.2	4.5	2.0		0.0
25-05-2023	18	40.8	65.6	270.0	W	19.8	5.5	2.0		0.0
25-05-2023	19	38.2	62.2	270.0	W	12.6	3.5	0.0		0.0
25-05-2023	20	35.5	60.8	270.0	W	9.4	2.6	0.0		0.0
-25-05-2023	21	32.1	61.0	180.0	S	7.9	2.2	0.0		0.0
25-05-2023	22	29.8	65.0	270.0	W	2.2	0.6	0.0		0.0
25-05-2023	23	28.1	70.0	270.0	W	16,2	4.5	0.0		0.0
25-05-2023	24	26.8	71.4	135.0	SE	9.7	2.7	0.0		0.0
26-05-2023	1	26.5	73.2	135.0	SE	4.7	1.3	0.0		0.0
26-05-2023	2	26.3	74.4	270.0	W	3.1	0.9	2.0		0.0
26-05-2023	3	26.7	76.4	135.0	SE	1.6	0.4	4.0		0.0
26-05-2023	4	27.1	77.7	327.0	NWN	0.8	0.2	5.0		0.2
26-05-2023	5	27.7	78.7	225.0	SW	9.4	2.6	6.0		0.5
26-65-2023	6	28,1	79.2	327.0	NWN	10.1	2.8	7.0		0.8
26-05-2023	7	28.6	81.2	315.0	NW	14.4	4.0	8.0		1.4
26-05-2023	8	29.7	80.3	315.0	NW	16.2	4.5	8.0		1.1
26-05-2023	9	31.4	78.9	315.0	NW	11.8	3.3	7.0		0.7
26-05-2023	10	33.4	82.1	270.0	W	15.8	4.4	8.0		2.6

Date	Time	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{RH} \\ (\%) \end{gathered}$	Direction		Wind Speed		$\begin{aligned} & \text { Cloud } \\ & \text { Cover } \end{aligned}$	Rainfall (mm)
				in angle	in letter	Km/hrs	m / s		
26-05-2023	11	36.1	79.1	315.0	NW	13,3	3.7	7.0	0.8
$\frac{26-05-2023}{26-05-2023}$	12	37.6	77.6	315.0	NW	14.4	4.0	6.0	0.5
26-05-05-2023	14	$\frac{38.2}{39.6}$	74.5	315.0	NW	7.8	2.2	4.0	0.0
26-05-2023	15	39.6	71.2	315.0	NW	12.6	3.5	0.0	0.0
26-05-2023	16	41.2	64.2	90.0	E	15.1	4.2	0.0	0.0
26-05-2023	17	42.2	61.3	90.0	E	14.4	4.0	0.0	0.0
26-05-2023	19	38.8	56.7	135.0	SE	18.0	5.0	0.0	0.0
26-05-2023	20	37.2	59.0	289.0	WNW	21.6	6.0	0.0	0.0
$\frac{26-05-2023}{26-05-2023}$	21	35.3	63.0	135.0	SE	15.5	4.3	0.0	0.0
26-05-2023	23	32.6	67.0	135.0	SE	9.0	2.5	0.0	0.0
26-05-2023	24	29.7	68.0	135.0	SE	9.7	2.7	0.0	0.0
27-05-2023	1	27.6	70.0	328.0	NWN	6,1	1.7	0.0	0.0
27-05-2023	2	27.4	70.0	135.0	SE	9.0	2.5	0.0	0.0
27-05-2023	3	27.1	70.0	135.0	SE	3.1	0.9	0.0	0.0
\|27-05-2023 ${ }^{27-05-2023}$	4	27.3	70.0	135.0	SE	$\frac{.2}{9.7}$	2.0	0.0	0.0
\| 27-05-2023	5	27.7	66.0	135.0	SE	14.4	4.0	0.0	0.0
27-05-2023	8	31.6	61.0	135.0	SE	10.8	3.0	0.0	0.0
27-05-2023	9	33.2	59.0	$\underline{253.0}$	WSW	14.4	4.0	0.0	0.0
27-05-2023	10	35.5	57.0	315.0	NW	18.0	5.0	0.0	0.0
27-05-2023	11	37.1	53.0	180.0	S	18.0	5.0	0.0	0.0
- $27-05-2023$	12	38.7	52.0	180.0	S	23.8	6.6	0.0	0.0
27-05-2023	13	39.6	51.0	90.0	E	21.6	6.0	0.0	0.0
27-05-2023	15	40.4	50.0	360.0	N	20.2	5.6	0.0	0.0
27-05-2023	16	41.4	48.0	180.0	S	18.0	5.0	0.0	0.0
27-05-2023	17	42.0	48.0	135.0 135	NE	21.6	6.0	0.0	0.0
27-05-2023	18	40.9	52.0	225.0	SW	23.8	6.6	0.0	0.0
27-05-2023	19	38.0	54.0	90.0	E	16.9	4.7	0.0	0.0
27-05-2023	22	28.5	64.0	135.0	SE	15.1	4.2	0.0	0.0
27-05-2023	24	27.5	70.0	329.0	NWN	4.7	1.3	0.0	0.0
28-05-2023	1	26.6	71.0	270.0	W	7.9	2.2	0.0	0.0
28-05-2023	2	26.5	71.0	242.0	WSW	5.8	0.2	0.0	0.0
28-05-2023	3	26.1	71.0	270.0	W	11.9	3.3	0.0	0.0
$\frac{28-05-2023}{28-05-2023}$	4	25.9	69.0	135.0	SE	15.1	4.2	0.0	0,0
28-05-2023	6	25.9	69.0	315.0	NW	13.3	3.7	0.0	0.0
28-05-2023	7	28.1	66.0	315.0 135.0	NW	15.5	4.3	0.0	0.0
28-05-2023	8	29.5	58.0	135.0	SE	13.3	3.7	0.0	0.0
28-05-2023	10	31.4	57.0	315.0	NW	19.8	5.5	0.0	0.0
28-05-2023	11	34.0	54.0	270.0	W	18.0	5.0	0.0	0.0
28-05-2023	12	39.4	55.0	315.0	NW	21.6	6.0	0.0	0.0
28-05-2023	13	40.5	53.0	315.0	NW	18.0	5.0	0.0	0.0
28-05-2023	14	41.6	52.0	315.0	NW	20.2	5.6	0.0	0.0
28-05-2023	15	42.0	50.0	315.0	NW	21.2	5.9	0.0	0.0
28-05-2023	16	42.0	50.0	225.0	SW	19.1	5.3	0.0	0.0
$\frac{28-05-2023}{28-05-2023}$	18	41.9	48.0	225.0	SW	16.9	4.7	0,0	0.0
28-05-2023	19	37.8	51.0	330.0	$\frac{\text { NWN }}{\text { SE }}$	15.1	4.2	0.0	0.0
28-05-2023	20	35.4	59.0	-135.0	SE	13.3	3.7	0.0	0.0
28-05-2023	21	32.0	61.0	135.0	SE	1.6	0.4	0.0	0.0
28-05-2023	22	29.6	64.0	135.0	SE	9.4	2.6	0.0	0.0
28-05-2023	23	28.1	70.0	135.0	SE	15.1	4.2	0.0	0.0

Date	Time	Temperature $\left.{ }^{\circ} \mathrm{C}\right)$	RH (\%)	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m / s		
28-05-2023	24	27.5	71.0	135.0	SE	0.8	0.2	0.0	0.0
29-05-2023	1	27.1	73.2	135.0	SE	13.7	3.8	0.0	0.0
29-05-2023	2	26.8	74.4	135.0	SE	15.8	4.4	0.0	0.0
29-05-2023	3	26.4	75.0	135.0	SE	14.4	4.0	2.0	0.0
29-05-2023	4	26.1	76.0	327.0	NWN	16.9	4.7	4.0	0.0
29-05-2023	5	26.0	77.7	328.0	NWN	18.0	5.0	5.0	0.0
29-05-2023	6	27.1	75.4	135.0	SE	18.7	5.2	6.0	0.4
29-05-2023	7	28.4	73.2	135.0	SE	16.6	4.6	5.0	0.0
29-05-2023	8	29.9	71.6	135.0	SE	12.6	3.5	4.0	0.0
29-05-2023	9	31.5	70.4	315.0	NW	15.8	4.4	4.0	0.0
29-05-2023	10	33,6	67.6	315.0	NW	13.3	3.7	2.0	0.0
29-05-2023	II	36.0	65.5	315.0	NW	14.4	4.0	0.0	0.0
29-05-2023	12	38.5	63.4	315.0	NW	18.0	5.0	0.0	0.0
29-05-2023	13	39.4	62.2	315.0	NW	21.6	6.0	0.0	0.0
29-05-2023	14	41.2	59.8	315.0	NW	16.9	4.7	0.0	0.0
29-05-2023	15	42,4	57.7	315.0	NW	19.8	5.5	0.0	0.0
29-05-2023	16	42.5	56.6	315.0	NW	16.2	4.5	0.0	0.0
29-05-2023	17	41.2	55.5	315.0	NW	13.3	3.7	0.0	0.0
-29-05-2023	18	40.7	53.6	135.0	SE	15.8	4.4	0.0	0.0
29-05-2023	19	38.4	54.0	90.0	E	16.2	4.5	0.0	0.0
29-05-2023	20	35.7	55.0	135:0	SE	16.6	4.6	0.0	0.0
29-05-2023	21	33.0	59.0	135.0	SE	13.3	3.7	0.0	0.0
29-05-2023	22	31.2	60.0	135.0	SE	7.9	2.2	0.0	0.0
29-05-2023	23	28.4	64.0	135.0	SE	1.6	0.4	0.0	0.0
29-05-2023	24	26.9	70.0	344.0	NWN.	13.0	3.6	0.0	0.0
-30-05-2023	1	26.6	71.0	270.0	W	8.6	2.4	0.0	0.0
30-05-2023	2	26.1	71.0	245.0	WSW	13.0	3.6	0.0	0.0
30-05-2023	3	25.9	70.0	315.0	NW	15.1	4.2	0.0	0.0
30-05-2023	4	25.6	71.0	288.0	WNW	1.6	0.4	0.0	0.0
-30-05-2023	5	25.5	68.0	295.0	WNW	13.0	3.6	0.0	0.0
30-05-2023	6	26.5	66.0	270.0	W	15.8	4.4	0.0	0.0
-30-05-2023	7	27.9	64.0	270.0	W	19.8	5.5	0.0	0.0
30-05-2023	8	29.4	61.0	327.0	NWN	13.3	3.7	0.0	0.0
30-05-2023	9	31.1	60.0	315.0	NW	15.1	4.2	0.0	0.0
30-05-2023	10	33.0	59.0	290.0	WNW	16.6	4.6	0.0	0.0
30-05-2023	T1	35.6	55.0	225.0	SW	20.5	5.7	0.0	0.0
30-05-2023	12	38.1	54.0	315.0	NW	19.4	5.4	0.0	0.0
-30-05-2023	15	39.4	53.0	315.0	NW	17.6	4.9	0.0	0.0
30-05-2023	14	39.9	51.0	315.0	NW	19.8	5.5	0.0	0.0
30-05-2023	15	40.0	51.0	315.0	NW	21.6	6.0	0.0	0.0
-30-05-2023	16	40.4	49.0	90.0	E	19.8	5.5	0.0	0.0
-30-05-2023	17	40.4	49.0	315.0	NW	21.6	6.0	0.0	0.0
30-05-2023	18	40.0	51.0	135.0	SE	19.8	5.5	0.0	0.0
-30-05-2023	19	38.1	54.0	90.0	E	14.4	4.0	0.0	0.0
30-05-2023	20	35.4	55.0	135.0	SE	15.8	4.4	0.0	0.0
30-05-2023	21	32.0	58.0	135.0	SE	11.9	3.3	0.0	0.0
70-05-2023	22	29.6	61.0	135.0	SE	9.7	2.7	0.0	0.0
30-05-2023	23	28.1	63.0	135.0	SE	8.3	2.3	0.0	0.0
30-05-2023	24	27.2	66.0	135.0	SE	4.7	1.3	0.0	0.0
-31-05-2023	I	26.9	67.0	289.0	WNW	9.7	2.7	0.0	0.0
31-05-2023	2	26.5	69.0	315.0	NW	14.4	4.0	0.0	0.0
31-05-2023	3	26.1	70.0	315.0	NW	22.7	6.3	0.0	0.0
31-05-2023	4	25.6	68.0	270.0	W	14.4	4.0	0.0	0.0
31-05-2023	5	25.5	65.0	270.0	W	15.8	4.4	0.0	0.0
31-05-2023	6	27.0	59.0	270.0	W	18.7	5.2	0.0	0.0
31-05-2023	7	28,4	57.0	135.0	SE	14,0	3.9	0.0	0.0
31-05-2023	8	29.9	56.0	135.0	SE	19.1	5.3	0.0	0.0
31-05-2023	9	31.5	52.0	270.0	W	14.4	4.0	0.0	0,0
31-05-2023	10	33.4	50.0	270.0	W	13.7	3.8	0.0	0.0
31-05-2023	11	36.0	50.0	270.0	W	16.2	4.5	0.0	0.0
31-05-2023	12	38.1	52.0	315.0	NW	13.3	3.7	0.0	0.0

Date	Time	$\begin{gathered} \text { Temperature } \\ \text { } \left.^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{aligned} & \hline \text { RH } \\ & \text { (\%) } \\ & \hline \end{aligned}$	Direction		Wind Speed		Cloud Cover	Rainfall (mm)
				in angle	in letter	Km/hrs	m / s		
31.05-2023	13	39.4	51.0	315.0	NW	13.3	3.7	0.0	0.0
31-05-2023	14	41.1	50.0	315.0	NW	16.2	4.5	0.0	0.0
31-05-2023	15	42.1	48.0	315.0	NW	24.1	6.7	0.0	0.0
31-05-2023	17	42.7	48.0	315.0	NW	20.2	5.6	0.0	0.0
31-05-2023	18	40.6	50.0	315.0	NW	15.8	4.4	0.0	0.0
31-05-2023	19	38.2	50.0	315.0	NW	19.4	5.4	0.0	0.0
31-05-2023	20	35.7	52.0	315.0	NW	12.6	3.5	0.0	0.0
31-05-2023	21	33,1	56.0	135.0	SE	14.4	4.0	0.0	0.0
31-05-2023	22	31.2	60.0	135.0	SE	18.0	5.0	0.0	0.0
31-05-2023	23	28.8	64.0	135.0	SE	21.6	6.0	0.0	0.0
31-05-2023	24	28.2	70.0	135.0	SE	18.0	5.0	0.0	0.0

ANNEXURES - 3.2
AIR MONITORING

DATA \&
 MONITORING PHOTOGRAPHS

Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity $3,25,000$ MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana.
Monitoring Season:

Ambient Air Quality

Sampling Locations

S. No.	Location Name	Code	Distance (km)	Direction	Latitude	Longitude
1	Near Project Site	AAQ-1	0.2	NNE	$27^{\circ} 50^{\prime} 27.05^{\prime \prime} \mathrm{N}$	$76^{\circ}{ }^{\prime \prime} 40.97^{\prime \prime} \mathrm{E}$
2	Mina Ka Nangal	AAQ-2	1.4	SW	$27^{\circ} 49^{\prime} 46.32^{\prime \prime} \mathrm{N}$	$76^{\circ} 2^{\prime} 4.26^{\prime \prime} \mathrm{E}$
3	Golwa	AAQ-3	1.6	WNW	$27^{\circ} 50^{\circ} 38.52^{\prime \prime} \mathrm{N}$	$76^{\circ}{ }^{1} 43.77^{\prime \prime} \mathrm{E}$
4	Donkhera Ki Dhanj	AAQ-4	1.4	NNE	2751'23.13"N	$76^{\circ} 3^{\prime} 10.25^{\prime \prime} \mathrm{E}$
5	Bhedanti	AAQ-5	2.3	ENE	$27^{\circ} 50^{\prime} 58.99^{\prime \prime} \mathrm{N}$	$76^{\circ}{ }^{\circ}{ }^{\prime} 18.83^{\prime \prime} \mathrm{E}$
6	Dilpura	AAQ-6	1.3	SE	$27^{\circ} 50^{\prime \prime} 2.72^{\prime \prime} \mathrm{N}$	$76^{\circ} 3^{\prime 2} 27.36^{\prime \prime} \mathrm{E}$
7	Rampura	AAQ-7	2.6	SSE	$27^{\circ} 48^{\circ} 57.00^{\prime \prime} \mathrm{N}$	$76^{\circ} 2^{\prime} 46.06^{\prime \prime} \mathrm{E}$

Ambient Air Quality Results

Near Project Site						AAQ-1
S. No.	Date	PM ${ }_{10}\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$	PM P_{2} ($\mathrm{Hg} / \mathrm{m}^{3}$)	$\mathrm{SO}_{2}\left(\mathrm{\mu g} / \mathrm{m}^{3}\right)$	$\mathrm{NO}_{\mathbf{x}}\left(\boldsymbol{\mu g / m} \mathrm{m}^{3}\right)$	$\mathrm{CO}\left(\mathrm{mg} / \mathrm{m}^{3}\right)$
1	03-03-2023	52	18	8.3	11.6	0.63
2	04-03-2023	49	17	6.4	10.1	0.84
3	10-03-2023	63	22	7.8	10.9	0.69
4	11-03-2023	51	18	8.1	11.3	0.82
5	17-03-2023	58	20	6.9	11.3	0.99
6	18-03-2023	67	23	8.8	12.3	0.64
7	24-03-2023	47	18	7.4	10.4	0.85
8	25-03-2023	69	24	<5	11.5	0.69
9	03-04-2023	82	31	6.8	10.7	0.79
10	04-04-2023	59	21	7.2	11.7	0.82
11	10-04-2023	49	17	8.9	12.5	0.98
12	11-04-2023	63	22	7.9	11.1	0.87
13	17-04-2023	57	20	6.8	10.9	0.69
14	18-04-2023	52	18	8.5	11.9	0.82
15	24-04-2023	58	20	<5	12.4	0.59
16	25-04-2023	65	28	6.9	10.1	0.74
17	03-05-2023	48	17	9.5	13.3	0.69
18	04-05-2023	52	18	9.8	13.7	0.95
19	10-05-2023	74	31	8.1	11.3	1.06
20	11-05-2023	67	24	7.6	10.6	1.11
21	17-05-2023	57	20	8.7	12.2	0.98
22	18-05-2023	49	17	6.9	10.1	0.92
23	24-05-2023	51	18	7.6	10.6	0.60
24	25-05-2023	63	22	9.1	12.7	0.84

Mina Ka Nangal						AAQ-2
S. No.	Date	PM10 $\left(\mathrm{\mu g} / \mathrm{m}^{3}\right)$	PM2.5 ($\mu \mathrm{g} / \mathrm{m}^{3}$)	$\mathrm{SO}_{2}\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$	$\mathrm{NO}_{\mathrm{x}}\left(\mathrm{\mu g} / \mathrm{m}^{3}\right)$	$\mathrm{CO}\left(\mathrm{mg} / \mathrm{m}^{3}\right)$
1	03-03-2023	50	18	8.9	12.5	-0.84
2	04-03-2023	61	21	9.0	12.6	0.69

Mina Ka Nangal						AAQ-2
S. No.	Date	PM $M_{10}\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$	PM 2.5 ($\mu \mathrm{g} / \mathrm{m}^{3}$)	$\mathrm{SO}_{2}\left(\mathrm{fg} / \mathrm{m}^{3}\right)$	$\mathrm{NO}_{\times}\left(\mathrm{\mu g} / \mathrm{m}^{3}\right)$	CO(mg/m ${ }^{3}$)
3	10-03-2023	48	17	7.6	10.6	0.59
4	11-03-2023	63	22	6.8	10.1	0.62
5	17-03-2023	52	18	7.1	11.8	0.59
6	18-03-2023	48	17	8.3	12.1	0.94
7	24-03-2023	60	21	6.9	10.1	0.91
8	25-03-2023	54	19	7.4	10.4	0.99
9	03-04-2023	59	21	7.9	11.1	0.85
10	04-04-2023	63	22	8.6	12.0	0.91
11	10-04-2023	44	15	<5	13.1	1.06
12	11-04-2023	54	19	7.6	10.6	1.09
13	17-04-2023	69	24	8.1	11.3	1.02
14	18-04-2023	49	17	6.9	10.6	0.88
15	24-04-2023	65	23	8.5	11.9	0.74
16	25-04-2023	58	20	6.9	10.1	0.69
17	03-05-2023	50	17	<5	12.2	0.62
18	04-05-2023	67	24	8.5	11.9	0.59
19	10-05-2023	63	22	7.5	10.5	0.81
20	11-05-2023	55	19	8.6	12.0	0.69
21	17-05-2023	49	17	10.1	14.1	0.64
22	18-05-2023	62	22	6.9	10.1	0.58
23	24-05-2023	53	19	7.6	10.6	0.95
24	25-05-2023	48	17	9.1	12.7	0.84

Golwa						AAQ-3
S. No.	Date	PM ${ }_{10}\left(\mathrm{Hg} / \mathrm{m}^{3}\right)$		$\mathrm{SO}_{2}\left(\boldsymbol{\mu g} / \mathrm{m}^{3}\right)$	NOx ${ }_{\left(1 \mu \mathrm{H} / \mathrm{m}^{3} \text {) }\right.}$	$\mathrm{CO}\left(\mathrm{mg} / \mathrm{m}^{3}\right)$
1	07-03-2023	50	17	7.6	10.6	0.82
2	08-03-2023	62	22	8.1	11.3	0.63
3	14-03-2023	54	19	9.6	13.4	0.59
4	15-03-2023	70	24	10.1	14.1	0.46
5	21-03-2023	51	18	8.5	11.9	0.61
6	22-03-2023	59	21	<5	12.3	0.59
7	28-03-2023	65	23	9.6	13.4	0.92
8	29-03-2023	71	25	7.6	10.6	0.84
9	07-04-2023	69	24	8.6	12.0	0.69
10	08-04-2023	61	21	7.6	10.6	0.85
11	14-04-2023	54	19	7.6	10.6	0.94
12	15-04-2023	62	22	8.6	12.0	0.99
13	21-04-2023	64	22	9.8	13.7	1.06
14	22-04-2023	60	21	<5	11.8	1.01
15	28-04-2023	70	24	9.5	13.3	1.11
16	29-04-2023	52	18	10.6	16.0	0.98
17	07-05-2023	58	20	9.4	13.2	0.92
18	08-05-2023	47	16	8.9	12.5	0.59
19	14-05-2023	67	24	10.1	15.0	0.68
20	15-05-2023	42	17	9.5	13.3	0.74
21	21-05-2023	63	22	8.3	11.6	0.86
22	24-05-2023	58	20	7.2	10.1	0.81
23	28-05-2023	49	17	7.9	11.1	0.79
24	29-05-2023	60	21	8.1	11.3	0.62

Donkhera Ki Dhani						AAO-4
S. No.	Date	PM 10 ($\mu \mathrm{g} / \mathrm{m}^{3}$)	PM $2.5\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$	$\mathrm{SO}_{3}\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$	$\left.\mathrm{NO}_{\times(\mu \mathrm{L}} / \mathrm{m}^{3}\right)$	CO (mg/m ${ }^{3}$
1	03-03-2023	49	17	8.3	12.2	0.68
2	04-03-2023	62	22	6.5	11.1	0.89
3	10-03-2023	57	20	7.8	10.9	0.95
4	11-03-2023	49	17	8.4	11.8	0.99
5	17-03-2023	63	22	7.8	10.9	0.76
6	18-03-2023	58	20	9.5	13.3	0.69
7	24-03-2023	51	18	6.4	10.1	0.52
8	25-03-2023	62	22	7.8	10.9	0.87
9	03-04-2023	59	21	8.4	11.8	0.69
10	04-04-2023	49	17	7.9	11.1	0.85
11	10-04-2023	67	23	6.8	10.1	1.08
12	11-04-2023	74	32	8.6	12.0	1.11
13	17-04-2023	58	20	9.9	13.9	0.64
14	18-04-2023	69	24	<5	10.8	0.85
15	24-04-2023	52	18	8.4	11.8	0.69
16	25-04-2023	64	22	7.6	10.6	0.94
17	03-05-2023	75	34	6.9	10.1	0.58
18	04-05-2023	64	22	8.7	12.2	0.85
19	10-05-2023	52	18	6.9	10.1	0.69
20	11-05-2023	49	17	8.1	11.3	0.99
21	17-05-2023	61	21	7.8	10.9	1.06
22	18-05-2023	72	31	9.9	13.9	0.65
23	24-05-2023	59	21	11.6	15.2	0.72
24	25-05-2023	48	17	7.9	11.1	0.99

Bhedanti						AAQ-5
S. No.	Date	PM $\mathrm{IO}_{10}\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$	PM 2.5 ($\mathrm{\mu g} / \mathrm{m}^{3}$)	$\mathrm{SO}_{2}\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$	$\mathrm{NO}_{\mathrm{x}}\left(\mathrm{\mu g} / \mathrm{m}^{3}\right)$	$\mathrm{CO}\left(\mathrm{mg} / \mathrm{m}^{3}\right)$
1	05-03-2023	58	20	9.5	13.3	0.69
2	06-03-2023	47	16	7.6	10.6	0.74
3	12-03-2023	65	23	8.1	11.3	0.92
4	13-03-2023	81	28	6.9	10.1	0.82
5	19-03-2023	56	20	9.2	12.6	0.69
6	20-03-2023	47	16	7.9	11.1	0.74
7	26-03-2023	56	20	8.5	11.9	1.09
8	27-03-2023	71	25	10.1	14.1	1.02
9	05-04-2023	69	24	<5	10.8	0.98
10	06-04-2023	64	22	9.3	13.0	0.82
11	12-04-2023	71	25	8.4	11.8	0.98
12	13-04-2023	63	22	7.6	10.6	0.84
13	19-04-2023	48	17	8.1	11.3	1.06
14	20-04-2023	59	21	9.3	13.0	1.12
15	26-04-2023	62	22	7.5	10.5	1.08
16	27-04-2023	71	25	9.4	13.2	1.01
17	05-05-2023	63	22	10.1	14.1	0.92
18	06-05-2023	53	18	<5	11.5	0.98
19	12-05-2023	65	23	7.8	10.9	1.09
20	13-05-2023	50	17	8.4	11.8	1.05
21	19-05-2023	57	20	7.2	10.1	0.98

Bhedanti						AAQ-5
S. No.	Date	PM 10 ($\mu \mathrm{g} / \mathrm{m}^{3}$)	PM 2.5 ($\mu \mathrm{g} / \mathrm{m}^{3}$)	$\mathrm{SO}_{2}\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$	$\mathrm{NO}_{\mathrm{x}}\left(\mu \mathrm{m} / \mathrm{m}^{3}\right)$	$\mathrm{CO}\left(\mathrm{mg} / \mathrm{m}^{3}\right)$
22	20-05-2023	46	16	9.1	12.7	0.84
23	26-05-2023	57	20	7.3	10.2	0.69
24	27-05-2023	63	22	10.1	14.1	0.74

Dilpura						AAQ-6
S. No.	Date	PM 10 ($\mu \mathrm{g} / \mathrm{m}^{3}$)	PM 2.5 ($\mu \mathrm{g} / \mathrm{m}^{3}$)	$\mathrm{SO}_{2}\left(\boldsymbol{\mu g} / \mathrm{m}^{3}\right)$	$\mathrm{NO}_{\times(}\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	CO (mg/m ${ }^{3}$)
1	05-03-2023	49	17	7.9	11.1	0.64
2	06-03-2023	61	21	9.2	12.9	0.79
3	12-03-2023	54	19	7.9	10.2	0.66
4	13-03-2023	59	21	6.7	11.6	0.79
5	19-03-2023	49	17	7.8	10.9	0.56
6	20-03-2023	62	22	9.1	12.7	0.51
7	26-03-2023	71	25	10.5	14.1	0.69
8	27-03-2023	62	22	7.6	10.6	0.98
9	05-04-2023	58	20	8.5	11.9	0.89
10	06-04-2023	49	17	6.9	10.1	0.41
11	12-04-2023	78	27	9.1	12.7	0.84
12	13-04-2023	69	24	11.3	15.8	0.49
13	19-04-2023	49	17	<5	12.9	0.57
14	20-04-2023	62	22	9.8	13.7	0.64
15	26-04-2023	71	25	6.9	10.1	0.79
16	27-04-2023	69	24	5.8	11.6	0.58
17	05-05-2023	72	25	10.6	14.6	0.69
18	06-05-2023	69	24	9.5	13.3	0.89
19	12-05-2023	53	19	<5	11.9	0.71
20	13-05-2023	54	19	9.6	13.4	0.86
21	19-05-2023	49	17	7.8	10.9	0.91
22	20-05-2023	68	24	6.9	10.1	0.80
23	26-05-2023	76	27	9.1	12.7	0.69
24	27-05-2023	63	22	10.2	14.3	0.72

Rampura						AAQ* 7
S. No.	Date	PM ${ }_{10}$ ($\mathrm{Hg} / \mathrm{m}^{3}$)	PM 2.5 ($\mathrm{Hg} / \mathrm{m}^{3}$)	$\mathrm{SO}_{2}\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$	$\mathrm{NO}_{\times}\left(\mathrm{Hg} / \mathrm{m}^{3}\right)$	CO (mg/m ${ }^{3}$)
1	07-03-2023	57	20	7.9	11.1	0.64
2	08-03-2023	68	24	9.2	12.9	0.79
3	14-03-2023	47	16	7.9	10.2	0.66
4	15-03-2023	53	18	6.7	11.6	0.79
5	21-03-2023	46	16	7.8	10.9	0.56
6	22-03-2023	64	22	9.1	12.7	0.51
7	28-03-2023	76	27	10.1	13.1	0.69
8	29-03-2023	63	22	7.6	10.6	0.98
9	07-04-2023	53	18	8.5	11.9	0.89
10	08-04-2023	47	16	6.9	10.1	0.41
11	14-04-2023	65	23	9.1	12.7	0.84
12	15-04-2023	55	21	11.3	15.8	0.49
13	21-04-2023	47	16	<5	12.9	0.57
14	22-04-2023	56	20	9.8	13.7	0.64
15	28-04-2023	60	21	6.9	10.1	0.79
16	29-04-2023	65	23	5.8	11.6	0.58

Rampura						AAQ-7
S. No.	Date	PM ${ }_{10}\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$	PM2.5 ($\mu \mathrm{g} / \mathrm{m}^{3}$)	$\mathrm{SO}_{2}\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$	NOX ${ }_{(1 \mu g / m}{ }^{3}$)	$\mathrm{CO}\left(\mathrm{mg} / \mathrm{m}^{3}\right)$
17	07-05-2023	52	18	8.6	12.0	0.69
18	08-05-2023	69	24	9.5	13.3	0.89
19	14-05-2023	53	19	<5	11.9	0.71
20	15-05-2023	51	18	9.6	13.4	0.86
21	21-05-2023	50	17	7.8	10.9	0.91
22	24-05-2023	67	24	6.9	10.1	0.80
23	28-05-2023	52	18	9.1	12.7	0.69
24	29-05-2023	63	22	10.2	13.2	0.72
Maximum		75.8	26.5	11.3	15.8	0.98
Minimum		45.8	16.0	5.8	10.1	0.41
Mean		57.4	20.2	8.5	12.1	0.71
Percentile 98		72.7	25.5	10.8	14.9	0.95
Standard Deviation		8.4	2.9	1.4	1.4	0.15

Mineralogical Composition of PM10

Location Name	Date	$\begin{gathered} \text { PM } 10 \\ \left(\mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{aligned} & \text { Free Silica } \\ & (\%) \end{aligned}$	$\begin{gathered} \mathrm{Ca} \\ \left(\mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$	Mg $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Ni $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	$\begin{gathered} P b \\ \left(\mu g / m^{3}\right) \end{gathered}$
Near Project Site	25-03-2023	82	4.1	1.23	0.82	<0.5	<0.05
Mina Ka Nangal	11-03-2023	63	3.2	0.98	0.61	<0.5	<0.05
Golwa	08-05-2023	47	2.4	0.69	0.49	<0.5	<0.05
Donkhera Ki Dhani	10-03-2023	57	2.9	0.87	0.62	<0.5	<0.05
Bhedanti	20-04-2023	59	3.2	0.91	0.55	<0.5	<0.05
Dilpura	05-04-2023	58	2.8	0.88	0.69	<0.5	<0.05
Rampura	29-04-2023	65	3.4	1.13	0.73	<0.5	<0.05

Ambient Noise Quality

Sampling Locations

S. No.	Location Name	Location Code	Distance (km)	Dlrection	Latitude	Longitude
1	Near Project Site	$\mathrm{N}-1$	0.3	NNE	$27^{\circ} 50^{\prime} 27.05^{\prime \prime} \mathrm{N}$	$76^{\circ} 2^{\prime} 40.97^{\prime \prime} \mathrm{E}$
2	Mina Ka Nangal	$\mathrm{N}-2$	1.4	SW	$27^{\circ} 49^{\prime} 46.32^{\prime \prime} \mathrm{N}$	$76^{\circ} 2^{\prime} 4.26^{\prime \prime} \mathrm{E}$
3	Golwa	$\mathrm{N}-3$	1.7	WNW	$27^{\circ} 50^{\prime} 38.52^{\prime \prime} \mathrm{N}$	$76^{\circ} 1^{\prime} 43.77^{\prime \prime} \mathrm{E}$
4	Donkhera Ki Dhani	$\mathrm{N}-4$	1.5	NNE	$27^{\circ} 51^{\prime} 23.13^{\prime \prime} \mathrm{N}$	$76^{\circ} 3^{\prime} 10.25^{\prime \prime} \mathrm{E}$
5	Bhedanti	$\mathrm{N}-5$	2.3	ENE	$27^{\circ} 50^{\prime} 58.99^{\prime \prime} \mathrm{N}$	$76^{\circ} 4^{\prime} 18.83^{\prime \prime} \mathrm{E}$
6	Dilpura	$\mathrm{N}-6$	1.3	SE	$27^{\circ} 50^{\prime} 2.72^{\prime \prime} \mathrm{N}$	$76^{\circ} 33^{\prime} 27.36^{\prime \prime} \mathrm{E}$
7	Rampura	$\mathrm{N}-7$	3	SSE	$27^{\circ} 48^{\prime} 57.00^{\prime \prime} \mathrm{N}$	$76^{\circ} 2^{\prime} 46.06^{\prime \prime} \mathrm{E}$

Ambient Noise Results

Noise Location	Zone	Code	Day				Night			
			Std.	L. Max	L Min	L eq	Std.	L Max	L. Min	1 eq
Near Project Site		AN-1	55	54.9	38.6	49.9	45	40.2	29.5	35.6
Mina Ka Nangal		AN-2	55	56.4	39.5	50.4	45	38.2	29.3	34.3
Golwa		AN-3	55	55.0	39.6	49.6	45	38.9	29.9	35.0
Donkhera Ki Dhani		AN-4	55	54.2	40.6	49.0	45	37.6	30.0	34.5
Bhedanti		AN-5	55	55.9	39.5	50.3	45	38.6	29.9	34.8
Dilpura		AN-6	55	53.9	41.6	49.6	45	39.5	30.1	35.2
Rampura		AN-7	55	54.5	39.6	49.7	45	40.1	30.2	36.2

Water Quality

Ground Water Sampling Locations

Location Name	2ocation Code	Distance (km)	Direction	Co-Ordinates	
Near Project Site	GW1	0.1		Longitude	
Golwa	GW2	1.4	NNE	$27^{\circ} 50^{\prime} 26.58^{\prime \prime} \mathrm{N}$	$76^{\circ} 2^{\prime} 40.47^{\prime \prime} \mathrm{E}$
Donkhera	GW3	1.1	WNW	$27^{\circ} 50^{\prime} 38.60^{\prime \prime} \mathrm{N}$	$76^{\circ} 1^{\circ} 51.71^{\prime \prime} \mathrm{E}$
Bhedanti	GW4	2.2	NE	$27^{\circ} 51^{\prime} 6.00^{\prime \prime} \mathrm{N}$	$76^{\circ} 3^{\prime} 21.50^{\prime \prime} \mathrm{E}$
Dilpura	GW5	1.3	ENE	$27^{\circ} 50^{\prime} 56.32^{\prime \prime} \mathrm{N}$	$76^{\circ} 4^{\prime} 16.59^{\prime \prime} \mathrm{E}$

Ground Water Results

Source			Handpump / Borewell					15 10500:2012	
$\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$	Parameters	Unit	GW-1	GW-2	GW-3	GW-4	GW-5	AL	PL
1	pH	--	7.20	7.60	7.20	7.70	7.50	6.5-8.5	NR
2	Conductivity	$\underline{L S / c m}$	1612	1298	1189	1342	2248	\$	\$
3	Total Dissolve Solids	mg/l	1017	797	723	817	1361	500	2000
4	Alkalinity as CaCO_{3}	mg / l	328.4	160.0	237.1	245.0	360.0	200	600
5	Total Hardness as CaCO_{3}	$\mathrm{mg} / 1$	395.3	295.7	360.7	412.7	472.8	300	600
6	Calcium as Ca	mg/l	86.3	62.4	68.4	74.3	89.3	75	200
7	Magnesium as Mg	mg / l	43.7	34.0	46.2	55.2	60.8	30	100
8	Sodium	mg / l	176	134	89	107	245	\$	\$
9	Potassium	mg / l	4	3	5	4	21	\$	\$
10	Bicarbonate	mg / l	328.4	245.0	237.1	245.0	360.0	\$	\$
11	Chloride as Cl	mg / l	304.9	244.0	209.3	267.0	451.0	250	1000
12	Sulphate as SO_{4}	mg / l	60.0	65.0	58.0	54.0	120.0	200	400
13	Nitrate as NO_{3}	mg / l	2.1	1.9	1.0	2.1	3.1	45	NR
14	Total Nitrogen as N	mg / l	<0.5	<0.5	<0.5	<0.5	<0.5	\$	\$
15	Fluoride as F	mg / l	1.03	1.19	1.14	1.01	1.37	1.00	1.50
16	Total Phosphorus as P	mg / l	<0.03	<0.03	<0.03	<0.03	<0.03	\$	\$
17	Phenolic compound as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	mg / l	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	0.002
18	Cyanide	mg / l	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	NR
19	Aluminium	mg / l	<0.03	<0.03	<0.03	<0.03	<0.03	0.03	0.2
20	Arsenic	mg / l	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	0.05
21	Cadmium	mg / I	<0.003	<0.003	<0.003	<0.003	<0.003	0.003	NR
22	Chromium as Cr^{+6}	mg / l	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	NR
-23	Iron	mg / l	0.31	0.11	0.21	0.1	0.14	0.3	NR
25	Lead	mg / l	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	1.5
26	Manganese	$\mathrm{mg} / 1$	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	NR
27	Mercury	mg / l	<0.001	<0.001	<0.03	<0.03	<0.03	0.1	0.3
28	Zlnc	$\mathrm{mg} / 1$	1.8	2.1	1.7	< 1.8	<0.001	0.001	NR

[^2]Surface Water Sampling Locations

S. No.	Location Name	Location Code	Latitude	Longitude
1	Pond Near Project Site	SW1	$27^{\circ} 50^{\prime} 31.29^{\prime \prime} \mathrm{N}$	$76^{\circ} 2^{\prime} 55.13^{\prime \prime} \mathrm{E}$
2	Donkhera Ki Dhani Near Pond	SW2	$27^{\circ} 51^{\prime} 26.90^{\prime \prime} \mathrm{N}$	$76^{\circ} 3^{\prime} 10.15^{\prime \prime} \mathrm{E}$
3	Bhedanti Near Pond	SW3	$27^{\circ} 50^{\prime} 57.54^{\prime \prime} \mathrm{N}$	$76^{\circ} 44^{\prime} 32.83^{\prime \prime} \mathrm{E}$
4	Rampur Near Pond	SW4	$27^{\circ} 48^{\prime} 51.84^{\prime \prime} \mathrm{N}$	$76^{\circ} 2^{\prime} 19.05^{\prime \prime} \mathrm{E}$

Surface Water Results

S.	Parameters	Unit	SW-1	SW-2	SW-3	SW-4	CPCB Standards*		
No.							IS	2296	Class
1	Turbidity	NTU	17.9	19.5	18.5	17.5		\$	\$
2	pH	--	7.54	8.14	7.36	8.11	6.5	-8.5	Class A
3	Temperature	${ }^{\circ} \mathrm{C}$	25.1	25.6	25.9	25.8		\$	\$
4	Total Suspended Solids	mg / l	39	33	25	31		\$	\$
5	Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	632	599	548	521		\$	\$
6	Total Dissolve Solids	mg / l	457	484	399	418		\$	\$
7	Alkalinity as CaCO_{3}	mg/l	168.9	176.9	181.1	183.6		\$	\$
8	Total Hardness as CaCO_{3}	mg/l	179.2	168.7	180.7	180.0		\$	\$
9	Calcium as Ca	mg / l	42.3	39.9	41.9	45.9		\$	\$
10	Magnesium as Mg	mg / l	17.9	16.8	18.5	15.9		\$	\$
11	Sodium	mg / l	30	38	35	33		\$	\$
12	Potassium	mg / l	4	5	4	5		\$	\$
13	Bicarbonate	mg / l	168.9	176.9	181.1	183.6		\$	\$
14	Chloride as Cl	mg/l	48.5	46.9	42.6	44.5		\$	\$
15	Sulphate as SO_{4}	mg / l	30.3	32.4	36.8	33.9		\$	\$
16	Nitrate as NO_{3}	mg / l	9.9	10.2	11.9	10.1		\$	\$
17	Total Carbon	mg / l	<1	<1	<1	<1		\$	\$
18	Fluoride as F	mg / l	0.98	0.87	0.71	0.84		1.5	\$
19	Phenolic compound as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	mg/l	<0.001	<0.001	<0.001	<0.001		. 005	\$
20	Nickel	mg / l	<0.03	<0.03	<0.03	<0.03		\$	\$
21	Arsenic	mg / l	<0.020	<0.020	<0.020	<0.020		0.2	\$
22	Cadmium	$\mathrm{mg} / 1$	<0.01	<0.01	<0.01	<0.01		\$	\$
23	Chromium as Cr^{+6}	mg / l	<0.05	<0.05	<0.05	<0.05		\$	\$
24	Iron	mg / l	0.54	0.49	0.69	0.68		\$	\$
25	Lead	mg / l	<0.1	<0.1	<0.1	<0.1		\$	\$
26	Zinc	mg / l	2.8	3.3	4.1	0.51		\$	\$
27	Dissolve Oxygen	$\mathrm{mg} / 1$	6.9	6.2	7.1	6.8		5	Class A
28	COD	mg/l	9.6	10.1	9.2	8.9		\$	\$
29	BOD, $27^{\circ} \mathrm{C} 3$ days	mg/l	<5	<5	<5	<5		3	Below E**
30	Total Coliforms	MPN / 100ml	0.3×10^{3}	0.2×10^{3}	$\begin{gathered} \hline 0.1 \times \\ 10^{3} \end{gathered}$	0.2×10^{3}		500	Class B

*IS 2296 class B designated for Inland surface water $\&$ class as per CPCB Water Qually Criteria, ** Not meeting to any class defined by CPCB.

Soil Quality

Soil Sampling Locations

S. No.	Location Name	Location Code	Latitude	Longitude
1	Near Project Site	$\mathrm{S}-1$	$27^{\circ} 50^{\prime} 25.51^{\prime \prime} \mathrm{N}$	$76^{\circ} 2^{\prime} 45.78^{\prime \prime} \mathrm{E}$
2	Golwa	$\mathrm{S}-2$	$27^{\circ} 50^{\prime} 39.70^{\prime \prime} \mathrm{N}$	$76^{\circ} 1^{\prime} 49.56^{\prime \prime} \mathrm{E}$
3	Donkhera	$\mathrm{S}-3$	$27^{\circ} 51^{\prime} 5.81^{\prime \prime} \mathrm{N}$	$76^{\circ} 3^{\prime} 19.11^{\prime \prime} \mathrm{E}$
4	Bhedanti	$\mathrm{S}-4$	$27^{\circ} 50^{\prime} 56.16^{\prime \prime} \mathrm{N}$	$76^{\circ} 4^{\prime} 14.75^{\prime \prime} \mathrm{E}$
$\mathbf{5}$	Dalpatpura	$\mathrm{S}-5$	$27^{\circ} 49^{\circ} 50.03^{\prime \prime} \mathrm{N}$	$76^{\circ} 3^{\prime} 14.34^{\prime \prime} \mathrm{E}$

Soil Quality Results

Parameters	Unit	SQ-1	SQ-2	SQ-3	SQ-4	SQ-5
pH	----	7.8	6.8	7.1	7.5	7.3
Electrical Conductivity	$\mu \mathrm{mhos} / \mathrm{cm}$	279	2.57	284	314	324
Moisture	\%	13.7	22	16.8	14.3	18.2
Soil texture	USDA 5ystem	Loam	Sandy Clay Loom	Loam	Loam	Sandy Clay Loam
Sand	\%	45	52	35	43	52
Silt	\%	37	22	38	36	20
Clay	\%	18	26	27	21	28
Infiltration Rate	$\mathrm{cm} / \mathrm{hr}$	1.21	1.25	1.31	1.27	1.21
Bulk density	$\mathrm{gm} / \mathrm{cm}^{3}$	1.55	1.55	1.50	1.54	1.51
Porosity	\%	43.2	44.0	43.6	44.0	44.2
Iron (DTPA Extractable)	$\mathrm{mg} / \mathrm{kg}$	1.57	1.87	2.34	2.18	1.85
Zinc (DTPA Extractable)	$\mathrm{mg} / \mathrm{kg}$	2.31	2.31	2.64	2.15	2.01
Copper (DTPA Extractable)	$\mathrm{mg} / \mathrm{kg}$	3.51	3.14	3.51	3.63	2.94
Sodium as Na	$\mathrm{mg} / \mathrm{kg}$	138	129	149	138	154
Calcium as Ca	$\mathrm{mg} / \mathrm{kg}$	1103	1059	1231	1029	1204
Magnesium as Mg	$\mathrm{mg} / \mathrm{kg}$	532	604	669	569	681
SAR Value	USDA System	6.83	6.33	6.84	6.90	7.09
Nitrogen as N	kg/ha as N	313	259	281	287	298
Phosphorus	kg/ha as P	15	16	16	18	22
Potassium as K	kg/ha as K	72	81	71	75	89
Organic Carbon	\%	0.59	0.77	0.65	0.73	0.76
Organic matter	\%	1.02	1.05	1.08	0.99	1.12

ANNEXURES - 12.1 QCI NABET CERTIFICATE (ENVIRONMENT CONSULTANT)

> National Accreditation Board for Education and Training

Certificate of Accreditation

Parivesh Environmental Engineering Services
 5/916, Viram Khand, Gomti Nagar, Lucknow, Uttar Pradesh-226010

The organization is accredited as Category-A under the QCI-NABET Scheme for Accreditation of EIA Consultant Organizations, Version 3: for preparing EIA-EMP reports in the following Sectors -

Note: Names of approved ElA CoordInators and Functional Area Experts are mentioned in IAAC minutes dated January 4, 2022 and Supplementary assessment minutes dated April 22, 2022 posted on QCI-NABET website.

The Accreditation shall remain in force subject to continued compliance to the terms and conditions mentioned in QCI-NABET's letter of accreditation bearing no. QCI/NABET/ENV/ACO/22/2295 dated April 1, 2022. The accreditation needs to be renewed before the expiry date by Parivesh Environmental Engineering Services, Lucknow following due process of assessment.

Sr. Director, NABET
Dated: May 12, 2022

Certificate No. NABET/EIA/2124/LA 0092(Rev.01)

Valid up to November 11, 2024

For the updated List of Accredited ELA Consuhtont Organizations with approved Sectors please refer to QCI-NABET websin

ANNEXURES - $\mathbf{1 2 . 2}$ MoEF\&CC
 CERTIFICATE (LABORATORY)

भारत
 राजपन्न The Sazette of India

सी.जी.-डी.एल.-अ.-02062021-227331
CG-DL-E-02062021-227331

असाधारण
EXTRAORDINARY
भाग II-खण्ड 3-उप-खण्ड (ii)
PART 11—Section 3-Sub-section (ii)
प्राधिकार से प्रकाशित
PUBLISHED BY AUTHORITY
सं. 1977]
नई दिल्ली, बुधवार, जून $2,2021 / ज ् य े ष ् ठ ~ 12, ~ 1943 ~$
No. 1977]
NEW DELHI, WEDNESDAY, JUNE 2, 2021/JYAISHTHA 12, 1943

पर्यावरण, वन और जलवायु परिवर्तन मंत्रालय
अधिसूचना
नई दिल्ली, 1 जून, 2021
का.आ. 2131(अ).-केंद्रीय सरकार, पर्यावरण (संरक्षण) नियम, 1986, के नियम 10 के साथ पठित पर्यावरण (संरक्षण) अधिनियम, 1986 (1986 का 29) की धारा 12 की उप-धारा (1) के खंड (ख) और धारा 13, द्वारा प्रदत्त शक्तियों का प्रयोग करते हुए तत्कालीनs पर्यावरण और वन मंत्रालय का.आ 1174 (अ), तारीख 18, जुलाई, 2007, द्वारा भारत सरकार की अधिसूचना में निम्नलिखित और संशोधन करती है अर्थात् : -

उक्त अधिसूचना की सारणी में -
(i) क्रम संख्या $23,36,40,44,46,48,50,51,57,67,68,70,74,99,101,106,112,119,127$ और 138 और उससे संबंधित प्रविष्टियों के स्थान पर, क्रमशः निम्नलिखित क्रम संख्या और प्रविष्टियां रखी जाएंगी, अर्थत्:-

सारणी

क्र.सं.	प्रयोगशाला का नाम	सरकारी विश्नेषक के नाम	निम्नलिखित तारीख तक वैध मान्यता
(1)	(2)	(3)	(4)
"23	मैसर्स विट्रो लैब्स, \# 2-2-647/ ए/3,3	(i) शी चौ. नरसिम्हा राव	01 जून, 2021

127	मैसर्स वर्धन एनरोलैब प्लॉट नंबर $82 /$ ए, सेक्टर -5, एचएसआईआईडीसी, आईएमटी, मानेसर, गुडगांब -122051, हरियाणा	(i) श्री एस. शर्मा (ii) श्री गौरे प्रताप सिंह (iii) डों. शिव प्रकाश सिंह	01 जून, 2021
से			
138	मैसर्स फूड हाइजीन एंड हेल्थ प्रयोगशाला, को सर्वे नंबर $126 / 10$, प्लॉट नं. -1, हडपसर इंडस्ट्रियल एस्टेट, हडपसर, ताल - हवेली, जिला - पुणे -1013, महाराष्ट्र	(i) श्री रोहन देशपांडे (ii) सुश्री सीमा सतीश बाकडे (iii) सुश्री सुषमा महेश	01 जून, 2021
से			

(iii) क्रम संख्या 201 और उससे संबंधित प्रविष्टियों के पश्वात, निम्नलिखित क्रम संख्या और प्रविष्टियां रखी जाएंगी, अर्थात:-

क्र.सं.	प्रयोगशाला का नाम	सरकारी विश्लेषक के नाम	निम्नलिखित तारीख्व तक वैध मान्यता
(1)	(2)	(3)	(4)
"202	209 मेसर्स अज़ीस बैब्स प्लॉट नं -एम-43 सेक्टर -3 , पीठमपुर जिला धार -454774 , मध्य प्रदेश	(i) श्री रविशंकर सहाय (ii) श्री मनोज बामनीया (iii) सुश्री निक्किता भंड	01 जून , 2021 से 28 फरवरी 2023
203	मेसर्स क्रिएटिव एनवायरो सर्विसेज, 42, दूर संचार नगर, सेवॉय कॉम्प्लेक्स अरेरा कॉलोनी के निकट भोपाल -462039, मध्य प्रदेश	(i) डॉ. जी.के. जैस (ii) श्री संतोप खंटल (iii) सुश्री अमृता मिश्रा	$\begin{aligned} & 01 \text { जून , } 2021 \\ & \text { से } \\ & \text { 11अक्टूवर, } 2021 \end{aligned}$
204	मेसर्स एशिया एनवायरो लैब, एच1-837, प्रदूपण बोर्ड के पास, चरण- II, रिको औद्योगिक क्षेत्र, भिवाड़ी, जिला- अलवर- 301019, राजस्थान	(i) शी विक्रम सिंह (ii) श्री रोहताश	$\begin{aligned} & 01 \text { जून , } 2021 \\ & \text { से } \\ & 23 \text { दिसंबर, } 2023 \end{aligned}$
205	मेसर्स क्वालिटी रिसर्च और एनालिटिकल लैब्स. 341 , ग्राउंड फ्लोर, कार्यात्मक औद्योगिक क्षेत्र, पटपड़गंज, नई दिल्ली -110092	(i) डॉ. गौरव माहेश्वरी (ii) मिस अनीता सिंह	$\begin{aligned} & 01 \text { जून , } 2021 \\ & \text { 21अक्ट्बर, } \\ & \text { से } \\ & 2023 \end{aligned}$
206	मेसर्स दिल्ली एनालिटिकल रिसर्च प्रयोगशाला, प्लॉट नंबर 2 , टिम्बर ब्लॉक, सिलमिल औद्योगिक क्षेत्र, दिल्ली-110095	(i) डा. प्रियंका मिश्रा (ii) श्री विनय गुप्ता (iii) श्री नाओ ज्योति कुमार गुत्त	$\begin{gathered} 01 \text { जून , } 2021 \\ \text { से } \\ 12 \text { नबंबर }, \\ 2021 \end{gathered}$
207	मैसर्स वर्धन एनरोलैब, प्लॉट नंबर - 24और 25 , नारायण विहार, बीब्लॉक, मानसरोवर, जयपुर- 302035, राजस्थान	(i) श्री राजिंदर सिंह यादव (ii) श्री राज कुमार यादव (iii) श्री नेमी चंद चौधरी	$\begin{aligned} & 01 \text { जून , } 2021 \\ & \text { से } \\ & 6 \text { जनवरी, } 2023 \end{aligned}$
208	मैसर्स पर्यावरण परीक्षण लैब, दुकान नंबर 1 , देना बैंक के पास, बास रोड, रामनगर, ददरह्हेरा, रेवाड़ी-123106, हररियाणा,	(i) श्री करतार सिंह (ii) श्री हेमराज	$\begin{gathered} 01 \text { जून , } 2021 \\ \text { से } \\ 23 \text { मार्च, } 2024 \end{gathered}$
209	मैसर्स अल्टीमेट एनवायरोलाइटिकल समाधान, एचड्डीडी 272, चरण-3, जेपी	(i) श्री अनुराग के. श्रीवास्तव	$\begin{array}{r} 01 \text { जून, } 2021 \\ \text { से } \end{array}$

ANNEXURES - 1 KHASRA AND

JAMABANDI DETAILS

$$
27 \operatorname{con}^{2} 6236010226
$$

 6×1 रोखाी दोयम 8m0 रोसली अववल 6-13 रेगती अन्वया

3-8 रोस ली कर्यम
स- 0 गेरनली वेयक 8-(रोंखी दोर्य

 4. 15 रोगली दोसद
6.18 रोमली दोरास

 30 से ली सी वजध रोमली अच्वल 0.4 रांगक्ती एँचल

[^3]前品
183 चाल
委委

 4．ब．कदीभ
 3
3
3
3
3
管
学

[^4]

[^5]
\[

$$
\begin{aligned}
& \text { जयद } 3 \text { ती } \\
& \text { तामीन }
\end{aligned}
$$
\]

$\frac{\text { 築 }}{\text { 复 }}$

ANNEXURES - 2
 CA CERTIFICATE FOR PROJECT COST

TO WHOM SO EVER IT MAY CONCERN

This is to compled that on the basis of records and intormation 盽 explonation esives by the management ol M/s XANDY MNNES \& NNERALS having through Ashwart Khurana R/o GHw 18 , Celebrity Home, Palam Vhar, Gurgaon, Haryana the approximete propect cost devefoped by the firm on the land masuming 4.80 hectares at village Dhonkera vibe lease dated 7.4 .2014 are mentioned below:

Sr. No.	Particulars	Amount (MA Crorel
1	Land Cost (Lease Development Cost)	1.00
2	Construction Cost	4.10
3	Plant and Machinery	2.50
4	Other fixed Assets	1.25
	Total	10.85

This certifitte has been made on the basls of imformation given was.

Fo: Mahesh Inin A Associntes

ANNEXURES - 3 PREVIOUS EMP AND CSR

TO WHOM SO EVER IT MAY CONCERN

This is to certify that the following is the detail of expenditure towards corporate social responsibility (CSR) activities and environment management fund (EMP) by M/S X_{i} ndy Mines \& Minerals, Khasra No-109 Min, Xandy Mines And Minerals, Neem Ka Thana Road, Village Dhonkhera, Mahendragart, Maryana, 123023.

Sr. No.	CSR Activities	Amount (in Lacs)	
1	Heath check up camps		1.50
2	Surveilance Programme of the workers	1.25	
3	Assistance to local schools ie water cooler, fan etc.	1.85	
4	Sanitations and drinking water facilities	1.80	
5	Vocational training to persons for income generation	1.50	
6	Assistance to self help groups		225
	Total	10.15	

Sr. No.	Environment Prolect Management	Amount (in Lacs)
1	Air Pollution control	4.15
2	Road Maintenance	5.25
3	Green Belt	
Total		13.15

This certificate has been made on the basis of information given to us.
For Mahesh Jain \& Associates

Dated : 25-07-2023
Place Narnaul

ANNEXURES - 4 TEHSIL NOC

सेवा में,
श्रीमान तहसीलदार महोदय,
नांगल चौधरी।
विषय:- खनन एवं भू-विभाग द्वारा लीज का सत्यापन करवाने हेतु।
श्रीमान जी.
दरखवास्त इस प्रकार है:-
1- घह कि मैसर्स जेन्डी माईन्स एण्ड मिनरल्स ग्राम दोख्रेंरा तहसील नांगल चौधरी जिला महेन्द्रगढ हरियाणा बजरिये पार्टनर राग ख़राना पुत्र धी अश्वनी खुरामा निवासी गुरूग्राम, हरियाणा का निवारी हूं।
2- यह कि ग्राम दोखेंरा तहसील नांगल चौध़री में 4.8 हैक्टेयर की लीज खसरा नम्बर 109 में स्थित है।

लिहाजा दरखवास्त पेश करके विनती है कि उपरोक्त खसरा में लीज का संत्यापन करने का कृ्ट करे। जनाब की बडी मेहरबानी होगी। द्नांक-27.06.2023

SEIAA
पंचकला, हरियाणा
सन्दर्भ:-
उपरोथ्त विषयार्गंत मैसर्स जेन्डी माईन्स एण्ड मिनरल्स ग्राम दोखेंख तहसील नांगल चौधरी जिला महेन्द्रगढ हरियाणा द्वारा पत्थर क्षेत्रफल (हैक्टेगर में) 4.8 है जो खसरा नम्बर 109 ग्राम दोखेंरा तहरील नांगल चोधरी जिला महेन्द्रगढ, हरियाणा हेतू पूर्व पर्यवरण अनुर्मति के लिए परिशिष्ट-1 बिन्दू कमांक 1 से 9 तक जानकारी निम्नानुसाए है:-

30) $1 / 2013$ (हरकाक्षर एवसील). Naçat Chomshary

ANNEXURES - 5
 AFFIDAVIT FOR
 PROPONENT

Indian-Non Judicial Stamp Haryana Government

Corticate No OC2s2023F39
GRNHO 104446505

Stamp Duty Paid : ₹ 101

-man * 0

Deponent

Name: Kandy Mines and minerals

Lammas: Nat
State. Harm

Purpose : AFFiDAVIT to be submitted at Any office

AFFIDAVIT CUM UNDERTAKING

I, Mr. Ashwani Khorana, Authorized Signatory of M / s Kandy Mines and Minerals, having its registered office at GH-18, Celebrity Homes, Palam Vihar, Gurgaon, Haryana, India122017 , for the project - Proposed Mining of Minor Mineral (Dolomite \& Stone) from Donkbera Dolomite Mine with 3,25,000 MT/ year (75,000 MTPA of Dolomite and 2,50,000 MMTPÁriof Road Metal \& Masonry Stone) production over an area of 4.80 ha (Gram Panteyatyocated at Village Donkhera, Nangal Chaudhary Tehsil \& District Mahendragarh

Ghat the information in the proposal is being given are correct.
Anyegivity at site will be started only after grant of EC/Consent/ Statuary NOGs of the concerned departments.

Deponent
Date \& Place
Verification:
The consent of the above undertaking is true and correct to the best of my knowledge as per record \& nothing has been concealed.

Date \& Place

ANNEXURES - 6 UNDERTAKING FOR ENGAGEMENT OF ENVIRONMENT CONSULTANT

Indian－Non Judicial Stamp Haryana Government

Cenficate No．OC282023F42
GRNNO to 4446503

Deponent
Name dandy Mines and minerals

HNOFFOW：Ne
Cityivinace N chotudnary
Phone 04＊＊＊＊＊ 3

SectoriWerd：Na
District ：Mahencergarit

Landmark：Na
Sine：Haryoma

Purpose ：UNDERTAKING to be submitted at Any office

UNDERTAKING

t ，Mr，Ashwanl Khurana，Authorized Signatory of M／s Kandy Mines and Minerals，having its registered office at 6H－18，Celebrity Homes，Palam Vier，Gurgaon，Haryana，India－122017，for the project－Proposed Mining of Minor Mineral（Dolomite \＆Stone）from Donkhera Dolomite Mine with $3,25,000 \mathrm{MT} /$ year（ $75,000 \mathrm{MTPA}$ of Dolomite and $2,50,000 \mathrm{MTPA}$ of Road Metal \＆Masonry Stone）pioduction over an area of 4.80 ha（Gram Panchayat）located at Village Donkhera，Nangal 3 Chaudharé Tonsil \＆District Mahendragarh and State Haryana hereby authorize Mr．Vikas U Tripatht Director of PARIVESH ENVIRONMENTAL ENGINEERING SERVICES having it＇s office at －neverndyantor the project．

For M／SXardy Mines and Minerals

Ashwani Khorana
Date \＆Place

ANNEXURES - 7
 AFFIDAVIT FOR NO MINING ACTIVITY

Certificate No. OC 282023F43
BRNo
104446503

Name: Xaridy Mines and minerals
H.Nofion: Na
Cityvilige N chouchery

Phone: 9An****64

Purpose : UNDERTAKING to be submitted at Any office

Landmark: Na
Slate: Harland

UNDERTAKING

1, Mr. Ashwani Khurana, Authorized Signatory of M/s Kandy Mines and Minerals, having its registered office at GH-18, Celebrity Homes, Palam Vihar, Gurgaon, Haryana, India-122017, for the project - Proposed Mining of Minor Mineral! (Dolomite \& Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with 3,25,000 MT/ year (75,000 MTPA of Dolomite and 2,50,000 MTPA of Road Meta \& Masonary Stone) production over an area of 4.80 ha (Gram Panchayat) located

CgRimaterno mining activity have been done on lease area, all the mining activity will be done * ossufthebtantig environmental clearance/ consent from consent authorities.

For M/5 *andy M hes and Minerals

Date \& Place

ANNEXURES - 8
 SUPPLEMENTARY
 REGISTRATION OF MINE LEASE

उसीक संत्यंथी विवरण		
वसीका का न7\％LEASK		
तह्तील／स凶－तक्रील．नागंल चोधती णही－म्युनित्सिपन क्रोत्र सीमा के जाहर पता ：दौखेरा	गावfres－Donkhra	Frack Donkhera अन्य 紋
धन संसंधी दिवरण		
1027 480000 ख又 रीक्र्ट्रेशन कीसन－ 10000 कृये दवारा तैयार किखा गया－की：	EChaltam： 0 gh 5633	कुल स्टाम्य शुल्का 43200 रुपये स्टाम्प का मून्य． 43200 रकये पस्टिंग चुल्क 3 कपये सेपा चुन्क्－ 200
खेवर न－18 ：－183		
भवन का दिवरण		
कृषि चात	1 git kunal \times Marsa	

हनतासद स्स्तुतकंतो
包㻤 ）

या

दनाक 29－03－2023

उपसमयंक्त पंजीयन अधिकारी
पदटा देने दाला :- HैU निरंजनलक्न OTHER Director Mines Ceology Dept.
Haryana \qquad

Mratels \qquad -...-

मत्वान $1:-$ सुीला देवी सर्प्य \qquad
 \qquad
पमाण पत

 अपने हत्ताक्तरनिश्नान अंगूर्ण में सामने किखे है।

Form M1. 1

(See rule 9(4), (10)(10) and 2(1) of the State Rules, 2012)

IExecution of Supplementary Lease Deed in respect of Mining Lease of village Donkhera, District Mahendergarh]

This indenture made on this. $10^{\text {th }}$ day of February, 2023 between the Governor of Haryana acting through Mukul Kumar, IAS, Director, Mines and Geology. Haryama (heren ater referred to as "State Government") which exprostion shall where the context so admits, includes the successors and assigns) or one part M / s Xandy Mines and Minerals, Village Donkhera, District Mahendergarh through its signing authority Sh. Aslowani Khurana (hercafter referred to as the 'Lessee' which expression shall where the context 50 admits be deemed to include an the partners, their respective heirs, executors, fegalrepresentativesits successors and permitted assigns) of the other part

Whereas the Mining lease of over an area of 24.30 hectares granted in Fwour of Shr Saweer Singh S/o Shri Dani Singh Valage Kalbari, P.O. Dongra Ahir, Tehsil and district Mahendergari was granted for a period of 20 years w.e.f. 20.082001 for extraction of Dolomite and Barytes. The lease was allowed to be transferred in favour of lessee M / s Xandy Mines and Minerals Pvt. Ltd., Gll 18 , Cofebrity Homes, Palam Vhar Gurgaon. In this regard, a transfor deed on Model Form "O'appended to MCR 1960 was executed by the lessee with the State Guvernment ta 03.01.2014 for the remaning period of lease i.e. un to 28.08.2021.

WHEREAS, the lessee M/s Xandy Mines and Minerals Pvt. Ltd, surrendered the part area of 19.50 hectares covered under Aravall Project Plantation and retained 4.80 hectares over khasta number 109 min in village Dhonkhera. The tand of mining lease for Dolomite and Barytes in respect of the lands described in Part I of the Schedule herunder written.

WIEREAS, while working in the lease area the lessee noticed that the area contains good quality of Road Metal \& Masonry Stone and approached the State Government to grant associated minor minerals over the lease hold area of Major Mincrals in village Donkhera under Rule 10 of Haryana Minor Minerals Concessiun Hules 2012. The State Govermmentarcorded the sanction for grant the mining lease of associated minor minerals for the periud Co-terminus with Major Minerals and the lessee was informed vide letter dated 28-08-2014.

WHEREAS Central Government vide notification dated 27.03 .2015 amended the Mines and Minerals (Development \& Regulation) Act 1.957 (which came into force from the date of issuance of Ordinance dated 12.01 .2015) providing that the period of all minho leases granted before the commencement of the Mines and Minerals (Development and Regulation) Amendment Act, 2015 shall be deemed to have been granted for a period of fifty years. Accordingly, the period of present lease shall be so years woof 29.08.20011 to 28.08.2051.

Whereas A / s Kandy Mines and Minerals, Vhage Donkhera. District Matendergah, the lessee has deposited a Bank Guarantee No. $2506 T 02222720002$ Dated 29.09 .2022 ks .50 lakh as Security and have furnished Surety equal to 4 s 4.80 laths ifc. one annual dead rent for minor mineral mine as per prevailing rates under Schedule 11 of the State Rules, 2012. The surety property is owned by Smite Aniu Khorana who Sheri Ashwani Khurana S/o Shri Dharambir Khorana R/o Palam Vidar Gurge, Haryana, Smut. Preeti Yadav, who Shr Rahul Yadav s/o Sheri Kantar Singh Yadavk/o Khatod, Dist t Mahendargarh, Haryana, Sit, Sudesh Rani w/o Shri Deventer Singh s/o Shri Amp Singh r/o Salawas, Distr- Jhajar, Haryana, Gmt Marti Devi who Shari Hanuman so Shri Hazari R/o Village Dokhera, Nangal Chaudhary, Dist Mahemdergarh, Haryana, Smut. Parmila Rani, who Sheri Ratal Tanwar s/o Sheri Rajender Kimar R/o vo 30s/i2, Kalanaur, Haryana with Smut. Anjou Khorana having Authority to represent other shareholders of the said property vide an Authority Letter, has furnished his surety. As a proof of solvency of M / s Kandy Mines and Minerals, has athehed property of the surety alongwth Non encumbrance certificate and Valuation by the Tehshbar. Nangal Choudhary. Hence, the present Supplementary Lease peed is being executed.

Now, therefore, this Supplementary deed witnesses and the parties hereby agree 25 follow:-

Liberties and privileges to he exercised and enjoyed by the Lessees). The following liberties, powers and privileges may be exercised and enjoyed by the lesses subject to the other provisions.

1 In consideration of the rents and royalties, covenants and agreements hereinafter contained and on the part of the lessee to be paid. observed and performed, the Government horchy grants and demises unto the lessee all those mines/beds/veins/seams of Dolomite Barytes k Stone (hereinafter refereed to as the said minor minerals, situated, lying and being in or under the lands which are referred to in clause (2) together with the liberties, powers and privileges to be executed or enjoyed in connection heretvith which are hereinafter mentioned in Part-I subject to the restrictions and conditions as to exercise and enjoyment of such liberties, powers and privileges which are hereinafter mentioned in Part-ll and subject to other provisions of this lease.

Page 2021
(2). The area of the said land is as follows:

All the tract of land situated at village Donkhera in Tehsil Nangal Choudhary, District Mahendergarh bearing Khasra Nos. 109 min. containing an area of 4.8 hectares or thereabouts delineated on the plan here to annexed and bounded as follows:

On the North by VillageDonkhera
On the South by Village Mene Ki Nasal
On the East by Village Dilpura
On the West by Village Golwa
(3) The lessee shall hold the premises hereby granted from the 29 day August, 2001 for the term of 50 years thence next ensuing.

Part -1

Liberties and privileges to be exercised and enjoyed by the Lessee (s)

The following liberties and privileges may be exercised and enjoyed by the lessee subject to the other provisions.

1. To enter upon land and search for win, work, etc.:

Wherry at all times during the term hereby demised to enter upon the said lands and to search for mineral, bore, dig, drill for win, work, dress, process, convert, carry away and dispose of the said minor minerals).

2. To sink, drive and make pit, shafts and inclines, etc.:

Liberty for or in connection with any of the purposes mentioned in this clause to sink, drive, make, maintain and use in the said land and pits, shafts, inclines, drifts. levels, waterways, airways and other works and to use, maintain, deepen or extend any existing works of the like nature in the said lands.

3. To bring and use machinery, equipment:

Liberty for or in connection with any of the purposes mentioned in this clause to erect, construct, maintain and use on or under the said lands any engine, machinery, pan, dressing floors, furnaces, coke ovens, brick kilns, workshop, store houses, bungalows godowns, shed and other buildings and other works and conveniences of the like mature on or under the said lands.

4. To use water from streams, etc:

Liberty for or in connection with any of the purposes mentioned in this clause but subject to the rights of any existing or future lessees and with the written permission of the Collector concerned to appropriate and use water from any streams,

 Mes Geology Derail Haryana
water course, springs or other source in or upon the said lands and to divert, step up or dam any such streat or water tourse and collett or impound any such water and to make, construct and maintain any water course, cultivated land, village buildings or watering places for livestock of a reasonabie supply of water as before accustomed nor in any way to foul or pollute any streams or springs:

Provided that the lessee shall not interfere with navigation in any navidable stream nor shall divert such stream without the previous written permission of the Governonent.

5. To fell undergrowth and utilise timber and trees etc.:

l,iberty for or in connection with any of the purposes mentioned in this lease deed, wo clear undergrowth and brush wood. Lessee shall not fell any trees or timber stanimg or found on the sad lands without obtaining prior permission in writing from the collector of the District or the Chef Conservator of Forests in case of Forest areas as the case may be In case such permission is gramed, he shall pay in advance, the price of the treas/imber to be felled to the said ofticer at the rates, fixed by him.

6. To get building and roads materiat, etc.:

Liberty for or in connection with any of the purposes, mentioned in this lease deed, to quarry and get stoncs, gravel and other building and road materials and ordinary clay and to use and employ the same and to manufacture such clay into bricks or thes and to use sucts bricks, tites but not to sell any such material, bricks, tiles.

7. To use land for stacking purpose :

Liberty to enter upon and use a sufficient part of the surtace of the said lands for the purpose of stocking, storing or depositing therein any protuce of the mines inctuding over burden or waste material and works carried on and tools, equipment and other materials needed for mining operations.

6. To install fuel pumps or stations for diesel or petrol for self use:

Liberty to use a sufficient part of the land for installing fuel pumps or stations for diesel or petrol for self use or consumption required for mining operations in the lease area. subject to permission of the competent authority.

9. To construct magazine for explosive and storage sheds:

Liberty to construct magazine for storage of explosive and storage sheds for explosive related substances with permission from licensing authority.

10. I iberty to seek permission for diversion of public roads, overhead electric lines:

liberty and power to request to the competent authority for diversion of public road over head electric lines passing through the concession area at the expenses of lessee to ensure scientific and systematic mining.

Part -II

Restrictions as to the exercise of the liberties by the lessee

The liberties and privileges granted under Part-I are subject to the following restrictions and subject to other provisions of this lease:

1. No mining operations within the limit of public works, etc:

The lessee shall not cary on, or allow to be carried on any mining operations:*
i) within a distance of fifty meters from the outer periphery of the defined limits of any village about, National Highway, State Highway, Major District Roads (MDR) and other District Roads (ODRa) where such excavation does not require use of explosives, unless specifically relaxed and permitted by the competent authority; or
(ii) Within a distance of 250 meters from the outer periphery of the defined limits of any village abode, National Highway, State Highway, Major District Roads (MDR) and Other Distil Roads (ODRA) where use of explosives is required, unless specifically relaxed and permitted by the competent authority or any specific dispensation is obtained from the Director, Mines Safety; or:
(i) Within a distance of at least 10 meters from any other public roads; or
(v) within a distance of 75 meters from any railway line or bridge except under and in accordance with the written permission of the railway administration concerned. The Railway Administration or the government may in granting such permission, impose such conditions as it may deem fit.

Explanation :- For the purpose of this clause the expression Railway Administration shall have the same meanings as it is defined by subsection (4) of section 3 of the Indian Railway Act. 1890.
Provided that where the continuance of any mining operations in any area, in the opinion of the Government is likely to endanger the safety of any National or State High way, road, bridge, drainage, reservoir, tank, canal or other public works, or public or private buddings or in the public interest or in the interest of environment/ecology

of the area, the Government may determine the lease after giving bo days notice to the lessee in this behalf and the lease shall stand terminated on the date mentioned in the notice

2. Working in Sand Zones:

Not applicable in present case as not being sound mine)

3. Special conditions for river bed mining:

Not applitahte in present case as not river bed mining l

4. Notice for surface operation in land not already in use :

Before using for surface operations any land which has not already been used for such operation, the lessen shall give notice in advance to the Collector of the distrait. the Director and the Officer-in-Charge Mahendergath in whiting along with copy of permission to undertake mining specifying the situation and the extend of the hand proposed to be so used and the purpose for which the same is required and the said land shall not be so used, if objection is issued by the collector.

5. Not to use the land for other purposes:

The lessee shall not cultivate or use the land for any other purpose other than those specified in the lease-deed

6. Disposal of minerals) only on issuance of Mineral Transit Pass to the vehicles having Mineral Transit Permit:

The holder of mining lease shall not sell/disposed off any mineral or mineral products from the concession area without a Mineral transit Pass and shall sell/disposed of the mineral to such vehicle which holds Mineral transit Permit issued under the provision of the Haryana Minor Mineral Concession, Stocking $\&$ Transportation of Minerals and Prevention of Illegal Mining Rules, 2012 ,

7. Stacking of mineral(s) inside lease hold area:

The lessee shall not stock the minerals) excavated inside the lease hold area at the designated site more than twice the quantity of the average monthly production as per approved mining plan/scheme.
"Provided that in cause of lease granted for mining of minerals from the riverbed, total mineral excavated and stacked by the lease holder, with it the area granted on mining lease, at any point in time shall not exceed three times of the average monthly production os per approved mining plan."

8. Stacking of mineral(s) outside lease hold area:

The lessee shall not stock any minor mineral(s) granted under the lease, out side the lease hold area without obtaining Mineral Dealer hence as per provisions of the Haryana Minor Mineral Concession. Stocking \& Transportation of Minerais and Prevention of Ilfegal Mining Rules, 2012.

9. Stacking and storage of incidentally extracted major minerais:

In case lessee, while extracting minor mineral(s) given on lease, incidentally extracts any major mineral not given on lease, the same shall be the property of the Govermment and lessee shall be under an oblization to stack and store it and maintain fis proper record in accordance with the direction of the Director or any officer atithorised by him who shall also be competent to prestribe the procedure for its disposal.

10. Penalties in case of non complance of clause (9) :

In case it is detected that lessee has disposed off incidentally extracted major inineral referred to in sub rele (20) of rule 56 in whole or part there of or fatled to mantain the record of stored mineral he shall be lable to penalties as specified in sub section (1), (4) and (5) of section 21 of Mines k Minerals (Devefopment and Regulation) Act 1557 and also premature determination of mining lease in terms of sub-fule (1) of rute 60 of the said rules.

1. Restrictions of mining operations above Ground Water Table:

A safety matgin of two meters shall be maintained above the ground water table while undertaking mining and no mining operations shall be permissible below this leve unless a specife permission is obtained from the competent authority in this behalf.

12. Restrictions of surface operations:

No mining operations shall be umertaken in any area prohibited by any authority or by the orders of any Court.

13. No mining operations without requisite clearance:

The lessee shall not undertake any mining operations in the area granted on mining lease without obtainhg requisite clearance from the competent authority as required for undertaking mining operations.

Part. III

Covenants of the Lessee

The lessed lessees hereby covenant(s) with the Government as follows.*

1. Rate of Royalty :-

The lessee stall pay royalty on the quantity of the sald minor mineral dispatched from the leastd area at the rates as per First Schedule of the Haryana finor Mneral Concession, Stocking \& Transportation of Minerals and Pevention of llegel Minims Rules. 2012 and as may be revised by the State Government from time to time.

2. Surface rent:

The lessee shall pay for the surfare area occupied by him as per rule 62.

3. Dead rent:

The lessee shall pay for every ycar dead rent at the rate prescribed in the second Schedule of the Haryana Minor Mineral Concession, Stocking \& Transportation of Minerals and Prevention of hllegal Mining Rules, 2012 and as may be revised by the State Government from the to time.

Provided further that if the lease pemmis the working of more than one minor mineral in the same area, the Government may charge separate dead tent in respect of each mbor mineral:

Provided that the mining of one minor mineral does not involve the woriding of another numor mineral.

Provited forther that the lesseeflessees shall be biable to pay the dead rent or royalty in respect of each mineral, whehever be higher but not both.

Provided further that lessee/lessees shall depusit the dead rent at the rates as revised and notified from time to time by the State Government.

4. Security deposit:

(a) In case of mining leases granted through competitive bld/ahction undef rule 9.25 of the annual bid amount/ fate of dead rent. The security amount to be deposited as per following ;-
(i) 1009 as initial bid security at the thme of auction
(ii) 15% of the annal bid amount before commentement of mining operations or before the expiry of pertod allowed, which shall not be more than 12 months, whichever is earlier:

Provided on enhancement of the dead rent after expiry of every three year period of tease the lessee shat deposit the balance amount of security so as to upscale the security amount equal to 25% of the revised amman dead rent as applicable for one year with respect to next block of three years
(b) In case of mining leases granted on application under Rule 10 ; The security monet shall be deposited in accordance with the Rule 11 of the Haryana Minor Mineral Concession Rules. Stocking. and Transportation and Prevention of Illegal Mining Rules-2012.

5, Mode of payment of dead rent/ royalty and surface rent

(a) In case of mining tease gated toter tube 9 . the lessee shat at posit one adrame instalment of dead rent before commencement of mining operations or before the expiry of period allowed, which shall not he more than 12 months, whichever is eater, along with 150 or the balance security amount as per faust 4 (a) above.
(b) The lessee durum the subsistence of the lease, gay advance to the Government the instalments of the dead rent in respect of the said land given to him/ them on mining lease as per following schedule:-

Note: The amount of one advance instalment deposited at the time of commencement of the mining operations or within time allowed for the same shall be adjusted in a manner that the subsequent instalments are payable for a full calendar month/quarter/year, as the case may be
(c) The lessee shall be liable to pay the amount of royalty on the mineral excavated and dispatched at the rate specified in the first schedule or dead rent, which ever is more and not both.
(d) Where the amount of royalty payable in respect of a month exceeds the amount of dead rent deposited in advance, the lessee shall deposit such amount of royalty on the mineral extracted and dispatched or consumed by the $7^{\text {th }}$ day of the following month after adjusting the amount of advance dead rent already deposited.
(e) In cases where the lessee has paid the amount of royalty or dead rent during par of the year, which is equal to or more than the annual dead rent payable for the year, he shall not be required to deposit the advance dead rent for the remaining period of the said year and the royntry for the balance part of the year shall be deposited by the $\boldsymbol{f}^{\prime \prime}$ day of the following month.

6. Amount to be deposited on account of Mines and Minerals Development

 Restoration and Rehabilitation FundWhere the lessee is operating the area he shall also deposit/ pay an additional amount, equal to 7.5% of the due dead rent or royalty, whichever is more along with amount of instalments on account of dead rent or royalty, towards the Mines \& Minerals Development Restoration and Rehabilitation Fund' separately established under these rues.

7. Imprest on delayed payments.

"In case of any default in payment of the instalment of dead rent/royatry/ contribution to the "Mines \& minerals Development, Resmation and Rehabilitation Fund' on the due date (s), the amount shall be payable along with interest at the rate of twelve percent per annam:

Provided that in case the dues are paid within seven days of the due date (s) no interest shall be charged:

8. Working of newly discovered minerals:

If any minor mineral, not specified in the lease, is discovered in the leased area, the lessee shall report the discovery without delay to the Government and shall not win or dispose of such minor mineral without obtaining a lease therefor, If he fails to apply for such a lease within six months from the discovery of the minor mineral the

Covernment or the anthorised officer may give the lease in respect of such mineral, to ary other person.

Provided that the Director or an officer authorized in this behalf, on being satisfied that the availabitity of such mincr mineral(s) is not of sufficient quantity and quality and no separate lease is required for the newly discovered minor minerals(s), may allow the contractor(s) by issuing separate permit in Form 'PIM2' for the disposal of specific quantity of such newly discovered minor mineral(s) on payment of advance royatly at the rates prescribed in the First Schedule and other amounts as specified under sub rille (19) of Rute 56 of the sadd rules, for the period not exceeding thirty days at one time. The royalty payable on the newly discovered minor mineral(s) shall be in addition to the royalty for the mineral already granted on lease.

Provided further that in case lessee further applies for disposal of such mineral(s), and the Ditector or any other officer authorized by him is satisfied that such minor minerals) is still available in the area, he may further grant subsequent permissionts:

Provided further that the grant of such permit may be refused for reasons to be toorded in writing:

9. To commence mining operations within 180 days and carry them on properly:

Uniess the fovernment for suffiem cause utherwise, the lessee shall tomnence mining operations 180 days from the date of execution of the lease and shal thereafter conduct such operations in a proper, skiful and workman like manner.
Explanation:- For the purpose of this clause, mining operations shall include the arection of machinery laying of a tramway or construction of a road in connection with the working of the mine.

10. To erect and maintain boundary pillars etc. :

The lessee shall at his own expenses, erect and at all times maintain and kecp in good repairs boundary marks and pillars according to the plan annexed to the lease. Each of the pillars should be numbered and every pillar shall have GPS reading.

11. Accounts:

The lessee shat keep correct accounts showing the quantity and other particulars of afl minerals obtuined from the mines and the number of persons employed theremand a complete plan of the mine and shall allow any officer authorised by the Ilaryana Government or the Central Government in that behalf to examine at any time any accounts and records maintained by him, and shall furnish to the llaryana Govermment or the Central Coveroment with such information and returns as it may require.

12. To allow facilities to other lessees etc:

The lessee shall allow existing and future lenses or lease holkers/contractors af any land which is comprised in or unpins or is reached by the land, held by the lessee, reasonable facilities for ace ss thereto.

13. To allow entry to officers:

The lessee shall allow any offer authorised by the Haryana Government and the Central Government to enter upon any building, excavation or land comprised in the lease for the purpose of inspecting the mines.

14. Returns

The lessee shall :-
(a) submit a return in form 'SMP1' by the fth of every monthly to the Director and also to other officer (s) specified in that form giving the total quantity of minor minerals) raised and dispatched from the leased area in the preceding calendar month and its value;
(b) also furnish a statement giving information in Form "MMP2" by the 15 th April every year to the Director and to other Officers), specined in that form regarding quantity and value of minor minerals) obtained during last financial year, average number of

* regular labourers employed (men and women separately) number of accidents, compensation paid and number of days worked separately.

15. To strengthen and support the mines:

The lessee shall strengthen and support to the satisfaction of the Railway Administration or the State Govermment, as the case may be any part of the mine which in ts opinion requires such, strengthening or support for the safety of any railway, bridge, national highway, reservoirs, canal, road or any other public work or building.

16. Notice for use of explosives, etc: :

The lessee shall immediately give notice in writing in Form ' MSEL ' to the following:

1. The Controller General, Indian Bureau of mmes, Government of Indie, Nagpur;
2. The Chief Inspector to Mines, Govt. of India, Dhanbad;
3. The Director, Mines Safety, Govt. of lIma, Gazlabad;
4. The Regional Controller of Mines, Indian Bureau of mines, Dehradun:
5. The Director Nines \& Geology, Harland:

6. The District Magistrate of the District concerned; and

7. The Assistant Mining Engineer/Mining Officer of the District concerned as soon as,
(ia) The working in the mines extend below superjacent ground; or
(b) The depth of any open cast excavation measured from its highest to the lowest point reaches six meters; or
(c) The number of persons employed on any day is more than 50; or
(d) Any explosives are used.

17. Maintenance of Sanitary conditions:

The Lesser shall maintain sanitary conditions in the area held by him under the lease.

18. To pay compensation for damage and indemnify the Government:

The lessee shall make and pay such reasonable satisfaction and compensation for all damage, injury or disturbance which may be done by him in exercise of the powers granted by the lease and shall indemnify the Government against all chats which may be made by third parties in respect of such damage, injury or disturbance.

19. Application of all Acts, Rules and Regulations to this lease:

The lessee shall abide by the provisions of Mines Act, 1952, Inter-state Migrant Workmen (Regulation and Employment and conditions of service) Act, 1979 and the roles and regulations framed there under and also the provisions of other labour laws both Central and State as are applicable to the workmen engaged in the mines and quarries relating to the provisions of drinking water, rest shelters, dwelling houses, latrines and first-aid and medical facilities in particular and other safety and welfare provisions in general, to the satisfaction of the competent authorities under the aforesaid Acts, Rules and Regulations and also to the satisfaction of the District Magistrate concerned. In case of non compliance of any of the provisions of the enactments as aforesaid. Director may terminate the mining lease by giving one month's notice with forfeiture of security deposited.

Provided that the lessee shall carry out mining operations in accordance with all other provisions as applicable for undertaking mining induing the provisions of Forest (Conservation) Act, 1980 and Environment (Protection) Act, 1986 and the rules made thereunder.

20. To report accident :

The lessee shall without delay report to the Deputy Commissioner of the district concerned and the Director or any other officer authorised by him, any accident which may occur at or in the leased area.

21. Delivery of possession of land and mines on the surrender or sooner determination of the lease:

At the end or sooner determination or surender of the lasse the Lessee shat deliver up the sad lands and all mines (it any dug there) in a proper and workable state, save in respect of any working as to which the Govemment migh have sanctioned abandonment.

22. To provide clectronic weighing machine :

The lessee shali provide and at all times keep at or near the pit-head at which the said mineral shall be brought to bank a properly constructed and efficient electonic weighing machine and shall weigh or caused to be weighed thereon all the said minor minarals from time to time brought to bank, sold, exported and converted prodacts, and shall at the close of each day cause the total weights, ascertained by such means of the said minot minerals, ores, products, raised, sold, exported and converted during the previous twonty four hours to be entered in the aforesaid bouks of accounts. The lessee shall permit the Government at all times during the said term to employ any persons to be present at the weighing of the said minor minerals, as aforesaid and to keep accouns thereof and to check the accounts kept by the lessee. The lessee shall give 15 days prevous notice in writing to the 0fficer-in-Charge Mahendergarh of every such measuring or weighing in order that he or some officer on his behalf may be present thereat.

23. To secure pits shats not fill them up:

The lessee shall well and properly secure pits and shats and will not widhout permission in writing wiffuly close, ill up or close any mine or shaft.

24. Not to enter upon or to commence operations in the reserved or protacted Forest:

The lessee shall not enter upon or commence any mining operations in any reserved or protected forest comprised in the leased area except after provipusly obtaining permission in writing of the Chief Conservator of Forest, Haryane.

25. To respect water rights and not injure adjoining property;

The lessee shall not injure or cause to deteriorate any source of water, power or water-supply and shall not in any other way render any spring or stream or water bnfit to be used or to do anything to injure adjoining land, villages or houses.

26. Stocks lying at the end of the lease:

a) The lessee on expiry of the lease period (successful completion of the lease) shall remove aiready extracted all of the mineral from the premises of the guarry within a period of seven days. In case any quantity of the already extracted mineral, in the said land is left undisposed off and is not removed within seven days from the date of expiry of the period of lease the same shall be deemed to be the property of the

Government who may dispose it off in any manner it may like without pay anything thereof to the lessee.
b) The lessee on the termination or sooner determination of the lease shall not remove extracted mineral from the premises of the leased areas. All extracted minerals in the sad lands lett over undisposed after the termination or determination of lease shall be deemed to be property of the Government who may dispose it off in any manner it may like without pay anything thereof to the lessee.

27. Payment of taxes:

The lessee shall duly and regularly pay to the appropriate authority all taxes, cesses and local dues in respect of the leased area. said minor minerals or the working of the mines.

28. Payment of additional amount for reclamation/ restoration:

The lessee shall also deposit/pay additomat amount equal to 7.5 \% of the amount of royalty/dead rent along with the payment of royalty or dead rent, whichever is more. by the Fth of every month in a joint account to be operated with the Assistant Mining Engineer/Mining Officer concerned to ensure the compliance of the Reclamation \& Restoration works. This additional amount shall be refunded after satisfactory Rectamation/Restoration of the area after mining in accordance with the Mine Closure bean.

Provided that in case the lessee fails to remain/ restore the area as per mining plan to the satisfactions of the State Government, the amount deposited in the joint account shall be forfeited and used for the restoration of the area by the department.

Provided further that in case no rehabilitation position of the mine comes during the tenure of the mining lease, he anomaly so deposited shall be kept by the State Government in the mining area development fund for future use as and when the mine taches to a stage requiring restoration and rehabilitation.

29. Assign sublet or transfer of the lease:

The lessee shall not assign, sublet or transfer the lease to any person without obtaining prior permission in writing from the Government.

30. Fencing of working place:

If a working place is found to be unsafe all persons shall be withdrawn by the lessee immediately from the dangerous area and all access to such working place except for the purpose of removing the danger or saving life shall be prevented by securely fencing the full width of all entrances to the place, at his own cost.

31. Fencing of excavation after termination or sooner determination of the lease:

The lessee on termination or sooner determination of the lease, shall at his own cost, suitably fence the excavations for safety as instructed by the Director of Mines $\&$ Geology, Haryana, or the Assistant Mining Engineer/ Assistant Geologist/ Mining Office concerned.

32. Felling of trees:

The lessee shall not foll or cut any tree, standing on the land wherein the quarry is located whet obtaining prior permission in writing from the collector of the District concerned or Chief Conservator of Forests, llaryana, in respect of Forest areas. as the case may be and paying its price fixed by him.

33. Security deposit shall carry no interest:

The security deposited by the lessee shall not carry any interest.

34. State Government not responsible for loss to lessee:

The Government shall not be responsible for any kind of loss to the lessee,

Part-IV

Rights of the State Government

1. Suspension or termination of the lease:

The Director or an officer authorised in this behalf shall have the right to suspend or prematurely terminate the lease.
a) If the dead rent or royalty or surface rent or any other amount due to the Government are not paid,
b) if any of the terms and conditions of the lease deed or conditions of grant or permission to undertake mining by any other statutory authority or competent authority is violated:
c) If any of the provisions of these rules and other laws both central and State as are applicable to mines and minerals, are not complied with:

Provided that no orders of suspension or termination of the lease shall be passed by the Director or an officer authorised by him without giving reasonable opportunity to show cause and following the procedure prescribed in the Haryana Minor Mineral Concession, stocking and Transportation of Mineral and Prevention of Illegal Mining Rules 2012.

Provided further that the authorised officer may also at any time after issuance of the notice for default on account of non payment of dues, enter upon the said premises and detrain all or any of the minerals) or movable property therein and may carry away, detain or order the sale of the property so detrained, or so much of it as will suffice for the satisfaction of the rent or royalty or both dues and all costs and expenses occasioned by the non-payment thereof and shall give proper receipt of the articles carted away.

2. Determination of lease in public interest:

The Government may by giving 'six months' prior notice in writing determine the lease if the Government consider that the minor mineral under the lease is required for establishing an Industry beneficial to the public:

Provided that in the State of National Emergency or war, the lease may be determined without giving such notice.

3. Right of pre-emption :

The government shall from time to time and at all times during the terms of lease have the right (to be exercised by notice in writing to the lessec) of pre-emption of the said mineral ls) and all products thereof lying in or upon the said lands hereby demised or elsewhere under the control of the lessee and the lessee shall deliver all minerals or products thereof to the bout. at current market rates in surf quantities and in the manner at the place specified in the notice exercising the said right.

4. Penalty for not allowing entry to officers:

If the lessee or his transferee or assignee does not allow any entry or inspection under clause (9) of part ill, the Director may cancel the lease and forfeit in whole or in part the security deposit paid by the lessee under sub rule (iii) of rule 8 or rule 15 , as the case may be of the Haryana Minor Mineral Concession, Stocking \& Transportation of Minerals and Prevention of legal Mining Rules, 2012.

5. Settlement of Rent and Compensation payable to third parties thereof:

In case the occupier (s) or owners) of the said land refuses his/ their consent to the exercise of the right and powers reserved to the Government and demised to the lessee under these presents, the lessee shall report the matter to the Assistant Mining Engineer/ Assistant Geologist/ Mining Officer who shall request the Collector of the district concerned to direct the occupior(s) or owners) to allow the lessee to enter the said lands and to carry out such operations as may be necessary for working the mine, on payment in advance of such rent or compensation to the occupier or owner by the

onecter
lessee, as may be fixed by the Collector as per the provisions of rules 64865 of the rues.

6. Suspension of mining operations:

The Director may order to suspend the mining operations after serving a notice to the lessee, in case, the following violations are noticed:-
(a) unsafe and unscientific mining;
(b) non operations of weighbridge;
(c) non providing of safety appliances to the workers;
(d) non payment of compensation to the surface overs:
(e) non submissions of monthly returns;

In case of violations of the aforesaid conditions and also any other terms and conditions of the agreement deed and the provisions of the mils, the Director may ge a notice to the lessee to remedy the violations within a period of 15 days from the date of issue of the notice. In case, the violations pointed out through notice, are nat remedied within the stipulated period of 15 days, the Director nay after affording an opportunity of being heard to the lesses, order the suspension of the mining operations till such time the defaults/ defected are removed by the lessee within the time frame fothin a maximum period of six months) granted by the Director. During the period of suspension of mining operations, the lessee will be allowed only to undertake rectification work for removal of the defects and shall not dispose off the mineral. During the suspension period, the lessee shat be under the obligation to deposit the amount of the dead rent on the due dates.

On satisfactory removal of the defects, the Director may revoke the suspension orders with or without any modification. Non removal of the defects/defatis during the suspension period and within the time allowed by the Director, shall lead to premature termination of lease.

Party
 General

1. Cancellation:

The lease shall be liable to be cancelled by the Director if the lessee cease fo work the mine for a continued period of six months without obtaining written sanction of the Government.

2. Notices:

Every notice by these presents required to be given to the lessee shall be given in writing to such person resident on the said lands as the lessen may appoint for the purpose of receiving such notices and if there shall have been to such appointment then

pry such notice shall be sent to the lessee by registered post addressed to the lessee at the address recorded in this lease or at such other address in India as the lessee may from time to time in writing to the Government designate for the receipt of notices and every such service shall be deemed to be proper and valid service upon the lessee and shall not be questioned or challenged by him.

3. Recovery of government dues as arrears of land revenue:

Without prejudice to any other mode of recovery authorised by any provision of this lease or by any law, all amounts, falling doe hereunder against the lessee may be recovered as arrears of land revenue under the law in force for such recovery.

4. Forfeiture of property left more than three months after expiry or determination of lease :

The lessee should remove his property lying on the said lands within three months after the expiry or sower determination of the lease or after the date from whet h any surrender by the lessee of the said lands under rule 27 of the Haryana Minor Mineral Concession. Stocking \& Transportation of Minerals and Prevention of legal Mining Rules. 2012 becomes effective, as the case may be the property left after the aforesaid period of there months shall become the property of the government and may be sold or disposed of in such manner as the Government shall deem fir without liability to pay any compensation therefore to the lessee.

5. Security and forfeiture thereof:

(a) the Government may for feat the whole or any pan of the amour deposited as'Security' under his lease, in case the lessee commits a breach (s) of any covenants to be performed by the lessee under this lease.
(b) Whenever the said security deposit or any part thereof or any further sum hereafter deposited with the Government in replenishment thereof is forfeited under sub clause (a) or applied by the Government under this lease (which the Government is hereby authorised to do) the lessee shall immediately deposit with the inappropriate pat thereof to bring the amount in deposit with the Government up to the requisite amount of security at that point of time of lease.
(c) The rights conferred to the Government by clause (a) shall be without prejudice to the rights conferred on the State Government by any other provision of this lease or by any law.
(d) On such date as the Government may elect within twelve calendar months after the determination of this lease or any renewal thereof, the amount of security deposit paid in respect of this lease and then remaining in deposit with the Government
.

Wines ${ }^{3}$ Gewhel Cent Heryara
and not required to be applied to any of the purposes mentioned in this lease shall be refunded to the lessee No interest shall run on the security deposit.

6. Survey and demarcation of the area:

When a mining lease is granted by the Government arrangement shall be made, if necessary, at the expense of the lessee, for the survey and demarcation of the area granted under the lease. The lessee shall have to bear actual expenses of the staff deputed for the work. Actual expenses will include traveling allowances daily allowances and salary of staff plus 10 percent as instrument charges.

7. Surrender of a mining lease by the lessee:

The lessee may seek surrender of lease, for whatsoever reasons, by submitting an application subject to the condition that the lessee:-
(i) has stopped all ming operations in the lease;
(ii) has furnished production returns as required in terms of the lease deed;
(iii) has submitted the No Dues Certificate (NDC) from the officer-in-tharge of the district concerned with regard to all pending dues on account of the said lease, till the end of calendar month in which application is submitted: and
(iv) has deposited an amount equal to one -month dead rent at the rate as may be applicable, at the time of submission of application as nonrefundable fee.

Provided that in sase of riverbed mining if the application for surrender of lease is submitted during the period from $1^{\text {sN }}$ lune to $15^{\text {th }}$ September, then the lease holder shall be liable to deposit the non refundable fee equal to two months of dead rent as may be applicable, at the time of submission of application.
(v) No application for surrey of part area of the lease shall be maintainable.
(vi) the Director shall pass orders accepting the surrender request within thirty days. In case no decision is communicated the application for surrender shall be deemed to have been accepted on expiry of thirty days of submission of application.".

8. Penalty for repeated breaches:

In case of repeated breaches of covenants and agreements by the lessee for which notice has been given by the State Government in accordance with Sub-rule (1) of Rule 73 and/or sub rule (1) of rule 74 of the Haryana Minor Mineral Concession. Stocking \& Transportation of Minerals and Prevention of illegal Mining Rules, 20120 n

earlier occasions, the State Government without giving any further notice, may impose such penalty not exceeding twice the amount of annal dead rent specified in clause 3 of part-llt of this form.

9. Obtaining sale tax number:

The lessee shall get himself registered with the commercial Taxes Deportment of Haryana State and shall obtain the Sales Tax number.

10. Overriding effect:

Unless otherwise specifically provided, it is agreed that this deed shall be governed by the provisions of the Mines and Minerals (Development and Regulation) Act, 1957 (67 of 1957) and the rules made thereunder. The provisions of the Act and the tues shall prevail over the terms and conditions of the agreement.

IN WTTNESS WHERFOF these presents have been executed in the manner hatemder appearing the day and year first above when.
(Signadita of Lessee)

Witnesses:

2. Tu d o lo sh Cion cham!

Will botany, Po. Kumashatil, solanin32.2)
 Cingratharms
(Signatoreofsurety)

I. \qquad
2. Queen

Mukeh Kumar slosh. Given Chard

पन्रोणन किया जाता है कि यह प्रलेख क्रमांक 2238 आज दिनांक $29-03-2023$ को की नं 1 जिल्द नं 3 हैं
 से 101 पर चिपकाई गयी। यह्ह की प्रमाणित किया जता है कि इस दक्तारेत्र के पस्तुतकता और रबाहों \Rightarrow

ANNEXURES - 9
 AFFIDAVIT FROM CONSULTANT

Name: Xandy Mines and minerais
HNo/Fioor Na
CityNilage : N choudhary

Sector/Ward: Na
Distric: : Mahendergarh
Phone $94 * * * * * 84$

Landmark: Na
State: Haryana
Purpose. AFPDDAVIT to be submitted at Any office

AFFIDAVIT CUM UNDERTAKING

1. Mr. Vikas Tripathi, Director of PARIVESH ENVIRONMENTAL ENGINEERING SERVICES having it's office at 5/916, Vikram khand, Gomti Nagar, Lucknow, Uttar Pradesh 226010, as Environment Consultant of M/s Xandy Mines and Minerals, having its registered office at $\mathrm{GH}-18$, Celebrity Homes, Palam Vihar, Gurgaon, Haryana, India122017, for the project - Proposed Mining of Minor Mineral (Dolomite \& Road Mefal \& Maspnary Stone) from Donkhera Dolomite Mine with $3,25,000 \mathrm{MT} /$ year ($75,000 \mathrm{MTPA}$ of Dolomite and 2,50,000 MTPA of Road Metal \& Masonary Stone) production over an area of 18 eh ha, Gram Panchayat) located at Village Donkhera, Nangal Chaudhary Tehtil \& $\because 40^{4}$ dictexizhendragarh and State Haryana do hereby solemnly affirm, declare and

The consent of the above undertaking is true and correct to the best of my knowledge as per record \& nothing has been concealed.

Date \& Place

EXECUTIVE SUMMARY FOR MINING OF MINOR MINERALDOLOMITE \& STONE (ROAD METAL \& MASONRY STONE) FROM DONKHERA DOLOMITE MINE

VILLAGE DONKHERA, TEHSIL NANGAL CHAUDHARY \& DISTRICT MAHENDRAGARG AND STATE HARYANA. MAXIMUM PRODUCTION - 3,25,000 MTPA (DOLOMITE \& 2,50,000 MTLA OF ROAD METAL \& MASONRY STONE) MINE LEASE AREA - 4.80 HA. (GP LAND)

PROJECT PROPONENT
M/S XANDY MINES AND MINERALS ENVIRONMENT CONSULTANT
PARIVESH ENVIRONMENTAL ENGINEERING SERVICES Nabet Certificate No. - NABET /EIA/2124/IA 0092(Rev.01)

E. Executive Summary

E.1. General

Sh. Satveer Singh S/o Sh. Bani Singh village Kalwari, P.O. Dongra Ahir, Tehsil \& District Mahendragarh has been granted mining lease of Bartyes and Dolomite by State Government of Haryana over an area of 24.30 ha of land in village Donkhera, District Mahendragarh w.e.f. 29.08.2001 for a period of 20 years. Now this lease has been transferred to M / s Xandy Mine and Minerals, GH 18A, Celebrity Homes, Palam Vihar, Gurgaon. As per the information received from the Department of Mines \& Geology and the State Forest Department part of only one Khasra no. namely 109 min is free from the forest/Aravali plantation. The applicant has selected this Khasra numbers 109 min comprising an area of 4.80 ha which is free from restrictions. Rest of the Khasra nos. 103,108 and 109 min comprising 19.50 ha are which was said to be in Aravali/plantation has been surrendered to the department of Mines \& Geology, Haryana.

Table E-1: Approvals / Permissions from Concerned Authorities

Item	Permission / Approval Details	
LOI	The Letter of Intent has been issued to M / s Xandy Mine and Minera 18, Celebrity Homes, Palam Vihar, Gurgaon by Director Mines \& Ged of Haryana Govt., Chandigarh vide memo no. Glg/ HY/ E-26 Panchkula Dated 28-08-2014 for Mining of Miner Mineral (D Stone) in Donkhera village over an area of 4.80 hectares in Nangal Tehsil of District Mahendragarh, Haryana for a period of 51 years.	als, R/o GHology, State 612/ 3912, olomite and I Chaudhary
Approved Mining Plan	As per sub-rule 8 of rule 70 of Haryana Minor Mineral Concession, Transportation of Minerals \& Presentation of Illegal Mining Rule mining plan was approved vide memo no. DMG/ HY/ MP/ DOI Dolomite/2022/ 2736-2739 Panchkula Dated 19.05.2023.	n, Stocking, 2012, the NEKHEDA/
Cluster Letter	Department of Mines and Geology, Narnaul confirms one more mine Field) is available within 500 m radius from lease for form cluster Memo No./1794 dated 01.06.2023.	(M/s Stone vide letter
Forest NOC	The lease area land is owned by gram panchayat as no forest land lease area. The NOC has been issued from forest department of Ma vide no. 6397 Dated: 20/03/2014. The copy of same is enclos	involved in ahendragarh d.
Previous EC Letter	As this is an old case which has been got the environment clea SEIAA, Haryana under category B2 vide no. SEIAA/HR/2016 27.06.2016. The same has been enclosed.	arance from /465 dated
CTE	As per EC condition, the consent of establish (CTE) was issued on vide no. HSPCB/Consent/2811914MACTE1039375 which is enclose	$\begin{aligned} & 06.05 .2014 \\ & \text { ed. } \end{aligned}$
CTO	As per EC condition, the consent of operate (CTO) was issued on vide no. HSPCB/Consent/313100422MACTO26737457 which is 30.09.2024. The same is enclosed.	$\begin{aligned} & 14.09 .2022 \\ & \text { valid upto } \end{aligned}$
EC Compliance	As EC condition, the compliance report was submitted to department timely which is enclosed.	concerned
PROPONENT CONSULTANT	M/S XANDY MINES AND MINERALS PARIVESH ENVIRONMENTAL ENGINEERING SERVICES NABET /EIA/2124/IA 0092(Rev.01) PAGE. 1	

Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed

Item	Permission / Approval Details
Lab Report	As per EC condition, the lab report was submitted to concerned department with EC compliance report timely. The same is enclosed.
Panchayat	The NOC from Dokhera Gram Panchayat has been obtained vide dated NOC
Approved	District Survey Report (DSR) was approved by Department of Mines \& Geology, NSR Report
Water Supply	Water will be supplied via hired private water tankers for dust suppression, plantation, and domestic use.
Electricity	Electrical supply is available in all nearby villages. The permission will be taken from concerned department for the electricity use.

Table E-2: Salient Features of Mine

S. No.	Parameters	Description		
1.	Name of the project	MIning of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine by M/s Xandy Mines and Mineral.		
2.	Nature \& category of Mine	Non-Coal Mining Category ' B^{\prime} ' of Activity 1(a)		
3.	Project Proponent	M/s Xandy Mines and Mineral		
4.	Khasra No.	109 Min		
5.	Total Lease area	4.80 Ha (Gram Panchayat Land)		
6.	Location of the project	Village- Donkhera, Tehsil- Nangal Chaudhary, DistrictManendragarh, Haryana		
7.	Toposheet No.	G43E1 - Project Site G43D13, G43D14, G43E1 \& G43E2 - Study Area.		
8.	Maximum Production Capacity	3,25,000 MTPA (75,000 MTPA of Dolomite and 2,25,000 MTPA of Stone (Road Metal \& Masonry Stone))		
9.	Geological Mineral Reserve	77,93,482 MT ($30,53,472$ MT of Stone \& $47,40,010$ MT of Dolomite)		
10.	Mineable Reserve	$\begin{aligned} & 24,11,900 \mathrm{MT} \\ & (18,28,340 \mathrm{MT} \text { of Stone } \& 5,83,560 \mathrm{MT} \text { of Dolomite }) \end{aligned}$		
	Geographical co-ordinates	Point	Longitude	Latitude
		1	27* $50 \cdot 17.70^{\prime \prime} \mathrm{N}$	$76^{\circ} 2^{\prime} 44.10^{\prime \prime} \mathrm{E}$
		2	$27^{\circ} 50^{\prime 2} 21.10^{\prime \prime} \mathrm{N}$	$76^{\circ} 2^{\prime \prime} 47.00^{\prime \prime} \mathrm{E}$
		3	$27^{\circ} 50^{\prime} 24.30^{\prime \prime} \mathrm{N}$	$76^{\circ} 2^{\prime 4} 46.50^{\prime \prime} \mathrm{E}$
		4	$27^{\circ} 50^{\prime} 26.20^{\prime \prime} \mathrm{N}$	$76^{\circ} 2^{\prime \prime} 48.90^{\prime \prime} \mathrm{E}$
		5	$27^{\circ} 50^{\prime} 25.40^{\prime \prime} \mathrm{N}$	$76^{\circ} 2^{\prime \prime} 48.90^{\prime \prime} \mathrm{E}$
		6	$27^{\circ} 50^{\prime} 26.10^{\prime \prime} \mathrm{N}$	$76^{\circ} 2^{\circ} 51.50^{\prime \prime} \mathrm{E}$
		7	$27^{\circ} 50^{\prime} 28.70^{\prime \prime} \mathrm{N}$	$76^{\circ} 2^{\prime} 51.50^{\prime \prime} \mathrm{E}$
		8	27050'29.80"N	$76^{\circ} 2^{\prime} 53.00^{\prime \prime} \mathrm{E}$
		9	$27^{\circ} 50^{\prime} 31.20^{\prime \prime} \mathrm{N}$	$76^{\circ} 2^{\prime} 52.30^{\prime \prime} \mathrm{E}$
		10	$27^{\circ} 50^{\prime} 31.70^{\prime \prime} \mathrm{N}$	$76^{\circ} 2^{\prime \prime} 53.40^{\prime \prime} \mathrm{E}$
		11	$27^{\circ} 50^{\prime} 30.90^{\prime \prime} \mathrm{N}$	$76^{\circ} 2^{\prime} 54.60^{\prime \prime} \mathrm{E}$
		12	$27^{\circ} 50^{\prime} 31.70^{\prime \prime} \mathrm{N}$	$76^{\circ} 2^{\prime} 55.50^{\prime \prime} \mathrm{E}$

Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and $2,50,000$ MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

S. No.	Parameters	Description
		during rains for a short duration, otherwise they remain dry for the rest of the months. The rainwater from these nalas drains either into local johars or in agriculture fields.
14.	Mining Method \& Technology	Proposed Method of Mining: The lease area is being worked since June 2016 i.e., after getting the environmental clearance from designed authority. Further, it is proposed to continue systematic and scientific mining for excavation of Dolomite and road metal and masonry stone/building stone durlng the next plan period of Mining Scheme. It was proposed in the last mining plan to take benches of $10 \times 10 \mathrm{~m}$ are proposed to be made. During all these years only dolomite production was made, and no building stone was reported to mined. At present fully mechanized method of mining of Dolomite by deploying heavy Earth moving machines and deep hole drilling and blasting by forming benches of $10 \times 10 \mathrm{~m}$ from top downward. Now it proposed to mine $3,25,000$ MT ($2,50,000$ MT of Stone $+75,000$ MT of Dolomite) per annum or $1083 \mathrm{MT} /$ day. The production targets for Dolomite as proposed the approved mining plan were followed. Necessary permission for mechanized mining under MMR 1961 from competent authority has already obtained. The same will continue in the next five-year plan also. The formation of benches shall be continued up to the ultimate pit limit after the drilling and blasting of the bench. The boulders shall be sized with the help of rock breaker, excavated, and loaded in the trucks/dumpers by hydraulic excavators. The mining operations will continue as were done during the last five years. It is proposed to be adopted mechanized opencast mining method for exploitation of the mineral. Drilling and blasting shall be required to dislodge the mineral. The mining method involves breaking the rocks with explosives, loading the material with excavators and haulage with dumpers.
15.	Ultimate depth of Mining	92.0 m BGL
16.	Ground water level	The ultimate depth of the mining will be 92.0 m at the end of plan period. The general water table around the lease area is at $80-100 \mathrm{~m}$ BGL.
17.	GWT intersection	Mining will be done above ground water level. So, ground water table will not be intersected.
18.	Drainage pattern/ water courses	The areal is mainly sloping west, north, and south direction. Mining shall be mainly below the general ground level with only one side of the pit having slope along hill and other side will remain open. Such situation does not

EXECUTIVE SUMMARY
Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and $2,50,000$ MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed

Source: Approved Mining Plan

E.2. Description of Project

The lease area is being worked since June 2016 i.e., after getting the environmental clearance from designated authority. Further, it is proposed to continue systematic and scientific mining for excavation of dolomite and road metal and masonry stone/building stone during the next plan period of mining scheme. It was proposed in the last mining pian to make benches of $6 \mathrm{~m} \times 6 \mathrm{~m}$ but keeping in view the type of formation and boom height of Machines benches of $10 \times 10 \mathrm{~m}$ are proposed to be made. During all these years only dolomite production was made, and no building stone was reported to mined.
At present fully mechanized method of mining of Dolomite by deploying heavy earth moving machines and deep hole drilling and blasting by forming benches of $10 \mathrm{~m} \times 10 \mathrm{~m}$ from top downward. Now it proposed to mine 325000 MT (250000 MT of Stone +75000 MT of Dolomite) per annum or $1083 \mathrm{MT} /$ day. The production targets for Dolomite as proposed the approved mining plan were followed. Necessary permission for mechanized mining under MMR 1961 from competent Authority has aiready obtained. The same will continue in the next five-year plan also. The formation of benches shall be continued up to the ultimate pit limit after the drilling and blasting of the bench. The boulders shall be sized with the help of rock breaker, excavated, and loaded in the trucks/dumpers by hydraulic excavators. The mining operations will continue as were done during the last five years.
There was only a little quantity of soil was generated during the plan period which was used for reclamation/plantation purpose.
In addition to it, entire mineral produced was saleable. Therefore, no overburden/waste was stacked during the plan period.

Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh District State Haryana proposed
No rejects generated during the plan period. Further about 2% mineral production will come under the category of rejects as there are thin, soft layers of calc schist within the bed rock which are not fit as road metal/crushed material.

Table E-3: Second Five Year Production Details (in MT)

Year	Bench level mRL	Production of Dolomite	Production of Stone Masonry Stone)	Total Production in MT
$6^{\text {th }}$ Year	$352,333,310,300,290$	75000	250000	325000
$7^{\text {th }}$ Year	$310,300,290$	75000	250000	325000
$8^{\text {th }}$ Year	$310,300,290,280$	75000	250000	325000
$9^{\text {th }}$ Year	$310,300,290,280 \& 270$	75000	250000	325000
$10^{\text {th }}$ Year	$310,300,290,280,270 \& 260$	75000	250000	325000

Source: Approved Mining Plan

E.3. Description of Baseline Environment

Environmental data has been collected during pre-monsoon season i.e., March to May 2023 in accordance with the guidelines for preparation of EIA studies.

Table E-4: Baseline Status

Parameters	Baseline Status
Ambient Air Quality	PM ${ }_{10}$ particulate matter 10 varies from $42 \overline{\mu g / m^{3}}$ to $82 \mu \mathrm{~g} / \mathrm{m}^{3}$. PM $\mathrm{M}_{2.5}$ was observed between $15 \mu \mathrm{~g} / \mathrm{m}^{3}$ to $34 \mu \mathrm{~g} / \mathrm{m}^{3}$. SO_{2} was varying from $5.8 \mu \mathrm{~g} / \mathrm{m}^{3}$ to $11.6 \mu \mathrm{~g} / \mathrm{m}^{3}$. NOX was observed from 10.1 $\mu \mathrm{g} / \mathrm{m}^{3}$ to $16.0 \mu \mathrm{~g} / \mathrm{m}^{3}$ in the study area. CO was observed from $0.41 \mathrm{mg} / \mathrm{m}^{3}$ to $1.12 \mathrm{mg} / \mathrm{m}^{3}$ in study area.
Noise Level	The Sound Pressure Level recorded during the daytime on all locations varies from $38.6 \mathrm{~dB}(\mathrm{~A})$ to $56.4 \mathrm{~dB}(\mathrm{~A}) \&$ in time it varies between $29.3 \mathrm{~dB}(\mathrm{~A})$ to 40.2 $d B(A)$.
Ground Water	All the parameters were observed well within permissible limits for drinking water standard 10500:2012. pH (7.2 to 7.7), TDS ($723 \mathrm{mg} / \mathrm{l}$ to $1361 \mathrm{mg} / \mathrm{l}$), alkalinity ($160.0 \mathrm{mg} / \mathrm{l}$ to $360.0 \mathrm{mg} / \mathrm{l}$), Total Hardness $(295.7 \mathrm{mg} / \mathrm{l}$ to 472.8 mg / I), Calcium as $\mathrm{Ca}(62.4 \mathrm{mg} / \mathrm{l}$ to $89.3 \mathrm{mg} / \mathrm{l})$, Magnesium as $\mathrm{Mg}(34.0 \mathrm{mg} / \mathrm{l}$ to $60.8 \mathrm{mg} / \mathrm{l})$, Chloride ($209.3 \mathrm{mg} / \mathrm{l}$ to $451.0 \mathrm{mg} / \mathrm{l}$) \& Sulphate $(54.0 \mathrm{mg} / \mathrm{l}$ to $120.0 \mathrm{mg} / \mathrm{l}$) parameters were analysed.
Surface Water	The pH was varying between 7.2 to 7.8 . Dissolved Oxygen of the sources was varying between 6.2 to 7.1. Total Coliform is meeting to Class B which denotes as Outdoor bathing (Organized).
Soil Quality	The soil was predominantly Loamy in the study area. The pH was ranges 7.2 to 8.0. The conductivity was varying from $319 \mu \mathrm{mhos} / \mathrm{cm}$ to $418 \mu \mathrm{mhos} / \mathrm{cm}$. Organic Carbon was varying from 0.3% to 0.51%. Nitrogen was varying from $138 \mathrm{~kg} / \mathrm{ha}$ to $193 \mathrm{~kg} / \mathrm{ha}$. Phosphorous was varying from $15 \mathrm{~kg} / \mathrm{ha}$ to $21 \mathrm{~kg} / \mathrm{ha}$. Potassium was varying from $109 \mathrm{~kg} / \mathrm{ha}$ to $124 \mathrm{~kg} / \mathrm{ha}$.
Meteorology	The maximum temperature recorded during the study period was $43.1^{\circ} \mathrm{C}$ in the month of May and the minimum temperature was $14.6^{\circ} \mathrm{C}$ in the month of March. The average wind speed recorded was $3.0 \mathrm{~m} / \mathrm{sec}$. Predominant wind direction during the study period was mainly North-West to South-East followed by west to east.

PROPONENT CONSULTANT

M/S XANOY MINES AND MINERALS
PARIVESH ENYIRONMENTAL ENGINEERING SERVICES
NABET /EIA/2124/IA 0092(Rev.01)

E.4. Anticipated Environmental Impact and Mitigation Measures

The proposed mining operations are not anticipated to raise the concentration of the pollutants beyond prescribed limits. However, the measures are suggested to mitigate any harmful impacts of pollutants like plantation of trees along haul roads, especially near settlements, to help to reduce the impact of dust on the nearby villages; planning transportation routes of mined material to reach the nearest paved roads by shortest route; regular water sprinkling on unpaved roads to avoid dust generation during transportation etc. Summarized key points are given below.
\checkmark Transportation of mineral should be minimized in the morning and evening and cannot be done in night.
\checkmark The impact on the present noise levels due to mining operations will be restricted to the work zone areas only.
\checkmark The impact on the ambient noise levels will not be felt at the settlement areas due to masking effect with the existing noise levels.
\checkmark There will be no impact on water environment due to mining and there is no intersection of water table due to mining activity.
\checkmark There will be no wastewater generation from the proposed mining activity except sanitary wastewater generation that will be treated in septic tanks and will be used for plantation purpose.
\checkmark No mining will be carried out during the rainy season to minimize impact on aquatic life. The local people have been provided with either direct employments or indirect employment such as business, contract works and development work like roads, etc. and other welfare amenities such as medical facilities, conveyance, free education, drinking water supply etc. Except dust generation, there is no source which can show la probability for health-related diseases.
\checkmark Regular water sprinkling will be done with sprinkle mounted tankers and dust masks will be provided to the workers.
\checkmark Medical camps will be organized for this activity. Insurance of all employees as per the rules will also be carried out.

E.5. Analysis of Alternative

The Ministry of Environment, Forest, and Climate Change (MOEF\&CC), Govt. of India through its notification of 14th September 2006 and its subsequent amendment under the Environment (Protection) Act, 1986 classifies the projects under Non-Coal Mining Category 'B' of Activlty 1(A). This is a project of minor mineral over an area of 4.80 ha which is $<5 \mathrm{Ha}$ and complying to Cat B2 of activity 1(A). But there are 2 more mines within 500 m from lease which is forming cluster of $\mathbf{1 2 . 2 6 ~} \mathrm{Ha}$, so the project is complying to the Cat $\mathbf{B - 1}$ of Activity $\mathbf{1 (A)}$.
It is an existing mine which was got environment clearance from SEIAA, Haryana under category B2. As now, cluster is available, and 2 mines are in cluster covering $\mathbf{1 2 . 2 6}$ ha. The mineral is site specific, so no alternative site was identified.

E.6. Environmental Monitoring Program

To maintain the environmental quality within the stipulated standards, regular monitoring of various environmental components is necessary which will have complied as per conditions. For this the lessee has taken decision to formulate an Environment Policy of the mine and constitute an Environmental Management Cell and committed to operate the proposed mine with the objectives mentioned in approved Environment Policy. A budget for monitoring of Air, water, Noise and Soil will be Rs. $\mathbf{0 . 6 0}$ Lakhs per annum which is to be incurred by the project proponent for undertaking pollution prevention measures during the mining activity.

E.7. Additional Studies

Risk assessments will help mine operators to identify high, medium, and low risk levels. This is a requirement of the Occupational Health and Safety Act 2000. Risk assessments will help to priorities the risks and provide information on the need to safely control the risks. In this way, mine owners and operators will be able to implement safety improvements. Mining and allied activities are associated with several potential hazards to both the employees and the public at large. A worker in a mine will be able to work under conditions, which are adequately safe and healthy. At the same time the environmental conditions also will not impair his working efficiency. This is possible only when there is adequate safety in mines. Hence mine safety is one of the most essential aspects of any working mine. This plantation will be done at selected places only and only local species will be used in the plantation. This mining project has positive impact on social and economic wellbeing of the community because this project provides employment opportunities to local people and many social welfares works done by project proponent.

E.8. Project Benefit

The management will recruit the semi-skilled and unskilled workers from the nearby villages. The project activity and the management will support the local Panchayat and provide other form of assistance for the development of public amenities in this area. The company management will contribute to the local schools, dispensaries for the welfare of the villagers.
\checkmark About 1.584 ha area will be used for greenbelt. Plantation will be done in first two years for 2047 trees/ year (Within lease area- 1980 Plants \& Haul Road, Approach Road - 67 Plants) \& its maintenance will be done in next 3 years. Remaining trees will be planted in nearby villages road or schools and others. It will prove an effective pollution mitigate technique and help avoid soil erosion during monsoon season.
\checkmark Employment opportunities will be provided to the locals only as providing extraction of minerals from the mine site is the only prevailing occupation for them for their livelihood.
\checkmark An annual budget for corporate environmental activities also has been assessed of $1,26,000$ per year.
\checkmark The mining activities as proposed are the backbone of all construction and infrastructure projects as the raw material for construction is made available only from such mining.

E.9. Environment Management Plan

As per Above discussion there is no measure impact on the environment due to mining except fugitive emission in the form of dust generated during handling of mineral. The adequate

[^6]Environment Clearance (EC) for Mining of Minor Mineral - Dolomite \& Stone (Road Metal \& Masonry Stone) from Donkhera Dolomite Mine with production capacity 3,25,000 MTPA (75,000 MTPA of Dolomite and 2,50,000 MTPA of Stone (Road Metal \& Masonry Stone)) over an area of 4.80 ha located at Donkhera Village, Nangal Chaudhary Tehsil, Mahendragarh

District State Haryana proposed
preventive measures will be adopted to contain the various pollutants within permissible limits. Pdantation development will be carried out along the approach roads, around Govt. buildings etc. It will prove an effective pollution mitigate technique and help avoid soil erosion during monsoon season. Employment opportunities will be provided to the locals only as providing extraction of minerals from the mine site is the only prevailing occupation for them for their livelihood.
A budget for Environmental Monitoring Plan, Environmental Management Plan \& Occupational Health and Safety also has been proposed, which is estimated as $₹ \mathbf{1 4 , 0 0 , 0 0 0}$ as a Capital cost and ₹ 4,80,000 as a Recurring annual cost for plan period.

E.10. Conclusion

From the baseline study and various discussion on probable impacts of all the operational activity, it has been concluded that this project will more positively impact and will generate the revenue and employment in the area. On the above facts and baseline study, the proposed activity is recommended for the commencement with proper mitigation measure as suggested.

कार्यकारी सारांश

 गांव डोनखेरा, तहसील नांगल चौधरी, जिला महेंद्रगढ़, राज्य हरियाणा में स्थित 4.80 हेक्टेयर क्षेत्र में $3,25,000$ एमटीपीए (75,000 एमटीपीए डोलोमाइट और $2,50,000$ एमटीपीए पत्थर (सड़क धातु और चिनाई पत्थर)) की उत्पादन क्षमता वाली डोनखेरा डोलोमाइट खदान से लघु खनिज - डोलोमाइट और पत्थर (सड़क धातु और चिनाई पत्थर) के खनन के लिए पर्यावरण मंजूरी (ईसी)खदान क्षेत्र - 4.80 हेक्टेयर (ग्राम पंचायत भूमि)

मैसर्स ज़ैंडी माइन्स एंड मिनरल्स
पर्यावरण सलाहकार परिवेश एनवायर्नमेंटल इंजीनियरिंग सर्विसेज
Nabet Certificate No. - NABET /EIA/2124/IA 0092(Rev.01)

गांव डोनखेरा, तहसील नांगल चौधरी, जिला महेंद्रगद़, राज्य हरियाणा में स्थित 4.80 हेक्टेयर क्षेत्र में $3,25,000$ एमटीपीए (75,000 एमटीपीए डोलोमाइट और $2,50,000$ एमटीपीए पत्थर (सड़क धातु और चिनाई पत्थर)) की उत्पादन क्षमता वाली डोनखेरा डोलोमाइट खदान से लघु खनिज - डोलोमाइट और पत्थर (सड़क धातु और चिनाई पत्थर) के खनन के लिए पर्यावरण मंजूरी (ईसी)

ई. कार्यकारी सारांश

ई.1. सामान्य

श्री सतवीर सिंह पुत्र स्व. बनी सिंह ग्राम कलवारी, पो. डोंगरा अहीर, तहसील नांगल चौधरी एवं जिला महेंद्रगढ़ को हरियाणा राज्य सरकार द्वारा गांव डोनखेरा, जिला महेंद्रगद में 24.30 हेक्टेयर भूमि पर 29.08.2001से बार्टीज़ और डोलोमाइट का 20 वर्ष की अवधि के लिए खनन पट्टा प्रदान किया गया है। अब यह पट्टा मेसर्स ज़ंड़ी माइन एंड मिनरल्स, जीएच 18 C, सेलिब्रिटी होम्म, पालम विहार, गुड़गांव को हस्तांतरित कर दिया गया है। खान एवं भूतत्व विभाग तथा राज्य वन विभाग से प्राप्त जानकारी के अनुसार केवल एक खसरा नंबर का हिस्सा 109 मिन जंगल/अरावली वृक्षारोपण से मुक्त है। आवेदक ने इस खसरा नंबर 109 मिन का चयन किया है जिसका क्षेत्रफल 4.80 हेक्टेयर है जो प्रतिबंधों से मुक्त है। शेष खसरा नं. 103,108 और 109 मिन जिसमें 19.50 हेक्टेयर शामिल है, जिसके बारे में कहा जाता है कि यह अराबली/वृक्षारोपण में है, इसे खान एवं भूविजान विभाग, हरियाणा को सौंप दिया गया है।

तालिका ई-1: संबंधित प्राधिकारियों से अनुमोदन/अनुमतियाँ

गांव डोनखेरा, तहसील नांगल चौधरी, जिला महेंद्रगढ़, राज्य हरियाणा में स्थित 4.80 हेक्टेयर क्षेत्र में $3,25,000$ एमटीपीए (75,000 एमटीपीए डोलोमाइट और $2,50,000$ एमटीपीए पत्थर (सड़क धातु और चिनाई पत्थर)) की उत्पादन क्षमता वाली डोनखेरा डोलोमाइट खदान से लघु खनिज - डोलोमाइट और पत्थर (सड़क धातु और चिनाई पत्थर) के खनन के लिए पर्यावरण मंजुरी (ईसी)

विषय	अनुमति/अनुमोदन विवरण
पंचायत एनओसी	खनन कार्यों के लिए डोखेरा ग्गाम पंचायत से एनओसी दिनांक 29.06.2023 द्वारा प्राप्त की गई है
स्वीकृत डीएसआर रिपोर्ट	जिला सर्वेक्षण रिपोर्ट (डीएसआर) को खान एवं भूविजान विभाग, नारनौल द्वारा 26.06.2023 को अनुमोदित किया गया था
अलापूर्ति	धूल दमन, वृक्षारोपण और धरेलू उपयोग के लिए किराए के निजी पानी टैंकरों के माध्यम से पानी की आपूर्ति की जाएगी.
विद्युत आपूर्ति	आसपास के सभी गांवों में विद्ययुत आपूर्ति उपलब्ध है। बिजली उपयोग के लिए संबंधित विभाग से अनुमति ली जाएगी.

तालिका ईError! No text of specified style in document.-2: खनन की मुख्य विशेषताएं

परियोजना प्रस्तावक

सलाहकार

गांव डोनखेरा, तहसील नांगल चौधरी, जिला महेंद्रगढ़, राज्य हरियाणा में स्थित 4.80 हेक्टेयर क्षेत्र में $3,25,000$ एमटीपीए (75,000 एमटीपीए डोलोमाइट और $2,50,000$ एमटीपीए पत्थर (सड़क धातु और चिनाई पत्थर)) की उत्पादन क्षमता वाली डोनखेरा डोलोमाइट खदान से लघु खनिज - डोलोमाइट और पत्थर (सइक धातु और चिनाई पत्थर) के खनन के लिए पर्यावरण मंजूरी (ईसी)

गांव डोनखेरा, बहसील नांगल चौधधरी, जिला महेंद्रगढ़, राज्य हरियाणा में स्थित 4.80 हेक्टेयर क्षेत्र में $3,25,000$ एमटीपीए (75,000 एमटीपीए डोलोमाइट और $2,50,000$ एमटीपीए पत्थर (सइक धातु और चिनाई पत्थर)) की उत्पादन क्षमता वाली डोनखेरा डोलोमाइट खदान से लघु खनिज - डोलोमाइट और पत्थर (सड़क धातु और चिनाई पत्थर) के खनन के लिए पर्यावरण मंजूरी (ईसी)

क्र.सं.	पैरामीटर	विवरण		
		पिछती खनन योजना में 10×10 मीटर की बेंच बनाने का प्रस्ताव था। इन सभी वर्षों के दौरान केवल डोलोमाइट का उत्पादन किया गया, और किसी मी इमारती पत्थर के खनन की सूचना नहीं मिली। वर्तमान में भारी अर्थ मूविंग मशीनों को तैनात करके और ऊपर से नीचे की ओर 10×10 मीटर को बेंच बनाकर गहरे छेद की ड्रिलिंग और ब्लास्टिंग करके डोलोमाइट के खनन की पूरी तरह से मशीनीकृत विधि है। अब इसने प्रति वर्ष $3,25,000$ मीट्र्रिक टन ($2,50,000$ मीट्रिक टन पत्थर $+75,000$ मीट्रिक टन डोलोमाइट) या 1083 मीट्रिक टन/दिन खनन करने का प्रस्ताव रखा है। प्रस्तावित अनुमोद्दित खनन योजना के अनुसार डोलोमाइट के उत्पादन लक्ष्ट्य का पालन किया गया। एमएमआर 1961 के तहत मशीनीकृत खनन के लिए सक्षम प्राधिकारी से आवश्यक अनुमति पहले ही प्राप्त कर ली गई है। अगली पंचवर्षीय योजना में भी यही जारी रहेगा. बेंच की ड्रेलिंग और ब्लास्टिंग के बाद बेंच का निर्माण अंतिम गड्ढे की सीमा तक जारी रखा जाएगा। रॉक ब्रेकर की मदद से बोल्डर को आकार दिया जाएगा, खुदाई की जाएगी और हाइडोलिक उत्खननकर्ताओं द्वारा ट्रकों/डंपरों में लोड किया जाएगा। खनन कार्य वैसे ही जारी रहेंगे जैसे दिछले पांच वर्षों के दौरान हुए थे। खनिज के दोहन हेतु यंत्रीकृत ओपनकास्ट खनन पद्धति को अपनाने का प्रस्ताव है। खनिज को हटाने के लिए ड्रिलिंग और ब्लास्टिंग की आवश्यकता होगी। खनन विधि में विस्फोटकों के साथ चट्टानों को तोड़ना, उत्खननकर्ताओं के साथ सामग्री लोड करना और इंपरों के साथ दुलाई शामिल है।		
16.	खनन की अंतिम गहराई	92.0 एम बीजीएल		
17.	भूजल स्तर	योजना अवधि के अंत में खनन की अंतिम गहराई 92.0 मीटर होगी। पट्टा क्षेत्र के आसपास सामान्य जल स्तर 80-100 मीटर बीजीएल है।		
18.	जीडब्ल्यूटी कटाव	खनल भूजल स्तर से ऊपर किया जाएगा। इसलिए, भूजल स्तर में अंतर नहीं आएगा।		
19.	जल निकासी पैटन/जल पाठ्यक्रम	यह क्षेत्र मुखुयतः पश्चिम, उत्तर एवं दक्षिण दिशा की ओर झुका हुआ है। खनन मुख्य रूप से सामान्य जमीनी स्तर से नीचे होगा, गड्ढे के केवल एक तरफ पहाड़ी के साथ ढलान होगी और दूसरा हिस्सा खुला रहेगा। ऐसी स्थिति में जल संचय की कोई आवश्यकता नहीं है क्योंकि गड्ढे के दूसरे खुले हिस्से से प्राकृतिक जल निकासी उपलब्ध होगी। हालॉंकि, जैसे-जैसे खदान आगे बढ़ती है और खनन सामान्य जमीनी स्तर से नीचे जारी रहता है, जैसा कि पट्टा अवधि के दौरागन परिकल्पना की गई है, खनन क्षेत्र एक अवसाद बन जाएगा, जिससे बरसात के मौसम में पानी जमा हो सक्ता है। ऐसे पानी के जमाव को रोकने के लिए एक योजना प्रस्तावित है।		
20.	जल की आवश्यकता एवं स्रोत	पानी का स्रोत निजी जल टैंकर हैं। जल को आवश्यकता का विवरण इस प्रकार है:		
		क्र.सं.	विवरण	माँग
		1	पीना और घरेलू	1.0
		2	हरित फट्टी/वृक्षारोपण	4.1
		3	धूल दमन	5.3
			कुल	10.3 KLD
21.	परियोजना की लागत	परियोजना के $10.85 \text { करोइ }$	लागत रु. प्रस्तावित पट्टा के आधार पर किराए पर लिए	मरीनरी सहित

सोतः अनुमोदित खनन योजना

गांव डोनखेरा, तहसील नांगल चौंधरी, जिला महेंद्रगढ़, राज्य हरियाणा में स्थित 4.80 हेक्टेयर क्षेत्र में $3,25,000$ एमटीपीए (75,000 एमटीपीए डोलोमाइट और $2,50,000$ एमटीपीए पत्थर (सइक धातु और चिनाई पत्थर)) की उत्पादन क्षमता वाली डोनखेरा डोलोमाइट खदान से लघु खनिज - डोलोमाइट और पत्थर (सडक धातु और चिनाई पत्थर) के ख़नन के लिए पर्यावरण मंजूरी (ईसी)

ई.2. परियोजना विवरण

नामित प्राधिकारी से पर्यावरण मंजूरी मिलने के बाद जून 2016 से पट्टा क्षेत्र पर काम किया जा रहा है। इसके अलावा, खनन योजना की अगली योजना अवधि के दौरान डोलोमाइट और सड़क धातु और चिनाई पत्थर/भवन पत्थर की खुदाई के लिए व्यवस्थित और वैज्ञानिक खनन जारी रखने का प्रस्ताव है। पिछ्वली खनन योजना में 6 मीटर $\times 6$ मीटर की बेंच बनाने का प्रस्ताव था, लेकिन मशीनों के निर्माण के प्रकार और दूम की ऊंचाई को ध्यान में रखते हुए 10×10 मीटर की बेंच बनाने का प्रस्ताव है। इन सभी वर्षों के दौरान केवल डोलोमाइ्ट का उत्पादन किया गया, और किसी भी इमारती पत्थर के खनन की सूचना नहीं मिली।
वर्तमान में भारी अर्थ मूविंग मशीनों को तैनात करके और ऊपर से नीचे की ओर 10 मीटर $\times 10$ मीटर की बेंच बनाकर गहरे छेद की ड्रिलिंग और ब्लास्टिंग करके डोलोमाइट के खनन की पूरी तरह से मशीनीकृत विधि है। अब इसमें प्रति वर्ष 325000 मीट्रिक टन (250000 मीट्रिक टन पत्थर +75000 मीट्र्रिक टन डोलोमाइट) या 1083 मीट्रिक टन/दिन खनन करने का प्रस्ताव है। प्रस्तावित अनुमोदित खनन योजना के अनुसार डोलोमाइट के उत्पादन लक्ष्य का पालन किया गया। एमएमआर 1961 के तहत मशीनीकृत खनन के लिए सक्षम प्राधिकारी से आवश्यक अनुमति पहले ही प्राप्त कर ली गई है। अगली पंचवर्षीय योजना में भी यही जारी रहेगा. बेंच की ड्रिलिंग और ब्लास्टिंग के बाद बेंच का निर्माण अंतिम गड्ढे की सीमा तक जारी रखा जाएगा। रॉक ब्रेकर की मदद से बोल्डर को आकार दिया जाएगा, खुदाई की जाएगी और हाइड्रोलिक उत्खननकर्ताओं द्वारा ट्रकों/उंपरों में लोड किया जाएगा। खनन कार्य वैसे ही जारी रहेंगे जैसे पिछले पांच वर्षों के दौरान हुए थे।
योजना अवधि के दौरान केवल थोड़ी मात्रा में मिट्टी उत्पन्न हुई थी जिसका उपयोग पुनर्ग्रहण/वृक्षारोपण उद्देश्य के लिए किया गया था। इसके अतिरिक्त, उत्पादित संपूर्ण खनिज बिक्री योग्य था। इसलिए, योजना अवधि के दौरान कोई भी अतिरिक्त बोझ/कचरा जमा गहीं किया गया।
योजना अवधि के दौरान कोई अस्वीकरण उत्पन्न नहीं हुआ। इसके अलावा लगभग 2% खनिज उत्पादन अस्वीकृत की श्रेणी में आएगा क्योंकि चट्टान के भीतर कैल्क शिस्ट की पतली, नरम परते हैं जो सड़क धातु/कुचल सामग्री के रूप में उपयुक्त नहीं हैं।

तालिका ईError! No text of specified style in document.-3: दूसरे पंचवर्षीय उत्पादन विवरण (एमटी में)

वर्ष	बेंच लेवल एमआरएल	डोलोमाइ़ का उत्पादन	पत्थर का उत्पादन (सड़क धातु और चिनाई पत्थर)	कुल इत्पादन मीट्रिक टन में
$6^{\text {th वर्ष }}$	$352,333,310,300,290$	75000	250000	325000
$7^{\text {th }}$ वर्ष	$310,300,290$	75000	250000	325000
$8^{\text {th }}$ वर्ष	$310,300,290,280$	75000	250000	325000
$9^{\text {th }}$ वर्ष	$310,300,290,280 \& 270$	75000	250000	325000
$10^{\text {th }}$ वर्ष	$310,300,290,280,270 \& 260$	75000	250000	325000

स्रोतः अनुमोदित खनन योजना

ई.3. आधारभूत पर्यावरण का विवरण

ईआईए अध्ययन की तैयारी के लिए दिशानिर्देशों के अनुसार प्री-मॉनसून सीज़न यानी मार्च से मई 2023 के दौरान पर्यावरणीय डेटा एकत्र किया गया है।

तालिका ईError! No text of specified style in document.-4: आधारमूत स्थिति

पैरामीटर	आधारभूत स्थिति	
परिवेशी वायु गुणवता	PM10 पार्टिकुलेट मैटर $1042 \mu \mathrm{~g} / \mathrm{m} 3$ से $82 \mu \mathrm{~g} / \mathrm{m} 3$ तक है। PM2.5 $15 \mu \mathrm{~g} / \mathrm{m} 3$ के बीच देखा गया।	से $34 \mu \mathrm{~g} / \mathrm{m} 3$
परियेजना प्रस्तावक सलाइकार	मैसर्स ज़ैंडी माइन्स षंड मिनरल्स परिवेश एनवायर्नमेंटल 亏亏ंजीनियरिंग सर्विसेज (NABET /EIA/2124/IA 0092(Rev.01))	

गांव डोनखेरा, तहसील नांगल चौंधरी, जिला महेंद्रगढ़, राज्य हरियाणा में स्थित 4.80 हेक्टेयर क्षेत्र में $3,25,000$ एमटीपीए (75,000 एमटीपीए डोलोमाइट और $2,50,000$ एमटीपीए पत्थर (सड़क धातु और चिनाई पत्थर)) की उत्पादन क्षमता वाली डोनखेरा डोलोमाइट खदान से लघु खनिज - डोलोमाइट और पत्थर (सइक धातु और चिनाई पत्थर) के खनन के लिए पर्यावरण मंजुरी (ईसी)

पैरामीटर	आधारभूत स्थिति
	SO2 $5.8 \mu \mathrm{~g} / \mathrm{m} 3$ से $11.6 \mu \mathrm{~g} / \mathrm{m} 3$ के बीच था। अध्ययन क्षेत्र में NOX $10.1 \mu \mathrm{~g} / \mathrm{m} 3$ से 16.0 $\mu \mathrm{g} / \mathrm{m} 3$ तक देखा गया। अध्ययन क्षेत्र में $\mathrm{CO} 0.41 \mathrm{mg} / \mathrm{m} 3$ से $1.12 \mathrm{mg} / \mathrm{m} 3$ तक देखा गया।
शोर स्तर	सभी स्थानों पर दिन के समय रिकॉर्ड किया गया ध्वनि दबाव स्तर 38.6 डीबी(ए) से 56.4 डीबी(ए) के बीच होता है और रात के समय में यह 29.3 डीबी(ए) से 40.2 डीबी(ए) के बीच होता है।
भूजल	पेयजल मानक 10500:2012 के लिए सभी पैरामीटर अनुमेय सीमा के भीतर पाए गए। पीएच (7.2 से 7.7), टीडीएस (723 मिलीग्राम/लीटर से 1361 मिलीग्राम/लीटर), क्षारीयता (160.0 मिलीग्राम/लीटर से 360.0 मिलीग्राम/लीटर), कुल कठोरता (295.7 मिलीग्राम/लीटर से 472.8 मिलीग्राम/लीटर), कैल्शियम सीए (62.4 मिलीग्राम/लीटर से 89.3 मिलीग्राम/लीटर), मैग्नीशियम एमजी के रूप में (34.0 मिलीग्राम/लीटर से 60.8 मिलीग्राम/ एल), क्लोराइड (209.3 मिलीग्राम/लीटर से 451.0 मिलीग्राम/लीटर) और सल्फेट (54.0 मिलीग्राम/लीटर से 120.0 मिलीग्राम/लीटर) मापदंडों का विश्लेषण किया गया।
ऊपरी तह का पानी	पीएच 7.2 से 7.8 के बीच था। स्रोतों की घुलित ऑक्सीजन 6.2 से 7.1 के बीच थी। टोटल कोलीफॉर्म क्लास बी से मिलता है जो आउटडोर स्नान (व्यवस्थित) के रूप में दर्शाता है।
मिट्टी की गुणवता	अध्ययन क्षेत्र में मिट्टी मुख्यतः दोमट थी। पीएच 7.2 से 8.0 के बीच था। चालकता $319 \mu \mathrm{mhos} / \mathrm{cm}$ से $418 \mu \mathrm{mhos} / \mathrm{cm}$ तक भिन्न थी। कार्बनिक कार्बन 0.3% से 0.51% तक भिन्न था। नाइट्रोजन 138 किग्रा/हेक्टेयर से 193 किग्रा/हेक्टेयर के बीच थी। फॉस्फोरस 15 किग्रा/हेक्टेयर से 21 किग्रा/हेक्टेयर तक था। पोटैशियम 109 किग्गा/हेक्टेयर से 124 किग्रा/हेक्टेयर के बीच था।
मौसम विज्ञान	अध्ययन अवधि के दौरान अधिकतम तापमान मई के महीने में $43.1^{\circ} \mathrm{C}$ और मार्च के महीने में न्यूनतम तापमान $14.6^{\circ} \mathrm{C}$ दर्ज किया गया। हवा की औसत गति 3.0 मीटर/सेकेंड दर्ज की गई। अध्ययन अवधि के दौरान प्रमुख हवा की दिशा मुख्यतः उतर-पश्चिम से दक्षिण-पूर्व और उसके बाद पश्चिम से पर्व थी।

ई. 4. प्रत्याशित पर्यावरणीय प्रभाव और शमन उपाय

प्रस्तावित खनन कार्यों से प्रदूषकों की सांद्रता निर्धारित सीमा से अधिक बदने का अनुमान नहीं है। हालाँके, प्रदूषकों के किसी भी हानिकारक प्रभाव को कम करने के लिए उपायों का सुझाव दिया गया है जैसे कि परिवहन सड़कों के किनारे, विशेष रूप से बस्तियों के पास पेड़ लगाना, ताकि आस-पास के गांवों पर धूल के प्रभाव को कम करने में मदद मिल सके; सबसे छेटे मार्ग से निकटतम पक्की सड़कों तक पहुंचने के लिए खनन सामग्री के परिवहन मार्गों की योजना बनाना; परिवहन आदि के दौरान धूल उड़ने से रोकने के लिए कच्ची सड़कों पर नियमित रूप से पानी का छिड़काव करना। संक्षेप में मुख्य बिंदु नीचे दिए गए हैं।
\checkmark खनिज का परिवहन सुबह एवं शाम के समय कम से कम किया जाए एवं रात्रि में नहीं किया जा सके।
खनन कार्यों के कारण वर्तमान शोर स्तर पर प्रभाव केवल कार्य क्षेत्र क्षेत्रों तक ही सीमित रहेगा।
\checkmark मौजूदा शोर स्तरों के साथ मास्किंग प्रभाव के कारण बस्ती क्षेग्रों में परिवेशीय शोर स्तरों पर प्रभाव महसूस नहीं किया जाएगा।
\checkmark खनन के कारण जल पर्यादरण पर कोई प्रभाव नहीं पड़ेगा और खनन गतिविधि के कारण जल स्तर में कोई अंतर नहीं आएगा।
\checkmark प्रस्तावित खनन गतिविधि से स्वच्छता अपशिष्ट जल उत्पादन को छोड़कर कोई अपशिष्ट जल उत्पन्न नहीं होगा जिसे सेट्टिक टैंकों में उपचारित किया जाएगा और वृक्षारोपण उद्देश्य के लिए उपयोग किया जाएगा।
\checkmark जलीय जीवन पर प्रभाव को कम करने के लिए बरसात के मौसम में कोई खनन नहीं किया जाएगा। स्थानीय लोगों को या तो प्रत्यक्ष रोजगार या अप्रत्यक्ष रोजगार जैसे व्यवसाय, अनुबंध कार्य और सड़क आदि जैसे विकास कार्य और अन्य

[^7]मैसर्स ज़ैंडी माइन्स एंड मिनरल्स
परिवेश एनकयन्नमेंटल इंजीनियरिंग सर्विंसेज (NABET /EIA/2124/IA 0092(Rev.01))
पृष्ठ. 6

गांव डोनखेरा, तहसील नांगल चौधरी, जिला महेंद्रगद, राज्य हरियाणा में स्थित 4.80 हेक्टेयर क्षेत्र में $3,25,000$ एमटीपीए (75,000 एमटीपीए डोलोमाइट और $2,50,000$ एमटीपीए पत्थर (सड़क धातु और चिनाई पत्थर)) की उत्पादन क्षमता वाली डोनखेरा डोलोमाइट खदान से लघु खनिज - डोलोमाइट और पत्थर (सड़क धातु और चिनाई पत्थर) के खनन के लिए पर्यावरण मंजूरी (ईसी)

कल्याणकारी सुविधाएं जैसे चिकित्सा सुविधाएं, वाहन, मुफ्त शिक्षा, पेयजल आपूर्ति आदि प्रदान की गईं हैं। धूल उत्पन्न होने के अलावा, ऐसा कोई सोत नहीं है जो स्वास्थ्य संबंधी बीमारियों की संभावना दिखा सके।
\checkmark स्प्रिंकल माउंटेड टैंकरों से नियमित पानी का छिड़काव किया जाएगा और श्रमिकों को इस्ट मास्क उपलब्ध कराए जाएंगे।
\checkmark इस गतिविधि के लिए चिकित्सा शिविरों का आयोजन किया जाएगा। सभी कर्मचारियों का नियमानुसार बीमा भी कराया जायेगा।

ई.5. विकल्प का विश्लेषण

पर्यावरण, वन और जलवायु परिवर्तन मंत्रालय (MoEF\&CC) भारत सरकार के माध्यम से 14 सितंबर 2006 की अधिसूचना और पर्यावरण (संरक्षण) अधिनियम, 1986 के तहत इसके बाद के संशोधन में परियोजनाओं को गतिविधि 1 (ए) की गैरकोयला खनज श्रेणी 'बी' के तहत वर्गीकृत किया गया है। यह 4.80 हेक्टेयर क्षेत्र में लघु खनिज की एक परियाजना है जो <5 हेक्टेयर है और गतिविधि 1 (ए) के कैट बी 2 का अनुपालन करती है। लेकिन पट्टे से 500 मीटर के मीतर 2 और खदानें हैं जो 12.26 हेक्टेयर का समूह बना रही हैं, इसलिए परियोजना गतिविधि 1 (ए) की कैट बी- 1 का अनुपालन कर रही है।

यह एक मौजूदा खदान है जिसे श्रेणी बी 2 के तहत एसईआईएए, हरियाणा से पर्यावरण मंजूरी मिली थी। क्लस्टर उपलब्ध है और 2 खदानें 12.26 हेक्टेयर क्षेत्र में क्लस्टर में हैं। खानिज स्थल विशिष्ट है, इसलिए किसी वैकल्पिक स्थल की पहचान नहीं की गई

ई.6. पर्यावरण निगरानी कार्यक्रम

पर्यावरणीय गुणवत्ता को निर्धारित मानकों के भीतर बनाए रखने के लिए विभिन्न पर्यावरणीय घटकों की नियमित निगरानी आवश्यक है जिसका अनुपालन शर्तों के अनुरूप होना चाहिए। इसके लिए पट्टेदार के खदान की पर्यावरण कीति बनाने और पर्यावरण प्रबंधन सेल गठित करने का निर्णय लिया है और प्रस्तावित खदान को अनुमोदित पर्यावरण नीति में उल्लिखित उद्देश्यों के साथ संचालित करने के लिए प्रतिबद्ध किया है। वायु, जल, शोर और मिट्टी की निगरानी के लिए बजट रु. खनन गतिविधि के दौरान प्रद्षण निवारण उपाय करने के लिए परियोजना प्रस्तावक द्वारा प्रति वर्ष 0.60 लाख रुपये खर्च किए जाने हैं।.

ई.7. अतिरिक्त अध्ययन

जोखिम मूल्यांकन से खदान संचालकों को उच्च, मध्यम और निम्न जोखिम स्तरों की पहचान करने में मदद मिलेगी। यह व्यावसायिक स्वास्थ्य और सुरक्षा अधिनियम 2000 की आवश्यकता है। जोखिम मूल्यांकन जोखिमों को प्राथमिकता देने में मदद करेगा और जोखिमों को सुरक्षित रूप से नियंत्रित करने की आवश्यकता पर जानकारी प्रदान करेगा। इस तरह, खदान मालिक और संचालक सुरक्षा सुधार लागू करने में सक्षम होंगे। खनन और संबद्ध गतिविधियाँ कर्मचारियों और बड़े पैमाने पर जनता दोनों के लिए कई संभावित खतरों से जुड़ी हैं। खदान में एक श्रमिक ऐसी परिस्थितियों में काम करने में सक्षम होगा, जो पर्याप्त रूप से सुरक्षित और स्वस्थ हों। साथ ही पर्यावरणीय परिस्थितियाँ भी उसकी कार्यकुशलता को प्रभावित नहीं करेंगी। यह तभी संभव है जब खदानों में पर्याप्त सुरक्षा हो, इसलिए खदान सुरक्षा किसी भी कार्यशील खदान के सबसे आवश्यक पहलुओं में से एक है। यह वृक्षारोपण चयनित स्थानों पर ही किया जायेगा तथा वृक्षारोपण में स्थानीय प्रजातियों का ही उपयोग किया जायेगा। इस खनन परियोजना का समुदाय के सामाजिक और आर्थिक कल्याण पर सकारात्मक प्रभाव पड़ता है क्योंकि यह परियोजना स्थानीय लोगों को रोजगार के अवसर प्रदान करती है और परियोजना प्रस्तावक द्वारा कई सामाजिक कल्याण कार्य किए जाते हैं।

गांव डोनखेरा, तहसील नांगल चौधरी, जिला महेंद्रगढ, राज्य हरियाणा में स्थित 4.80 हेक्टेयर क्षेत्र में $3,25,000$ एमटीपीए (75,000 एमटीपीए डोलोमाइट और $2,50,000$ एमटीपीए पत्थर (सइक धातु और चिनाई पत्थर)) की उत्पादन क्षमता वाली डोनखेरा डोलोमाइट खदान से लधु खनिज - डोलोमाइट और पत्थर (सड़क धातु और चिनाई पत्थर) के खनन के लिए पर्यावरण मंजूरी (ईसी)

ई.8. परियोजना लाभ

प्रबंधन आसपास के गांवों से अर्ध-कुशल और अकुशल श्रमिकों की भर्ती करेगा। परियोजना गतिविधि और प्रबंधन स्थानीय पंचायत का समर्थन करेगा और इस क्षेत्र में सार्वजनिक सुविधाओं के विकास के लिए अन्य प्रकार की सहायता प्रदान करेगा। कंपनी प्रबंधन ग्रामीणों के कल्याण के लिए स्थानीय स्कूलों, औषधालयों में योगदान देगा।
\checkmark लगभग 1.584 हेक्टेयर क्षेत्र का उपयोग ग्रीनबेल्ट के लिए किया जाएगा। पहले दो वर्षों में 2047 पेड़/वर्ष (लीज क्षेत्र के भीतर - 1980 पौधे और हॉल रोड/ एप्रों रोड - 67 पौधे) का वृक्षारोपण किया जाएगा और इसका रख्रखाव अगले 3 वर्षों में किया जाएगा। शेष पेड़ आसपास के गांवों की सड़कों या स्कूलों आदि में लगाए जाएंगे। यह प्रदूषण कम करने की एक प्रभावी तकनीक साबित होगी और मानसून के मौसम के दौरान मिट्टी के कटाव को रोकने में मदद करेगी।
\checkmark स्थानीय लोगों को रोजगार के अवसर केवल प्रदान किए जाएंगे क्योंकि खदान स्थल से खानिों की निकासी प्रदान करना उनकी आजीविका के लिए एकमात्र प्रचलित व्यवसाय है।
\checkmark कॉर्पंरिट पर्यावरण गतिविधियों के लिए वार्षिक बजट भी $1,26,000$ प्रति वर्ष आंका गया है।
\checkmark प्रस्तावित खनन गतिविधियां सभी निर्माण और बुनियादी ढांचा परियोजनाओं की रीद हैं क्योंकि निर्माण के लिए कच्चा माल केवल ऐसे खनन से ही उपलब्ध होता है।

ई.9. पर्यावरण प्रबंधन योजना

उपरोक्त चर्चा के अनुसार खनिजों के रख-रखाव के दौरान उत्पन्ज धूल के रूप में क्षणिक उत्सर्जन को छोड़कर खनन के कारण पर्यावरण पर कोई प्रभाव नहीं पडता है। विभिन्न प्रदूषकों को अनुमेय सीमा के भीतर नियंत्रित करने के लिए पर्याप्त निवारक उपाय अपनाए जाएंगे। सरकारीभवन के आसपास, संपर्क मार्गों आदि पर वृक्षारोपण विकास किया जाएगा। यह प्रदूषण कम करने की एक प्रभावी तकनीक साबित होगी और मानसून के मौसम के दौरान मिट्टी के कटाव को रोकने में मदद करेगी। स्थानीय लोगों को रोजगार के अवसर केवल प्रदान किए जाएंगे क्योंकि खदान स्थल से खनिजों की निकासी प्रदान करना उनकी आजीविका के लिए एकमात्र प्रचलित व्यवसाय है।
पर्यावरण निगरानी योजना, पर्यावरण प्रबंधन योजना और व्यावसायिक स्वास्थ्य और सुरक्षा के लिए एक बजट भी प्रस्तावित किया गया है, जिसका अनुमान पूंजीगत लागत के रूप में ₹ $14,00,000$ और योजना अवधि के लिए आवर्ती वार्षिक लागत के रूप में ₹ $4,80,000$ है।

ई.10. निष्कर्ष

आधारभूत अध्ययन और सभी परिचालन गतिविकियों के संभावित प्रभावों पर विभिन्न चर्चाओं से, यह निष्कर्ष निकाला गया है कि यह परियोजना अधिक सकारात्मक प्रभाव डालेगी और क्षेत्र में राजस्व और रोजगार उत्पन्न करेगी। उपरोक्त तथ्यों और आधारभूत अध्ययन के आधार पर, सुझाए गए उचित शमन उपाय के साथ प्रस्तावित गतिविधि शुरू करने की अनुशंसा की जाती है

Draft EIA -xandy

[^0]: M/S XANDY MINES AND MINERALS PARIVESH ENVIRONMENTAL ENGINEERING SERVICES NABFT /EIA/2124/IA 0092(Rev.01)

[^1]: M/S XANDY MINES AND MINERALS
 PARIVESH ENVIRONMENTAL ENGINEERING SERVICES
 NABFT/EIA/2124/IA 0092(Rev.01)

[^2]: ${ }^{*}$ AL - Acceptable Limit, **PL-Permissible Limits in absence of alternate sources, NR-No Relaxation

[^3]: अमाबंद्य
 न.

[^4]: 为

[^5]:

[^6]: PROPONENT
 CONSULTANT

[^7]: परियोजना प्रस्तावक
 सलाहकार

