1/253855/2024

Haryana State Pollution Control Board C-11, Sector-6, Panchkula Website - www.hspcb.org.in E-Mail - hspcb.ho@gmail.com Tele. No. - 0172-2577870-73

11-07-

To

The Director General, Information, Public Relations & Cultural Affairs Department, Haryana, Chandigarh.

Regarding conducting Public Hearing for obtaining Environment Clearance of our "Proposed Cold Rolling Mill Complex With Galvanizing and colour coating line having total Capacity of various products 7,80,000 MTPA" located at # Kila No. 4 to 24, Prithla- Tatarpur Road, Village-Tatarpur, Palwal, Haryana over ab area of 127294.69 Sq.m By Jyoti Strips Pvt. Ltd.

I have been directed to enclose herewith an advertisement regarding Public to be held on 16.08.2024 at 11:00 AM in respect to Environment Clearance for the unit M/s Jyoti Strips Pvt. Ltd. as per provision of EIA notification 2006 (amended thereof) for publication in the following leading newspapers on DAVP rates:-

- 1. One major national daily newspaper
- 2. One Regional Vernacular daily newspaper in Hindi.

The advertisement should appear on or before 15.07.2024 in the above said two newspapers only and bill of above two newspapers on DAVP rates may be sent to this office at the earliest. The bill payment of above said notice will be made for two newspapers only.

Signed by **DA/Advertisement**

Vikas Chand

Date: 12-07-2024 12:13:28 Env Engineer (HQ) For Member Secretary

CC:

A copy of the above is forwarded to the following for information and necessary action:-

- 1. Deputy Commissioner, Palwal is requested to preside over the public hearing.
- 2. The Chairman, Zila Parishad, District, Palwal.
- 3. Municipal Council / Corporation District, Palwal for display on Notice Board.
- 4. District Development and Panchayat Officer, Palwal
- 5. Deputy Director, District Industries Centre, Palwal.

DA/Advertisement.

No. HSPCB-0469POE(000144)/90/20024/9021D24W8408ITB M/ANSATGEWAENNATGEE/LENHTSCEBL-(1005)PAQBUTER No. 1078 1/253855/2024

1/253855/2024

Env. Engineer (HQ) For Member Secretary

CC:

A copy of the above is forwarded to the following alongwith copy of EIA report and Executive Summary and CD for sending the same to the concerned authorities mentioned above to place the same in their offices for consultation of the general public during office hours:-

- 1. Regional Officer, Haryana State Pollution Control Board, II-Floor, HSVP Office Complex, Near Gymkhana Club, Sector-12, Palwal-121102.
- 2. M/s Jyoti Strips Private Limited Kola No. 4 to 24, Prithla- Tatarpur Road, Village- Tatarpur, Palwal, Haryana Palwal-121102.
- 3. Sr. EE (IT) to ensure that the notice is uploaded on the website of the Board. **DA/Advertisement.**

Env. Engineer (HQ) For Member Secretar

CC:

A copy of the above is forwarded to the following for information please:-

- 1. The Additional Chief Secretary to Govt. Haryana, Environment, Forest & Wildlife Department.
- 2. The Director General, Environment, Forest & Wildlife Department, Haryana.
- 3. PS to Chairman / PA to Member Secretary.

DA/Advertisement

Env. Engineer (HQ) For Member Secretary

HARYANA STATE POLLUTION CONTROL BOARD C-11, SECTOR-6, PANCHKULA Website-www.hspcb.org.in

E-Mail- hspcbsolidwaste@gmail.com Tele Fax No. - 0172-2577870-73

Notice for Public Hearing

It is for the information of all concerned regarding conducting the Public Hearing for obtaining Environment Clearance of the "Proposed Cold Rolling Mill Complex With Galvanizing and colour coating line having total Capacity of various products 7,80,000 MTPA" located at # Kila No. 4 to 24, Prithla- Tatarpur Road, Village-Tatarpur, Palwal, Haryana over an area of 127294.69 Sq.m by M/s Jyoti Strips Pvt. Ltd. The project is covered under the ambit of Environment Impact Assessment Notification dated 14th Sep, 2006 issued by the Ministry of Environment, Forest and Climate Change Department, GOI, thus the proposed project requires to obtain Environmental Clearance. The detail of unit/project, date, time and venue of Public Hearing is given as under:

Sr. No.	Name of the project proponent	Date of Public Hearing	Time of Public Hearing		of Public aring
1.	M/s Jyoti Strips Private Limited Kola No. 4 to 24,	16.08.2024	11:00 AM	Village	Tatarpur,
	Prithla- Tatarpur Road,	. 0.00.202		Palwal,	Haryana-
	Village- Tatarpur, Palwal,			121102	•
	Haryana Palwal-121102,				
	as per TORs issued by				
	the Member Secretary,				
	State Level Environment				
	Impact Assessment				
	Authority Haryana vide				
	his letter no.				
	EIAA/HR/2023/426 dated				
	27.10.2023				

As a part of procedure for seeking the Environmental clearance, notified by the Ministry of Environment, Forest & Climate Change Department, Govt. of India, New Delhi vide Notification No. S.O. 1533 (E), dated 14.9.2006, the project proponent mentioned above have applied to the Haryana State Pollution Control Board, for conducting a Public Hearing so as to obtain views, suggestions and objection, if any, of the nearby Public on the proposed project. Copies of executive summary of the project and EIA study report, submitted by the project proponent, are available in the following officers which can be perused during office hours, on any working day:-

- 1. Deputy Commissioner, Palwal.
- 2. Regional Officer, Haryana State Pollution Control Board, , II- Floor, HSVP Office Complex, Near Gymkhana Club, Sector-12, Palwal-121102.

1/253909/2024

- 3. O/o Chairman, Zila Parishad, Palwal.
- 4. O/o Commissioner, Municipal Council, Palwal.
- 5. District Development and Panchyat Officer, Palwal.
- 6. Deputy Director, District Industries Centre, Palwal.

Notice is hereby given to all concerned to file suggestions, views, comments and objections, if any, on the proposed project, to the Chairman, Haryana State Pollution Control Board, C-11, Sector-6, Panchkula as well as Regional Officer, Haryana State Pollution Control Board, II- Floor, HSVP Office Complex, Near Gymkhana Club, Sector-12, Palwal-121102 within 30 days of the publication of this notice. Besides, a Public Hearing also will be held on the Date, Time & Venue mentioned above at the proposed site of the project, which can be attended by any person including bonafide residents, Environmental Groups, and others, located at the project site/sites of displacement/sites likely to be affected. Oral/Written suggestions, if any be admissible for attending the Public Hearing.

No TA/DA will be admissible for attending the Public Hearing.

Pardeep Kumar, IAS

Member Secretary

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 3432028/2024/医時間內 PALWAL

JYOTI STRIPS PRIVATE LIMITED

Corporate Office ▲ Varika Mindscapes, Block-B, 3rd Floor, 12/3 Maihura Road, NH-2, Sector-27D, Faridabad Haryana-121003 Phone: 0129-4323650

Phone: 0129-4323650 E-mail: md@jyotistrips.com

Date: -

To, The Member Secretary, Haryana State Pollution Control Board, C-11, Sector-6, Panchkula, Haryana 134109

Sub: - Regarding for conduction of Public Hearing with respect to Environmental Clearance of our "Proposed Cold Rolling Mill Complex with Galvanizing and colour coating line having total Capacity of Various products 7,80,000 MTPA" located at # Kila No. 4 to 24, Prit hla - Tatarpur Road, Village Tatarpur, Palwal, Haryana over an area of 127294.69 sq.m. by Jyoti Strips Pvt. Ltd.

Ref: - ToR (Terms of Reference) is issued by SEIAA, Haryana vide letter no. File No. SEIAA/HR/2023/426 dated 27.10.2023

Sir,

In regards to above, we hereby request you to kindly expedite the process of public hearing of our "Proposed Cold Rolling Mill Complex with Galvanizing and colour coating line having total Capacity of Various products 7,80,000 MTPA" located at # Kila No. 4 to 24, Prit hla - Tatarpur Road, Village Tatarpur, Palwal, Haryana over an area of 127294.69 sq.m. by Jyoti Strips Pvt. Ltd. TOR has been issued by SEIAA, Haryana of vide letter above reference. We are enclosing the following documents:-

- 10 sets of English Executive Summary.
- 10 sets of Hindi (Local language) Executive Summary.
- 10 sets of Draft EIA/ EMP Report (including Form-1 and compliance of TOR).
- 10 sets of Soft copy.
- A DD of Rs. 1,50,000 in favour of Member Secretary, Haryana State Pollution Control Board, Panchkula as fee for conduction of PH vide DD No. 193945 dated 22-Apr-2024 drawn from Yes Bank, Faridabad.

We request your good self to kindly consider the same and decide a suitable date for conduction of public hearing at the earliest.

Thanking You

Yours truly,

For Jyoti Strips Pvt. Ltd

For Tybti Strips Pyt. Ltd.

(Sahjay Batra) Signatory

Chief executive head

Encl: As above

CC:-Regional Officer, HSPCB-Palwal Region.

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 3432008/2024/医時的 PALWAL

JYOTI STRIPS PRIVATE LIMITED

Corporate Office ≜Vatika Mindscapes, Block-B, 3rd Floor, 12/3 Mathura Road, NH-2, Sector-27D, Faridabad, Haryana-121003 Phone: 0129-4323650

Phone: 0129-4323650 Email: md@jyotistrips.com

Date - 23-Apr-2024

To, The Member Secretary,

Haryana State Pollution Control Board,

C-11, Sector-6, Panchkula, Haryana 134109

Subject: Submission of DD in compliance of Public hearing Fee according to Haryana State pollution control board Fee structure

Reference: . ToR (Terms of Reference) is issued by SEIAA, Haryana vide letter no. File No. SEIAA/HR/2023/426 dated 27.10.2023

Dear Sir.

We would like to submit scrutiny fee of Rs 1,50,000/- (One Lakh 50 Thousand) in form of DD issued by Yes Bank dated 22-Apr-2024 vide DD No. 193945 for our proposed project of Cold Rolling Mill Complex with Galvanizing and color coating line having total Capacity of Various products 7,80,000 MTPA" located at # Kila No. 4 to 24, Prithla - Tatarpur Road, Village Tatarpur, Palwal, Haryana over an area of 127294.69 sq.m. by Jyoti Strips Private Limited.

We request you to please acknowledge the same

We request your good self to kindly consider the same and decide a suitable date for conduction of public hearing at the earliest.

For Jvoti Strips Pvt. Ltd.

For Ayoti Strips Pvt. Ltd.

Saniay Batra

(Chief Executive Head)

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 34 120/38//2024/R5G/BN PA WALL PROJECT: DRAFT EIA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX APPLICANT: JYOTI STRIPS PRIVATE LIMITED CONTENT DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

TABLE OF CONTENT

S. No.	CONTENTS		Page Nos.
1.	Executive Sum	mary-English	i-xix
2.	Executive Sum	mary-Hindi	i-xix
3.	TOR COMPLIA	NCE	I - XXI
4.	EIA/ EMP REP	ORT	1-219
5.	CHAPTER - 1	INTRODUCTION	1-9
6.	CHAPTER-2	PROJECT DESCRIPTION	10-32
7.	CHAPTER-3	DESCRIPTION OF THE ENVIRONMENT	33-93
8.	CHAPTER-4	ANTICIPATED ENVIRONMENTAL IMPACT & MITIGATION	94-138
		MEASURES	
9.	CHAPTER-5	ANALYSIS OF ALTERNATIVES	139-142
10.	CHAPTER-6	ENVIRONMENT MONITORING PROGRAMME	143-156
11.	CHAPTER-7	ADDITIONAL STUDIES	157-178
12.	CHAPTER-8	PROJECT BENEFITS	179-183
13.	CHAPTER-9	ENVIRONMENTAL COST BENEFIT ANALYSIS	
14.	CHAPTER-10	ENVIRONMENTAL MANAGEMENT PLAN	187-204
15.	CHAPTER-11	SUMMARY & CONCLUSION	205-212
16.	CHAPTER-12	DISCLOSURE OF CONSULTANTS ENGAGED	213-219
		ANNEXURES	
ANNEX	URE I	STANDARD TOR	220-231
ANNEX	URE II	TOPOGRAPHICAL MAP	232
ANNEX	URE III	LULC MAP	233
ANNEX	URE IV	LAND DOCUMENTS	234- 252
ANNEX	URE V	FLOOD MAP	253
ANNEX	URE VI	PLANT LAYOUT	254
ANNEX	URE VII (i)	BASELINE MONITORING REPORT	255-284
ANNEX	URE VII (ii)	BASELINE MONITORING STATION MAP	285
ANNEX	URE VIII	ENVIRONMENTAL POLICY	286-287
ANNEX	URE IX	AUTHORISED LETTER FOR CONSULTANT	288
ANNEXURE X		LIST OF DIRECTORS	289
ANNEX	URE XI	BOARD RESOLUTION	290
ANNEX	URE XII	LOCATION MAP	291
ANNEX	URE XIII	NABET CERTIFICATE	292

41/	PROJECT: DRAFT EIA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CONTENT
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

ANNEXURE XIV	OCUUPATION CERTIFICATE	293-294
ANNEXURE XV	FIRE LAYOUT	295
ANNEXURE XVI	CONTOUR MAP	296
ANNEXURE XVII	PHOTORGRAPHS OF PROPOSED SITE	297

33 J20/38 / 20/24 / RECIBIN PAL WAI
PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX
APPLICANT: JYOTI STRIPS PRIVATE LIMITED
EXECUTIVE SUMMARY
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

EXECUTIVE SUMMARY (ENGLISH) OF

"Proposed Cold Rolling Mill Complex with Galvanizing and colour coating line having total Capacity of Various products 7,80,000 MTPA" located at # Kila No. 4 to 24, Prithla -

Tatarpur Road, Village Tatarpur, Palwal, Haryana"

Project Area: -127294.69 sq.m.; Proposed Project Cost: Rs 800 Cr;

PROPOSAL FOR PUBLIC HEARING

("B" Category under activity 3(a) of EIA Notification dated 14.09.2006 and its subsequent amendments)

JYOTI STRIPS PRIVATE LIMITED

Authorized Signatory: - Sanjay Batra (Chief executive head)
Registered Address: Kila No. 4 to 24, Prithla - Tatarpur Road, Village
Tatarpur, Palwal, Haryana.

Phone No.: - 9811840212; Email: - sanjaybatra@Jyotistrips.com

ENVIRONMENTAL CONSULTANT

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

Accredited EIA Consultant Organization by NABET, QCI, New Delhi at S. No. 60 (MoEF&CC)

(List of Accredited EIA Consultant Organizations (as on 16th April, 2024);

Validity: -Up to 04.06.2024)

Corporate Office: -# 92 Heera Nagar - A, Near Shalimar Bagh,

Ajmer Road, Jaipur (Raj.). - 302 021

Phone: - 0141-4920770, 4920771;

Email: - info@enkavenviro.com; Website: - www.enkavenviro.com

0

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

2 (PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	EXECUTIVE SUMMARY
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

1.0 EXECUTIVE SUMMARY

1.1 EXECUTIVE SUMMARY

Jyoti Strips Private Limited is a Proposed Cold Rolling Mill Complex with Galvanizing and colour coating line having total Capacity of Various products 7,80,000 MTPA" located at # Kila No. 4 to 24, Prithla - Tatarpur Road, Village Tatarpur, Palwal, Haryana over an area of 127294.69 sq.m.

The proposed project is categorized under item 3(a) Metallurgical industries (ferrous & nonferrous) of Schedule, EIA Notification dated Sep 14th, 2006 and its subsequent amendments issued by MOEF&CC. The project is categorized as B-1 category. Public Hearing will be conducted as per EIA Notification 14th September' 2006 and its subsequent amendments.

1.2 ENVIRONMENTAL SETTING

S.	Particulars	Details	ls					
No.								
1.	Name of the			Rolling Mill Complex wit		d colour coat	ing line	
	Project	having to	tal Cap	acity of Various products 7	,80,000 MTPA			
2.	Applicant	,,		nte Limited				
3.	Location	located a	t # Kil	a No. 4 to 24, Prithla - Ta	atarpur Road, Vill	age Tatarpur,	Palwal,	
		Haryana.						
4.	Plot Area	127294.6	94.69 Sq.m.(No additional land is required)					
5.	Land Type	Industria	l Land					
7.	Toposheet No.	53H/3,4,	,7&8					
8.	Terrain	Flat terra	Flat terrain with Highest - 198 MSL; Lowest - 192 MSL.					
	&Elevation							
9.	Nearest	Tatarpur,	, 0.43 K	m, SE				
	Habitation							
10.	Nearest Major	Town: Pa	ılwal, 8.	17, S				
	Town							
14.	Nearest Tourist	None wit	hin the	study area.				
	Places							
15.	Defense	None wit	hin the	study area.				
	Installations							
16.	Archaeological	None wit	hin the	study area.				
	Sites							
17.	Eco-sensitive	None wit	hin the	study area.				
10	Zones	3.7 1.1	1 401					
18.	Reserved/	None wit	within 10 km from project site					
10	Protected Forest		C N	D 1	Di. (II)	D		
19.	Nearest Streams/		S. No.	Particulars	Distance (Km)	Direction		
	Rivers/ Water			YAZ - D	(From Project B	oundary		
	Bodies		4	Water B		NAME		
			1.	Pahladpur Distributary	1.15 Km	NNE		

20/38//20	PROJECT: DRAFT EIA /E	MP REPOR	r of propo	OSED COLD ROLLING MI	LL COMPLEX				
	APPLICANT: JYOTI STRI					EX	ECUTI	VE SUMMARY	
	DOCUMENT NO.: EESPL	/JSPL/IND/I	EC/2022-23	3/119					

2.	Baghaula Minor	1.70 Km	SE
3.	Ballabgarh Distributary	3.77 Km	NNE
4.	Agra Canal	4.13 Km	Е
5.	Sikri Distributary	4.35 Km	N
6.	Gaunchhi Drain	4.35 Km	W
7.	Janauli Distributary	4.68 Km	SSE
8.	Dhatir Distributary	5.59 Km	W
9.	Rampur Distributary	6.64 Km	Е
10.	Chandpur Minor	6.94 Km	W
11.	Palwal Distributary	7.82 Km,	SSE
12.	Utawar Distributary	8.76 Km	SW
13.	Sikrona Distributary	9.25 Km	NNW

(Source: All distances are taken with respect to S.O.I. GT Sheet).

20. Medical facilities and educational facilities

	Source: An distances are taken with respect to S.O.I. G1 Sheetj.										
Disp	ensary	and Govt. Hospital ar	nd education facility are g	iven below:-							
	S.	Name	Distance	Direction							
	No.		(From Project								
			Boundary)								
			Medical Facility								
	1.	Nobel Charitable Hospital - GT	1.16 Km	W							
		Road, Prithla									
	2.	ESI Dispansary Prithla	1.67 Km	WNW							
	3.	Shri Hari Hospital, Tatarpur	1.67 Km	WNW							
			Schools								
	1.	Govt Primary School Tatarpur	0.48 Km	ESE							
	2.	Govt. Primary School Jatola	0.58 Km	NNE							
	3.	BDM Public School, Tatarpur	0.66 Km	Е							
	4.	GPS Prithla	1.27 Km	W							
	5.	Govt.Girl High	1.40 Km	W							
		School Prithla									
	6.	Chotu Ram Public School Prithla	1.60 Km	WNW							
	7.	Govt Girls Sr. Sec. School, Prithla	1.70 Km	WNW							

(Source: All distances are taken with respect to S.O.I. GT Sheet).

21. Seismic Zone As per the 2002 Bureau of Indian Standards (BIS) seismic zone map of India, categorized as "High Damage Risk" Zone-IV.

2.1 BASIC REQUIREMENTS

The basic requirement for the project is given below:-

Table 2: Basic Requirements

S. No.	Particul	ars		Details		
1.	Project 7	Гуре		Greenfield		
2.	Area (Sq	ı.m)		127294.69 Sq.m (No additional land acquired).		
3.	Power	and	fuel	Phase	Demand	Source

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	EXECUTIVE SUMMARY
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

	Demand	Electricity						
		Power	15 MVA		DHBV	N		
		demand		(Neares	(Nearest GSS – 4.18 km SSE)			
		Fuel (for machinery operations)-						
		Fuel	Demand		Sourc	e		
		CNG	4441.8	GAII	GAIL (India) Limited			
			TPA	(Through pipeline)				
		Source: Power Demand is being met from AVVNL						
		Two DG set of	of 1000 KV	A will us	e in the	e emergency		
		situation/ powe	er failure.					
4.	Water requirement	Total one time V	Vater deman	d: 750 KLI)			
		Proposed-Fresh	water Dema	nd-450 KL	.D			
		(Industry: 382.5	5, Domestic: 6	57.5 KLD a	nd)			
		Recycled Water -300 KLD						
5.	Manpower	Construction	Phase	350	Nos	(direct-50,		
		indirect/contract	indirect/contractual-300); Operation Phase (direct-300,					
		indirect/contract	ctual-1700) -	2000 Nos				

3.1 PROJECT DETAILS

3.1.1 RAW MATERIALS REQUIRED ALONG WITH ESTIMATED QUANTITY, LIKELY SOURCE AND MODE OF TRANSPORTATION OF RAW MATERIALS.

Following Raw Materials will be required for the cold rolling mill complex.

Table 3 (a): List of raw materials required

S.	Raw	Proposed	Total	Source	Mode of	Remarks
No.	Material	Consu	mption		transport	
1.	HR Coil	8,40,000TPA	8,40,000TPA	from Tata steel		
		R		Limited, SAIL, Jindal Steel and Power Limited, Jindal Steel Limited	Transport ed by Trucks	Local Market

Details of Chemicals

S.No.	Chemical	Capacity		
1.	Lime	20 TPD		
2.	Caustic Soda	200 Lt/day		

3.1.2 PRODUCTS

The proposed products in the plant are given below:

Table 4: List of products

S. No.	Name	Proposed Capacity (TPA)	Total Capacity (TPA)	
a)	HRPO coils/sheets	120000	120000	
b)	Cold rolled full hard coils	60000	60000	
c)	CRCA coils/sheets	90000	90000	

PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	EXECUTIVE SUMMARY
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

d)	Galvanized/galvalume coils	240000	240000
e)	Colour coated coils	120000	120000
f)	CDW	30000	30000
g)	HR tube	30000	30000
h)	CR tube	60000	60000
i) Stamping		30000 30000	
7	Total capacity	780	,000

3.1.3 LAND USE PATTERN

The total land area is 127294.69 Sq. m.

Table 5: Land use break up

S. No.	Land Use	Area (Sq.m)	Percentage
		Proposed Area	(%)
1.	Plant Area	55219.97	43.38
2.	Paved Area (Road,	35,997.62	28.27
	Corridor,)		
3.	Green Area	36,077.10	28.35
4.	Open area	0.0	0.0
	Total	127294.69	100

The proposed green area inside the plant premises is 36077.10 sq. mtr (28.35%) with 9019 No.s of plants @ 2500 trees/ha. The deficit plantation of about 4.65% will be done in container plantation within the project site to achieve total 33% plantation as per norms.

4.1 STUDY AREA AT A GLANCE

The study area comprises of 66 villages in the (10.0 Km) of the study area. The total population of the study area is 4,80,539 accommodating 83,592 in households with an average household's size of approx. 6 members per family.

4.2 DEMOGRAPHY

Table 6: Demographic profile of the study area

S. No.	Particulars		Details		
1.	No. of Villages		66		
2.	Total Population		480539		
	a.	Male	255887		
	b.	Female	224652		
3.	No. of Households	·	83592		
4.	No. of Literates		313956		
	a.	Male	188169		
	b.	Female	125787		
5.	Main Workers	·	105992		
	a.	Male	93631		
	b.	Female	12360		
6.	Marginal Workers	<u> </u>	29782		
	a. Male		21100		
	b.	Female	8682		

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	EXECUTIVE SUMMARY
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

7.	Non-workers		344765		
	a.	Male	141156		
	b. Female		203609		

4.4 L

AND USE PATTERN OF THE STUDY AREA OF 10.0 KM RADIUS FROM THE PEOJECT SITE

Table 7: LULC Classification

Catogery	Sub.Catogery	Sum	Area In %
	Brick Kiln	246.99	0.74
Builtup	Builtup	10982.97	33.11
	Industrial Area	2411.10	7.27
Agricultural land	Cropland	9870.86	29.76
Agriculturarianu	Fallowland	7653.41	23.08
Plantation	Plantation	1702.31	5.13
Waterbody	WB	299.72	0.90
Grand T	33167.34	100	

4.5 AMBIENT AIR MONITORING

All values are in µg/m³

S. No.	Locations	Poll	utant	Minimum	Maximum	Average	98th Percentile	CPCB Standards
		PM 10	μg/m³	73.40	84.90	78.76	84.20	100
		PM2.5	μg/m3	43.60	52.60	47.79	52.33	60
1	Project site	SO ₂	μg/m3	3.13	6.12	4.49	5.88	80
		NO ₂	μg/m ³	7.15	12.14	9.10	11.85	80
		CO	μg/m³	0.21	0.51	0.34	0.50	2000
		PM 10	$\mu g/m^3$	65.40	82.40	72.38	80.08	100
		PM2.5	μg/m3	39.60	46.50	42.38	46.28	60
2	Devali	SO ₂	μg/m3	3.98	6.12	4.94	5.98	80
		NO_2	μg/m ³	7.55	13.54	10.09	13.47	80
		CO	μg/m³	0.25	0.61	0.42	0.57	2000
	Asawati	PM ₁₀	$\mu g/m^3$	64.2	77.3	70.08	76.81	100
		PM2.5	μg/m3	39.4	46.9	42.35	46.2	60
3		SO_2	μg/m3	3.98	5.81	4.85	5.81	80
		NO_2	μg/m³	8.01	12.16	9.52	11.72	80
		CO	μg/m³	0.24	0.62	0.39	0.6	2000
	Pyala	PM 10	μg/m³	64.2	76.8	70.13	75.77	100
		PM2.5	μg/m3	38.5	46.1	41.93	45.94	60
4		SO_2	μg/m3	3.36	6.86	5.16	6.74	80
		NO_2	μg/m³	7.24	14.58	11.54	14.47	80
		CO	μg/m³	0.25	0.65	0.51	0.65	2000
		PM 10	μg/m³	67.3	78.5	72.21	77.37	100
		PM2.5	μg/m3	39.5	47.3	42.56	47.08	60
5	Dundsa	SO_2	μg/m3	4.52	15.4	7.27	14.21	80
		NO_2	μg/m³	6.88	18.1	11.17	16.97	80
		CO	μg/m³	0.25	0.59	0.39	0.55	2000
		PM 10	μg/m³	66.4	73.5	70.35	73.45	100
6	Gadpuri	PM2.5	μg/m3	35.1	67.4	41.33	54.49	60
	Gaupuri	SO_2	μg/m3	3.15	7.24	4.9	6.81	80
		NO_2	μg/m³	7.25	13.12	9.98	12.96	80

O24 / RECLIBATION PALWA PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	EXECUTIVE SUMMARY
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	1

		CO	μg/m³	0.25	0.64	0.44	0.63	2000
		PM ₁₀	μg/m³	66.5	74.1	70.09	73.78	100
		PM2.5	μg/m3	35.9	43.5	39.9	43.45	60
7	Pirthala	SO_2	μg/m3	5.36	10.68	7.59	10.64	80
		NO_2	μg/m³	8.24	14.78	11.2	14.67	80
		CO	μg/m³	0.28	0.59	0.4	0.59	2000
8	Baghaula	PM 10	μg/m³	64.1	76.8	71.93	76.8	100
		PM2.5	μg/m3	36.5	47.2	41.86	46.93	60
		SO_2	μg/m3	5.34	13.4	7.7	12.37	80
		NO_2	μg/m³	8.2	16.45	11.86	15.98	80
		CO	μg/m³	0.22	0.62	0.45	0.61	2000

The results of the monitored data indicate that the ambient air quality (AAQ) of the region in general is in conformity with respect to norms of National Ambient Air Quality standards, at all locations monitored.

4.6 WATER MONITORING

Eight Ground water samples around the project Area were collected and analyzed. The analytical results are given below for various parameters as per the procedures specified in "Standard Methods for the Examination of Water and Wastewater" published by American Public Health Association (APHA).

- > The analysis results of eight ground water samples showed the pH in range of 6.92 -7.60 indicating alkaline nature of ground water.
- Color and turbidity of the samples ranged from <1 Hazens and <1 NTU respectively.</p>
- > The total hardness of the samples ranged from 132 mg/l -180 mg/l. The minimum value was observed in (GW6) and whereas the maximum value observed at (GW7).
- > Calcium and magnesium concentrations ranged from 23 -38.88 mg/l and 19.93 -26.06 mg/l respectively.
- ➤ The dissolved solids of the samples ranged from 421mg/l -598 mg/l. The maximum value was observed at G-7 and whereas the minimum value observed at G-6.
- Range of chlorides and sulphate concentrations at all the locations 102.25 mg/l -210mg/l and 15.72 mg/l -22.63 mg/l respectively.
- ➤ Fluoride concentration ranged from 0.25mg/l -0.84 mg/l.
- ➤ Nitrates are also found ranging in between 3.82mg/l -8.17mg/l.
- ➤ Iron concentrations in ground water varied from 0.11-0.16 mg/l.
- Zinc was observed <0.01 mg/l at all the locations.</p>
- ➤ Aluminum concentration is observed <0.01 mg/l at all the locations which are within the limits stipulated.

vii

Mercury concentrations at all the locations observed is <0.001 mg/l

10

VC O	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX		
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	EXECUTIVE SUMMARY	
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119		

Based on the above results, it is evident that all of the parameters in ground water fairly meet the standard limits of IS: 10500.

Surface Water: The Results of Surface water is pH-7.16 – 8.05; DO-4.7 to 5.5 mg/l and BOD- 8.2 to 22.71 mg/l & COD 39.28 to 120 mg/l.

The results obtained is compared with the standard IS:2296 Limits and found to be Class-C.

NOISE MONITORING

4.7.1 OBSERVATIONS

a) Day Time Noise Levels (Leq_{day})

The daytime (Leqday) noise levels are observed in Pirthala to be in the range of 61.1 dB(A) which are within the prescribed limit of 75 dB(A) and in residential areas to be in the range of 45.9 - 61.1 dB(A) which are within the prescribed limit of 55 dB(A).

b) Night time Noise Levels (Leq_{night})

The nighttime (Leqnight) noise levels are observed in Plant Site to be in the range of 39.1 dB(A) which are within the prescribed limit of 70 dB(A) and in residential areas to be in the range of 39.1 - 48.4 dB(A) which are within the prescribed limit of 45 dB(A).

4.8 SOIL MONITORING

Soil samples were collected at eight representative sampling locations, and the major observations are found in range of at all location:

- It is observed that the pH of the soil in the study area ranged from 7.71 to 8.23. The maximum pH value of 8.23 is observed at S-3 and whereas the minimum value of 7.71 was observed at S-4.
- The electrical conductivity was observed to be in the range of $193\mu S/cm$ to $289\mu S/cm$ with the maximum observed at S-2 and the minimum observed at S-8.
- The phosphorus values range between 8.7 to 16.2 kg/ha. Indicating that the phosphorus content in the study area falls in medium category.
- The potassium values range between 30.0 to 45.0 mg/100gm.

The result obtained is compared with the standard soil classification given Agriculture Soil Limits. It has been observed that the soils are Sandy loam in texture and slightly alkaline in nature. The nutrient and organic matter contents are medium to average sufficient and the soil is normally fertile.

viii

4.9 BIOLOGICAL ENVIRONMENT

4.9.1 FLORA

The main species of flora found in core and buffer zone are as follows:-

PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	EXECUTIVE SUMMARY
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

Flora					
Core Zone	Buffer Zone				
	Grasses -6 Species				
Tree –12 Species	Shrubs & herbs -54 species				
11ee -12 Species	Climber- 2 Species				
	Tree –35 Species				

4.9.2 FAUNA

The main species of fauna found in core and buffer zone are as follows:-

Fauna						
Core Zone	Buffer Zone					
Amphibian – 0 Species	Amphibian - 4 Species					
Reptiles - 02 Species	Reptiles - 04 Species					
Avifauna - 07 Species	Avifauna - 31 Species					
Mammals - 02 Species	Mammals - 08 Species					
Butterflies-0species	Butterflies-0 species					

5.0 IDENTIFICATION OF HAZARDS AND MITIGATION MEASURES

Hazard identified:

The main hazard potentials in the proposed dye and dye manufacturing Plant Facility are categorized as below: -

- Process Hazards Due to loss of containment during handling of hazardous materials or processes resulting in fire, explosion, bursting of cyclones due to high pressure in the boiler, etc.
- **Mechanical Hazards** Due to "mechanical" operations such as welding, maintenance, falling objects etc. basically those NOT connected to hazardous materials.
- **Electrical Hazards -** Electrocution, high voltage levels, short circuit, etc.

Mitigation Measure

- > Regular inspection & replacement of chemical hoses.
- Maintenance system for gaskets, flange & hose connections including leak check.
- Procedure to immobilize tanker before start of unloading.
- Paved area for tanker unloading with berm for spill containment.
- > Chemical spill management system with absorbents.
- Unloading checklist and display board in local language.
- Use of PPE for unloading.

18

34 120/38//2024/KECIBN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	EXECUTIVE SUMMARY
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

6.0 AFFORESTATION PROGRAMME

			G.N.				Yea	Year wise Plantation programme		No of	Budget for	r proposed plantati	on
S.No.	Scientific Name	Common Name	S. No.in CPCB Manual	НА	HT (m)	E/D	I Yr.	II Yr.	III Yr.	Trees to be planted	Plant cost including transportation, pitting, watering and fertilizers@ Rs. 300/sapling	Maintenance cost including causality replacement and watering @ Rs 200/ plants	Total
1	Azadirachta indica	Neem	A-44	Tree	20	Evergreen	235	215	212	662	198600	132400	331000
2	Polyalthia longifolia	Ashok	P-9	Tree	15	Evergreen	210	200	212	622	186600	124400	311000
3	Albizia lebbeck	Siris	A-29	Tree	20	Deciduous	215	210	212	637	191100	127400	318500
4	Cassia fistula	Amaltash	C-7	Tree	12	Deciduous	215	210	212	637	191100	127400	318500
5	Dalbergia sissoo	Shisham	D-2	Tree	10	Evergreen	225	215	212	652	195600	130400	326000
6	Ficus religiosa	Pipal	F-7	Tree	20	Evergreen	200	215	212	627	188100	125400	313500
7	Ficus bengalensis	Bad	F-3	Tree	12	Evergreen	200	200	212	612	183600	122400	306000
8	Terminalia arjuna	Arjun	T-6	Tree	15	Deciduous	215	210	212	637	191100	127400	318500
9	Syzygium cumini	Jamun	S-20	Tree	20	Evergreen	230	215	212	657	197100	131400	328500
10	Psidium guajava	Guava	P-20	Tree	05	Evergreen	230	215	212	657	197100	131400	328500
11	Bauhinia variegata	Kachnar	B-10	Tree	05	Deciduous	215	215	212	642	192600	128400	321000
12	Aegle marmelos	Beal tree	A-22	Tree	12	Evergreen	225	210	213	648	194400	129600	324000
13	Annona squamosa	Sitaphal	A37	Tree	10	Evergreen	225	225	212	662	198600	132400	331000
14	Mangifera indica	Aam	M-5	Tree	15	Evergreen	230	225	212	667	200100	133400	333500
	Total						3070	2980	2969	9019	2705700	1803800	4509500

ENKAY ENVI APRIL'2024

34 320/38 / 20/24 / RECTION PALWAL
PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX
APPLICANT: JYOTI STRIPS PRIVATE LIMITED
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119
EXECUTIVE SUMMARY

7.0 ENVIRONMENTAL IMPACT PREDICTION AND MANAGEMENT PLAN

	Construction phase							
S.	Source	Environmental	Management Plan	Remarks				
No.		Component						
1.	Excavation,	Land	➤ Topsoil will be conserved and used for	-				
	construction, debris		landscaping.					
			➤ Reutilization and recycling of					
			construction debris					
2.	Dust emission from	Ambient Air	➤ Regular sprinkling of the water will be	Impacts will be				
	excavation, air	Quality	done along with the construction	temporary during				
	emission from		activities.	construction phase				
	machinery		➤ Periodic maintenance of construction	and confined to short				
			equipment.	distances, as coarse				
			➤ Use of good quality fuels.	particles will settle				
			> Use of Personal Protective Equipments	within the short				
				distance from				
				activities.				
3.	Surface runoff from	Water	> Silt fences to reduce run-off. Altering	No perennial surface				
	project site. Oil/fuel		the slope	water resource				
	and waste spills.		> The domestic sewage generated during	adjacent to site.				
	Improper debris,		the construction activity will be routed					
	domestic sewage		to Modular STP.					
	water							
4.	Noise generated	Noise	➤ Use of well maintained equipment.	Temporary impacts				
	from construction		> Heavy construction activity limited to	during Construction				
	activities and		day- time hours only. Use of noise	phase.				
	operation of		mufflers in and construction vehicle.					
	construction		> Use of earplugs/muffs by construction					
	equipment and DG		staff.					
	sets		Regular preventing maintenance of					
			machinery and transportation of					
			vehicles during construction to reduce					
			noise pollution.					
			> Provision of silencer, to modulate the					
			noise generated by the machine, if					
			required.					
			> Reduce the exposure time of workers to					
			the higher noise level by job rotation.					

0

PROJECT: DRAFT EIA JEMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	EXECUTIVE SUMMARY
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

5.	Construction	Aesthetic &	➤ The impacts will be compensated by	
	activities and	biological	tree plantation and gardening in the	
	Excavation		premises and along the both side of	
			rods	
6.	Construction Phase	Occupational	➤ Construction of temporary sheds for	The safety
		Health and	construction workers mobilized by the	department will
		safety	contractors.	supervise the safe
			➤ Work spots will be maintained clean,	working of the
			provided with optimum lighting and	contractor and their
			enough ventilation to eliminate	employees.
			dust/fumes.	
7.	Construction Phase	Socio- Economic	➤ Management will give preference to	Positive impact
			local people through both direct and	
			indirect employment	
			01.	

	Operation phase						
Particulars	Mitigation Measures						
A. Air Emissions: 1. Boiler (10 Ton/hr) 2. Pickling plant 3. DG Set (1000 kVA- 2 Nos)	Point Sources: 1. Boiler – 2. Pickling plant: - 3. DG Set; - Management: • Boiler (LNG Fired) having capacity of 10 TPH is attached to 30 m. stack height. • Flue gases during pickling are routed into a Twin type fume scrubber through 30.0 m stack height. • The proposed green area inside the plant premises is 36077.10 sq. mtr (28.35%) with 9019 No.s of plants @ 2500 trees/ha. The deficit plantation of about 4.65% will be done in container plantation within the project site to achieve total 33% plantation as per norms.						
B. DG Sets- 1000 kVA 2 No.	• DG Set having capacity of 2Nos.1000 KVA is attached to 30m stack height (Fuel- Natural Gas).						
C. Vehicular Emission	Emissions of vehicle exhausts include SOx, NOx, CO from combustion of fossil fuels will be envisaged for transportation of raw material and finished goods. 3000 Nos. (1500 for Raw Materials + 1500 for Finished Goods) of Vehicles is being/will be used for the project. Transportation details for proposed project is given below: Transportation Details						

34 120/38 / 2024 / REGIBAL PALVA PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX APPLICANT: JYOTI STRIPS PRIVATE LIMITED **EXECUTIVE SUMMARY** DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119 PUC certified vehicles is being /will be used; Vehicles used for transporting raw materials are driven by High Speed Diesel and vehicles used for transporting finished goods are driven by CNG >50% of vehicles. > Speed limit of 10Km/hr. is/will be maintained in the plant premises. Transportation ➤ The proposed green area inside the plant premises is 36077.10 sq. mtr (28.35%) with 9019 No.s of plants @ 2500 trees/ha. The deficit plantation of about 4.65% will be done in container plantation within the project site to achieve total 33% plantation as per norms. Good House Keeping is/ will be maintained. **Fugitive Material Handling: Emissions from** The fugitive emission during handling of Scrap, loading and unloading point, transfer materials points and storage area. handling Transportation Dust generation is envisaged as all the internal roads inside the plant premises. including storage or **Management:** Proper House Keeping is being/will be done. Sweeping of roads is being/will be done. transport (other raw All paved roads are already developed with both side of plantation. materials) Periodically, water sprinkling on paved road is being/ will moisten the surface to prevent the fugitive dust. Speed limit is also restricted up to 10 km/hr. **Odors from** Sewage / Waste: - The domestic sewage is treated within the proposed STP by using sewage Sequential batch reactor technology (Capacity-100 KLD) at plant site and treated water will be used for plantation and flushing purpose to reduce the fresh water consumption. Mitigation measure Good housekeeping is being practice and same practice will be adopted. Hazardous Hazardous Waste Quantity in TPA Treatment/ Type of Waste Schedule Code Proposed Total disposal waste Send to registered Chemical Sludge 35.3 16000 16000 generation from waste water recyclers treatment (TPA) 5.1 200 200 Used Oil or Spent 1 Send to registered recyclers Iron oxide 5.2 4000 4000 Send to registered recyclers The solid waste generation and their disposal are as follows: Solid waste Generation **Particulars** Waste Quantity in TPD Treatment/disposal Type of Waste proposed Total 0.5 Sludge STP Sludge 0.5 Used as manure for

ENKAY ENVIRO
APRIL'2024

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

TPA

Kg/day

Biodegradable

0.25

0.25

plantation

Sent to Nearest Municipal

Municipal Solid

Waste (@0.125

PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	EXECUTIVE SUMMARY
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

During Operation Phase Disposa Disposa Domestic waste wat 75 kLD treated in \$S\$ (Capacity-100kLD) at 37.5 kLD of Treated wat will be reused plantation. And 30 kl will be recycled flushing purposes. Disposa Domestic waste wat 75 kLD treated in \$S\$ (Capacity-100kLD) at 37.5 kLD of Treated wat will be recycled flushing purposes. Disposa Domestic waste wate plantation. And 30 kl will be recycled flushing purposes.		Scra Pro	-	Scrap	181.81	181.81	Sold to Local market
During Operation Phase Disposal Domestic Sewage 75 KLD Domestic waste wat 75KLD treated in \$S\$ (Capacity-100KLD) at 37.5 KLD of Treated wat will be reused plantation. And 30 Kl will be recycled flushing purposes. Disposal Domestic Sewage 75 KLD Domestic waste wat will be reused plantation. And 30 Kl will be recycled flushing purposes. Disposal Domestic Sewage 75 KLD Treated wat will be reused plantation. And 30 Kl will be recycled flushing purposes. Disposal Domestic waste water 10 km 10 k	Water	Waste	water Gene	ration is as giv	ven under:		
Domestic Sewage 75 KLD Domestic waste wat 75KLD treated in S' (Capacity-100KLD) at 37.5 KLD of Treated wat will be reused plantation. And 30 Kl will be recycled flushing purposes. Trade Effluent 318.75 KLD Stage-1: The efflue generation from industrial process 127.5 KLD will be treat in ETP-1 (160) capacity) of low COD at low TDS Stage-2: spent at coolant waste water 48.75KL will be treated 48.75KL will be treated ETP-2 (65KL Capacity) high COD and high TDS Treated water from ETF and ETP 2 will be sent WRP-RO followed by MI (ZLD plant) The overall treated water from ETF and ETP 2 will be sent water wa		S. No.	Liquid Ef	fluents	Quantity	Unit	•
generation from industrial process 127.5 KLD will be treated in ETP-1 (160) capacity) of low COD and low TDS Stage-2: spent and coolant waste water 48.75KL will be treated ETP-2 (65KL Capacity) high COD and high TDS Treated water from ETF and ETP 2 will be sent WRP-RO followed by MI (ZLD plant) The overall treated wat of 270KLD is reused aft treatment in COC Cooling Tower. No waste water will in disposed of on groun outside the plan	Operation Phase	1	Domestic	Sewage	75	KLD	Domestic waste water 75KLD treated in STP (Capacity-100KLD) and 37.5 KLD of Treated water will be reused in plantation. And 30 KLD will be recycled for
Noise Sources of Noise:				uent	318.75	KLD	generation from industrial process is 127.5 KLD will be treated in ETP-1 (160KL capacity) of low COD and low TDS Stage-2: spent and coolant waste water of 48.75KL will be treated in ETP-2 (65KL Capacity) of high COD and high TDS Treated water from ETP 1 and ETP 2 will be sent to WRP-RO followed by MEE (ZLD plant) The overall treated water of 270KLD is reused after treatment in COC to Cooling Tower. No waste water will be disposed of on ground

Noise
Pollution
During

• Fans, motors/engines, Loading/Unloading Scrap, Noise due to Heavy Equipment

PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	EXECUTIVE SUMMARY
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

Operation Operations. Phase Mitigation Measures: All equipment's will be procured meeting the permissible noise standards. The insulation provided for prevention and loss of heat and PPE will also act as noise reducer. Foundations and structures will be designed to minimize vibrations and noise. Regular equipment maintenance and better work habits is will be adopted. D.G. set is housed in an inbuilt acoustic enclosure with stack height as per CPCB norms. Necessary safety and personal protective equipment such as ear plugs, ear muffs, helmet etc will be provided to the workers. Implementation of Plantation within the premises of plant will absorb the noise. Thus will help to control the noise pollution. Proper lubrication and housekeeping will be usually done to avoid excessive noise generation. Supervisor will be responsible to control the noise by maintaining conditions of machineries and silencers. Use of ear protective devices. The proposed green area inside the plant premises is 36077.10 sq. mtr (28.35%) with 9019 No.s of plants @ 2500 trees/ha. The deficit plantation of about 4.65% will be done in container plantation within the project site to achieve total 33% plantation as per norms. The Rain water Collected from Roof Top and paved areas will be collected through Channels Rain water Harvesting and Sent to Rain water Harvesting Pits. Plan Six rain water harvesting structure are proposed with the capacity of 32.4 m3/hr. **Occupational Health Hazards:** Health and Major physical hazards in cold rolling mill plant are caused by fumes and dusts, smoke, Safety molten metal and noise. > High priority health hazards are particulates, were identified as causes of the most significant risks in the work environment.

- > Fire and explosions.

Hazards:

- **Process hazards** due to loss of containment during handling of materials or processes resulting in fire, explosion, etc.
- > Mechanical hazards due to "mechanical" operations such as welding, maintenance, falling objects etc. - basically those NOT connected to hazardous materials.
- **Electrical hazards:** electrocution, high voltage levels, short circuit, etc. Out of these, the material and process hazards are the one with a much wider damage potential as compared to the mechanical and electrical hazards, which are by and large limited to very

34 120/38 / 2024 / REGIBAL PALVA PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX **EXECUTIVE SUMMARY** APPLICANT: JYOTI STRIPS PRIVATE LIMITED DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119 small local pockets. **Mitigation Measures:** Enclose and isolate potential sources of air emissions to the work zone to the extent practical; Monitor worker exposure using personal occupational hygiene sampling devices; > Providing training and encourage good personal hygiene, and prohibiting smoking and eating at the worksite; Automate processes and material handling to the extent practical and provide enclosures for operators; **WORK AREA SAFETY & HEALTH PRECAUTIONS:** Provision of fire-resistant gloves Face & Eye protection to prevent splashing Approved respirators to prevent inhaling of fumes Provision of adequate ventilation & exhausts Adequate storing facility with defined inventory Adequate Wet scrubbing system with suitable scrubbing solution

Socio-Economic Aspect

- There is a possibility of creation of direct and indirect employment opportunities due to working of this plant.
- Direct employment of 2000 Nos to the local people which help to sustain their livelihood.
- During the operational phase by the implementation of certain CER activities indirect employment will also generate.
- Apart from this, movement of trucks for carrying raw materials in, and products around 40 Persons will get employment as Driver and Cleaner, out will bring outside workers of supply chain into the area regularly, and will provide additional business to local vendors in the form providing food, and their other day to day requirements, thus generating additional income to
- the local businesses.
- Improved livelihood.
- Training will be provided to the local persons.

Periodic Inspection of Equipment/Machinery.

Awareness programme will be organized.

Health and Safety

Health and Safety:

Following measures will be adopted in the plant: -

- Regular inspection and maintenance of Pollution Control Equipment.
- All workers related to safety such as safety appliances, training, safety awards, posters, slogans will be undertaken.
- The workers exposed to noisy sources will be provided PPE's.
- Adequate facilities for drinking water and toilets will be provided to the employees.

PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	EXECUTIVE SUMMARY
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

	The fire and safety equipment will be properly utilized and maintained regularly.
	 Company will undertake awareness program and community activities like health,
	camps, family welfare camps etc.
	Regular medical check-up of workers.
E-Waste	There is no generation of E-waste within the plant premises.
Management	
Plastic Waste	There is no generation of plastic waste within the plant premises.
Management Biological	> To mitigate adverse impact on the biodiversity and to improve habitat status of the study
Environment	area:-
Ziivii oiiiiieiic	The proposed green area inside the plant premises is 36077.10 sq. mtr (28.35%) with 9019
	No.s of plants @ 2500 trees/ha. The deficit plantation of about 4.65% will be done in
	container plantation within the project site to achieve total 33% plantation as per norms.
	 At present total 12 no. of trees/shrubs of different species are present in area.
Proposed	➤ In proposed project area plantation will be developed as per the Guidelines of MoEF & CC of
Green Area	around 2500 trees/Ha of land shall planted. Total 9019 nos. of trees will be planted.
Development	 Plantation will be done all along the road and Plant boundary and other suitable location
	within plant premises.
	> Plantation will be start along the construction work.
Techniques	Combination of plant is selected depending upon the topographical suitability and species
for Green	selected as per CPCB Guideline. The soil characteristics will be kept in mind. Based on this
Area Development	and environmental conditions suitable native plants species have been proposed for year
20,000	wise plantation programme.
Design of	Selection of plants will also take into consideration of the following factors:
Green Area	a. For absorption of gaseous emissions:
	> Tolerance towards pollutants in question, at concentrations, that are not too high
	to be instantaneously lethal, Longer duration of foliage,
	 Freely exposed foliage, through Adequate height of crown,
	 Openness of foliage in canopy,
	Big leaves (long and broad laminar surface)
	Large number of stomata apertures
	Stomata well- exposed (in level will the general epidermal surface)
	b. For the removal of suspended particulate matter:
	Height and spread of crown
	Leaves supported on firm petioles,
	 Leaves supported on firm petioles, Abundance of surface on bark and foliage, through
	 Abundance of surface on bark and foliage, through

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	EXECUTIVE SUMMARY
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

Hairs or scales on laminar surfaces Stomata protected (by was, arches/ rings, hairs, etc.) All plants selected are locally adapted, and the present site is capable of supporting their growth with suitable horticultural practices. Approx. 10 feet size (height) grown plants will be planted at a density of 2500 per Ha in suitable spacing. Around 9019 plants are proposed to be raised within first 3 years. Under proposed plantation development programme 45.09 Lacs_ budget is proposed. All plants are locally adapted and the present site is capable of supporting their growth with suitable horticultural practices. Sufficient resources and man power for development and maintenance is essential for a good plantation management. A suggested list of plant species suitable for plantation and list of Trees proposed for plantation is given below:

8.0 ENVIRONMENTAL ACTION PROGRAMME

For environment protection, management, pollution control, treatment and monitoring systems, appropriate budgetary provision would be made and provision for recurring expenditure for environment management of the project would be made. The details of budget allocation during functional phase are given in Table no:8. The breakup of the proposed cost for Environment Management Programme is given as under: -

Table 8: Cost Provision for Environmental Measures

S. No.	Description of Item	Proposed capital cost (Lacs)	Proposed Recurring cost (Lacs)	Total proposed Capital Cost (Lacs)	Total proposed Recurring Cost (Lacs)	Remarks
1	Air Emission mitigation measure adopted for point source, area source and line source	1500	500	1500	500	Twin type fume scrubber, Water sprinkling
2	Water discharge mitigation measures to maintain ZLD with effectiveness	200	20	200	20	MEE with MBR technology will be proposed
3	Rain water Harvesting	200	20	200	20	
4	Plantation Development	100	10	100	10	
5	Fire fighting	1500	150	1500	150	Firefighting equipments as per NBC code are installed and FIRE NOC will be obtained.
6	Corporate Environmental Responsibility *Any activity desired in the Final EIA /EMP report will be added.	500	50	500	50	Reduction of carbon and emission trading will be projected
Total		4000	770	4000	770	

9.0 CONCLUSION

33 320/38 / 2024 / RECEIBN PALVAL
PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX
APPLICANT: JYOTI STRIPS PRIVATE LIMITED
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119
EXECUTIVE SUMMARY

From the above discussion it can be said that the project is not likely to cause any significant impact on the ecology of the area, as adequate preventive measures will be adopted to contain the various pollutants with in permissible limits. Green area development around the area would also be taken up as an effective pollution mitigative technique, as well as to control the pollutants released from the premises of Jyoti Strips Pvt. Ltd..

"fofHkUu mRiknksa dh dqy {kerk & 7]80]000 ,eVhih,
mRiknu djus gsrq xSYoukbftax vkSj dyj dksfVax ykbu ds
lkFk dksYM jksfyax fey d,ElysDl dh çLrkfor xzhu QhYM
ifj;kstuk"

dk

dk;Zdkjh lkjka'k

fLrFk # fdyk uacj 4 ls 24] i`Fkyk rkrkjiqj jksM] xkao & rkrkjiqj]
ftyk & iyoy] gfj;k.kk] 121102

ifj;kstuk {ks=%& 127294-69 oxZ eh-] ifj;kstuk ykxr% : 800 djksM+

tu&lquokbZ gsrq çLrko

(ÃvkÃ, vfèklwpuk fnukad 14-09-2006 vkSj mlds ckn ds la'kks/kkuqlkj xfrfof/k 3¼a½ ds varxZr "B1" Js.kh esa lwphc)½ vkosnd

T;ksfr fLV^aII çkbosV fyfeVsM

çkfèk—r gLrk{kjdrkZ & lat; c=k ¼eq[; dk;Zdkjh çeq[k½ iath—r irk & fdyk uacj 4 ls 24] i`Fkyk & rrkjiqj jksM] xkao rrkjiqj] iyoy] gfj;k.kk

Qksu uacj& 9811840212 bZesy& sanjaybatra@jyotistrips.com

34 120/38/2024/REGIBN PALWA PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX **EXECUTIVE SUMMARY** APPLICANT: JYOTI STRIPS PRIVATE LIMITED DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

i;kZoj.k lykgdkj

,Uds ,Uok;jks IfoZIst ckbosV fyfeVsM] t;iqj

1/49001%2008 çekf.kr dEiuh jktLFkku jkT; çnq"k.k fu;a=.k eaMy ds lkFk "EiSuYM i;kZoj.k lykgdkj o "u,chbZVh ekU;rk çklr] 16 vçSy 2024 ds vuqlkj Øe la 60 ij lwphc)½

d,iksZjsV dk;kZy;% & 92] ghjk uxj & ,] 'kkyhekj ckx ds ikl] vtesj jksM] t;iqj & 302021 ¼jktLFkku½

Qksu uacj - 0141-4920770, 4920771;

bZesy - <u>info@enkayenviro.com</u>; Website: - <u>www.enkayenviro.com</u>

1-0 dk;Zdkjh lkjka'k

1.1 ifjp;

T;ksfr fLVall çkbosV fyfeVsM ,d çLrkfor dksYM jksfyax fey d,ElysDl gS ftlesa xSYoukbftax vkSj dyj dksfVax ykbu ls fofHkUu mRiknksa dh dqy {kerk 7]80]000 ,eVhih, dk mRiknu fd;k tkuk çLrkfor gSA ;g ifj;kstuk # fdyk uacj 04 ls 24] fçV ,p,y, & rkrkjiqj jksM] xkao rkrkjiqj] iyoy] gfj;k.kk esa fLFkr gS ftldk dqy {ks=Qy 127294-69 oxZ ehVj gSA cLrkfor ifi;kstuk dks bZvkbZ, vf/klwpuk fnukad 14 flraci] 2006 vkSi mlds ckA tkjh fd, x, la'kks/kuksa ds vkbVe 3 1/4,1/2 & /kkrgdeZ m|ksx 1/4ykSg vkSj vykSg½ ds rgr oxhZ—r fd;k x;k gSA ifj;kstuk dks ch&1 Js.kh esa oxhZ—r fd;k x;k gSA lkoZtfud tu lquokbZ bZvkbZ, vf/klwpuk 14 flracj 2006 vkSj mlds ckn ds la'kks/kuksa ds vuqlkj vk;ksftr dh tk,xhA

1.2 i;kZoj.k lek;kstu

Ø- la-	C;kSjk	fooj.k
	uds uokiks lfo7	Ist ckbosV fyfeVsM fyfeVsM1

t;iqi

अप्रैल '2024 II 20

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	EXECUTIVE SUMMARY
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

1.	ifj;kstuk dk	fofHk	:Uu m	Riknksa dh dqy {ke	erk 7]80]000	,eVhih, ds mRiknu	
	uke		djus gsrq xSYoukbftax vkSj dyj dksfVax ykbu ds lkFk çLrkfor				
		,	dksYM jksfyax fey d,ElysDl ifj;kstukA				
2.	vkosnd		T;ksfr fLV ^a ll çkbosV fyfeVsM				
3.	LFkku	_	fdyk uacj 4 ls 24] i`Fkyk rkrkjiqj jksM] xkao & rkrkjiqj] ftyk & iyoy]				
	1 11 FL N A		kk] 12				
4.	Hkw[kaM {ks=Qy	1272	94-69	oxZ eh-]			
5.	Hkwfe çdkj	vkS k	sfxd l	Hkwfe			
6.	Vksiks'khV	53H/	3,4,7&8	3			
	la[;k						
7.	/kjkry dk Lrj	lery C)wÒk	xA mPpre – 198 MS	SL] fuEure - 3	192 MSL.	
8.	fudVre cLrh	rkrkji	qj] 0-4	l3 fdeh] nf{k.k iwoZ	_		
9.	fudVre çeq[k	iyoy8	8-17	fdeh nf{k.k			
10.	'kgj fudVre i;ZVu	v/···.	Ske= c	esa dksbZ ughaA			
10.	LFky	v/,,u	\NS- C	ssa uksbz ugnaA			
11	•		الده = ۱۵	an diah7 uaha A			
11.	•	v/;;u {ks= esa dksbZ ughaA					
12	bUIVkWys'ku						
12.	iqjkrRo egRo	v/;;u {ks= esa dksbZ ughaA					
	dk LFkku	,					
13.	ifjfLFkfr dh	v/;;u	$\{ks = \epsilon\}$	esa dksbZ ughaA			
	laosnu'khy)]				
	{ks=						
14.	vkjf{kr@lajf{kr	v/;;u ·	{ks= e	esa dksbZ ughaA			
	ou {ks=				1		
15	fudVre		Ø- la-	fooj.k	nwjh ¼fdeh½	fn'kk ¼fdeh	
	unh@tyk'k;		ıa-		1/4ifj;kstuk	lhek Is¹⁄₃)	
		ty Ifefr					
			1.	igykniqj forj.kh		mÙkj mÙkj	
					1.15	iwoZ	
			2.	c?kkSyk ekbuj	1.70	nf{k.k iwoZ	
			3.	cYycx<	3.77	mÙkj mÙkj	
				fMLV ^a hC;wVjh	3.77	iwoZ	

0

,uds ,uok;jks lfoZlst çkbosV fyfeVsM fyfeVsM]

t;iqj

अप्रैल '2024

עוו		
VŒ	"PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	EXECUTIVE SUMMARY
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

4.	vkxjk ugj	4.13	iwoZ
5.	lhdjh forfjdk	4.35	mÙkj
6.	xkSaNh ukyh	4.35	if'pe
7.	tukSyh forfjdk	4.68	nf{k.k nf{k.k
		4.00	iwoZ
8.	/krhj forfjdk	5.59	if'pe
9.	jkeiqj forfjdk	6.64	iwoZ
10	pkaniqj ekbuj	6.94	if'pe
11	iyoy forfjdk	7.82	nf{k.k nf{k.k
		7.02	iwoZ
12	mVkoj forfjdk	8.76	nf{k.k if'pe
13	fldjksuk forfjdk	9.25	mÙkj mÙkj if'pe

¼lzksr: ,lvksvkbZ thVh 'khV ds lacaèk esa lHkh nwfj;ka yh xbZ gSa½A

16.	tptdRlk	
	lqfo/kk	vkSj
	fo ky;	

uke	nwjh	fn'kk		
	(Km)			
	⅓ifj;kst	uk lhek ls½		
fpfdRlk lqfd	o/kk			
ukscsy pkSfjVscy vLirky & thVh	1.16	if'pe		
jksM] i`Fkyk				
bZ,lvkbZ fMLisaljh i`Fkyk	1.67	if'pe mÙkj		
		if'pe		
Jh gfj vLirky] rkrkjiqj	1.67	if'pe mÙkj		
		if'pe		
f'k{k.k lqfo/	f'k{k.k lqfo/kk,a			
jktdh; çkFkfed fo ky; rrkjiqj	0.48	iwoZ nf{k.k		
		iwoZ		
ljdkj- çkFkfed fo ky; tVksyk	0.58	mÙkj mÙkj		
		iwoZ		
chMh,e ifCyd Ldwy] rkrkjiqj	0.66	iwoZ		
thih,l i`Fkyk	1.27	if'pe		
jktdh; dU;k mPp fo ky; i`Fkyk	1.40	if'pe		
NksVw jke ifCyd Ldwy i`Fkyk	1.60	if'pe mÙkj		
		if'pe		
ljdkjh xyZ~l lhfu;j lsdsaMjh Ldwy]	1.70	if'pe mÙkj		
i`Fkyk		if'pe		
1/lzker% lykeykh7 th\/h \kh\/ de	· lacaòk oc	a IUkh pwfi:ka		

1/4lzksr% ,lvksvkbZ thVh 'khV ds lacaèk esa lHkh nwfj;ka yh xbZ gSa½

,uds ,uok;jks lfoZlst çkbosV fyfeVsM fyfeVsM]

t;iqj

अप्रैल '2024

28

IV

O38//ZOZ	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	EXECUTIVE SUMMARY
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

17.	HkwdEih;	2002 ds Òkjrh; ekud C;wj¨ ¼chvkÃ,l½ ds Òkjr ds Òwdaih; {ks=
	{ks=	ekufp= ds vuqlkj] bls mPp {kfr tksf[ke {ks=] t¨u&ɪv ds :i esa
		oxÊÑr fd;k x;k gSA

2-1 cqfu;knh vko';drk,;

ifj;kstuk ds fy, cqfu;knh vko';drk uhps nh xbZ gS&rkfydk 2 & cqfu;knh vko';drk,į

S. No.	Particulars	Details		
1.	Á¨tsDV Ádkj	xzhuQhYM		
2.	{ks=Qy ½oxZ	127294.69		
	eh-1/2			
3.	ÅtkZ dh ekax	fof'k"V ÁLrkfor dqy ekax		
		ÅtkZ ekax 15 MVA		
		Iz"r% fctyh dh ekax ,ohoh,u,y ls iwjh dh tk jgh		
		gS 1000 fdy okV ds nks Mhth lsV vkikrdkyhu		
		fLFkfr@fctyh foQyrk esa mi;"x fd;k tk,xsaA		
4.	ikuh dh vko';drk	dqy ,d ckj ikuh dh ekax% 750 ds,yMh		
		e©twnk-rktk ikuh dh ekax& % 450 ds,yMh;		
		1/4m ksx% 382-5] ?kjsyw% 67-5 ds,yMh vkSj		
		iqupZfØr ty &300 ds,yMh½		
5.	j¨txkj	fuekZ.k pj.k 350 la[;k ¼çR;{k&50]		
		vçR;{k/lafonkRed&300½; v,ijs'ku pj.k		
		¼çR;{k&300] vçR;{k/lafonkRed&1700½ & dqy		
		2000A		

3-1 ifj;kstuk fooj.k

,uds ,uok;jks lfoZlst çkbosV fyfeVsM fyfeVsM]

t;iqj

अप्रैल '2024

29

33 320/38 // 2024 / REGIBAL PALWAL
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX
APPLICANT: JYOTI STRIPS PRIVATE LIMITED
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

EXECUTIVE SUMMARY

3-1-1 dPps eky dh vuqekfur ek=k] laHkkfor lzksr vkSj ifjogu ds rjhds ds lkFk vko';d dPpk ekyA

fuekZ.k ds fy, fuEufyf[kr dPps eky dh vko';drk gksxh% rkfydk 3% vko';d dPps eky dh lwph

Ø- la-	dPps eky dk uke	ÁLrkfor dPpk eky ¼Vhih,½	dqy dPpk eky ¼Vhih,½	ifjogu Iz"r dk rjhdk	lz"r LFkku
1	g,V jksYM dkby	8,40,000	8,40,000	IM+d	VkVk LVhy fyfeVsM] Isy] ftany LVhy ,aM ikoj fyfeVsM] ftany LVhy fyfeVsM Is vk;kfrr

jlk;uksa dk fooj.k

Ø-la-	jlk;u	{kerk
1.	pwuk	20 TPD
2.	dkfLVd lksMk	200 Lt/day

3-1-2 mRikn&

la;a= esa çLrkfor mRikn uhps fn;s x;s gSa%& rkfydk 4& mRiknksa dh lwph

Øe la[;k	mRikn dk uke	ÁLrkfor mRiknu {kerk ¼Vhih,½	dqy {kerk ¼Vhih,½
i.	HRPO coils/sheets	120000	120000
ii.	Cold rolled full hard coils	60000	60000
iii.	CRCA coils/sheets	90000	90000
iv.	Galvanized/galvalum e coils	240000	240000
v.	Colour coated coils	120000	120000
vi.	CDW	30000	30000
vii.	HR tube	30000	30000

0

,uds ,uok;jks IfoZIst çkbosV fyfeVsM fyfeVsM]

t;iqj

अप्रैल '2024

VI

33 320/38 / 202 4 / RECTION PAL WATER PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

EXECUTIVE SUMMARY

viii.	CR tube	60000	60000
ix.	Stamping	30000	30000
	dqy {kerk	780,000	

3.1.3 Hkwfe mi;ksx iSVuZ

dqy Hkwfe {ks=Qy 127294-69 oxZ gSA ,eA

rkfydk 5& Hkwfe mi;ksx dk fooj.k

Ø-la-	Hkwfe mi;ksx	dqy	%dqy
1.	Hkou@dk;kZy; /la;a= {ks=	55219.97	43.38
2.	iz'kLr {ks= ¼lM+d] xfy;kjk] ikfdZax½	35,997.62	28.27
3.	xzhu csYV {ks=	36,077.10	28.35
4.	[kqyh txg	0.0	0.0
	dqy	127294.69	100

la;a= ifjlj ds vanj çLrkfor gfjr {ks= 36077-10 oxZ ehVj ¼28-35 çfr'kr½ gS ftlesa 2500 isM□/gsDVs;j dh nj ls 9019 ikS/ks yxok, tk;saxsA ekunaMksa ds vuqlkj dqy 33 çfr'kr o`{kkjksi.k çklr djus ds fy, ifj;kstuk LFky ds Hkhrj daVsuj o`{kkjksi.k esa yxHkx 4-65 çfr'kr dh deh okyk o`{kkjksi.k fd;k tk,xkA bl çdkj dqy 33 çfr'kr {ks= esa o`{kkjksi.k fodflr fd;k tk;sxkA

4.1 vè;;u {ks=

vè;;u {ks= esa vè;;u {ks= ds ¼10-0 fdeh½ 66 xkao 'kkfey gSaA vè;;u {ks= dh dqy tula[;k 4]80]539 gS tks 83]592 ?kjksa esa jgrh gS vkSj vkSlr ?kj esa çfr ifjokj yxHkx 6 lnL; gSaA

4.2 tulkaf[;dh

rkfydk 6& vè;;u {ks= dh tulkaf[;dh; :ijs[kk

Ø-la-	C;kSjs		fooj.k
1.	xkaoksa dh	ı la[;k	66
2.	dqy tula[;k		480539
	1	iq#"k	255887
	2	efgyk,¡	224652
3.	ifjokjksa dh	la[;k	83592
4.	lk{kjksa dh la[;k		313956
	1	iq#"k	188169

,uds ,uok;jks IfoZIst çkbosV fyfeVsM fyfeVsM]

t;iqj

अप्रैल '2024

VII

35

33 320/38 / 2024 / REGIBAL PALWA PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED EXECUTIVE SUMMARY DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

	2	efgyk,;	125787
5.	eq[; Jfed		105992
	1	iq#"k	93631
	2	efgyk,;	12360
6.	Ihekar Jfed		29782
	1	iq#"k	21100
	2	efgyk,¡	8682
7.	xSj&Jfed		344765
	1	iq#"k	141156
	2	efgyk,¡	203609

4-3 ifj;kstuk LFky Is 10-0 fdeh f=T;k ds vè;;u {ks= dk Hkwfe mi;ksx iSVuZ

Hkw mi;ksx	Hkw mi;ksx	{ks=	{ks= ¼ çfr'kr
Js.kh	mi&Js.kh	⅓gsDVs;j½	1/2
	bZaV Hkêk	246.99	0.74
fufeZr {ks=	fufeZr	10982.97	33.11
	vkS ksfxd {ks=	2411.10	7.27
Ñf"k Òwfe	—f"k Hkwfe	9870.86	29.76
INI K OWIE	ijrh Hkwfe	7653.41	23.08
o`{kkjksi.k	o`{kkjksi.k	1702.31	5.13
ty fudk;	ty fudk;	299.72	0.90
dq	y ;"x	33167.34	100

4-4 ifjos'kh ok;q fo'ys"k.k

All values are in µg/m³

Ø- la-	LFkku	Ánw"kd		U;wure	vf/kdre	vkSlr	98oka Áfr'krd	Ihihlhch ekud
1	ifj;kstuk LFky	PM 10	μg/m³	73.40	84.90	78.76	84.20	100
		PM2.5	μg/m3	43.60	52.60	47.79	52.33	60
		SO_2	μg/m3	3.13	6.12	4.49	5.88	80
		NO_2	μg/m ³	7.15	12.14	9.10	11.85	80

,uds ,uok;jks lfoZlst çkbosV fyfeVsM fyfeVsM]

t;iqj

अप्रैल '2024

VIII

30

33 320/38//2024/REGIBN PALWA
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX
APPLICANT: JYOTI STRIPS PRIVATE LIMITED
EXECUTIVE SUMMARY
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

		СО	μg/m³	0.21	0.51	0.34	0.50	2000
	1	PM 10	$\mu g/m^3$	65.40	82.40	72.38	80.08	100
		PM2.5	μg/m3	39.60	46.50	42.38	46.28	60
2	nsoyh		μg/m3	3.98	6.12	4.94	5.98	80
	liooyii	NO ₂	μg/m ³	7.55	13.54	10.09	13.47	80
		CO	μg/m ³	0.25	0.61	0.42	0.57	2000
		PM 10	$\mu g/m^3$	64.2	77.3	70.08	76.81	100
		PM2.5	μg/m3	39.4	46.9	42.35	46.2	60
3	vlkoVh		μg/m3	3.98	5.81	4.85	5.81	80
		NO ₂	μg/m ³	8.01	12.16	9.52	11.72	80
		СО	μg/m ³	0.24	0.62	0.39	0.6	2000
		PM 10	μg/m ³	64.2	76.8	70.13	75.77	100
		PM2.5	μg/m3	38.5	46.1	41.93	45.94	60
4	l;kyk	SO ₂	μg/m3	3.36	6.86	5.16	6.74	80
	, ,	NO ₂	μg/m ³	7.24	14.58	11.54	14.47	80
		СО	μg/m³	0.25	0.65	0.51	0.65	2000
		PM ₁₀	μg/m³	67.3	78.5	72.21	77.37	100
		PM2.5	μg/m3	39.5	47.3	42.56	47.08	60
5	MwaMlk	SO_2	μg/m3	4.52	15.4	7.27	14.21	80
		NO_2	$\mu g/m^3$	6.88	18.1	11.17	16.97	80
		co	$\mu g/m^3$	0.25	0.59	0.39	0.55	2000
		PM 10	μg/m³	66.4	73.5	70.35	73.45	100
		PM2.5	μg/m3	35.1	67.4	41.33	54.49	60
6	xniqjh	SO ₂	μg/m3	3.15	7.24	4.9	6.81	80
		NO_2	$\mu g/m^3$	7.25	13.12	9.98	12.96	80
		СО	$\mu g/m^3$	0.25	0.64	0.44	0.63	2000
		PM 10	$\mu g/m^3$	66.5	74.1	70.09	73.78	100
		PM2.5	μg/m3	35.9	43.5	39.9	43.45	60
7	fijFkyk	SO ₂	μg/m3	5.36	10.68	7.59	10.64	80
		NO_2	$\mu g/m^3$	8.24	14.78	11.2	14.67	80
		CO	$\mu g/m^3$	0.28	0.59	0.4	0.59	2000
		PM ₁₀	μg/m³	64.1	76.8	71.93	76.8	100
		PM2.5	μg/m3	36.5	47.2	41.86	46.93	60
8	c?kkSyk	SO ₂	μg/m3	5.34	13.4	7.7	12.37	80
		NO ₂	$\mu g/m^3$	8.2	16.45	11.86	15.98	80
		CO	μg/m³	0.22	0.62	0.45	0.61	2000

,uds ,uok;jks lfoZlst çkbosV fyfeVsM fyfeVsM]

t;iqj

अप्रैल '2024

IX

)2	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	EXECUTIVE SUMMARY
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

e,fuVj fd, x, MsVk ds ifj.kke crkrs gSa fd {ks= dh ifjos'kh ok;q xq.koÙkk ¼AAQ½ lkekU; :i ls fuxjkuh fd, x, lHkh LFkkuksa ij jk"Vah; ifjos'kh ok;q xq.koÙkk ekudksa ds ekunaMksa ds vuq:i gSA

4-5 ty fo'ys"k.k

ifj;kstuk {ks= ds vklikl Hkwty ds vkB uewus ,d= fd, x, vkSj mudk fo'ys"k.k fd;k x;k fofHkUu ekinaMksa ds vuqlkj fo'ys"k.kkRed ifj.kke uhps fn, x, gaSA ty vkSj vif'k"V ty dh tkap ds fy, ekud rjhds esa fufnZ"V ς fØ;k,a vesfjdu ifCyd gsYFk ,lksfl,'ku ¼,ih,p,½ }kjk ς dkf'krA

Irgh ty % lrgh ty ds uewuksa dh tkat ds ckn Kkr gqvk dh ih-,p- 7-16&8-05] fMl,YoM v,Dlhtu & 4-7 ls 5-5 feyh xzke çfr yhVj] BOD- 8.2 - 22.71 feyh xzke çfr yhVj, COD - 39.28 - 120 feyh xzke çfr yhVj gaSA çklr ifj.kkeksa dh rqyuk ekud IS:2296 lhekvksa ls dh xbZ vkSj blls lrgh ikuh dks Dykl & lh ds varxZr ik;k x;kA

Hkwty % fo'ys"k.k ds urhts crkrs gSa fd Hkwty dk ih,p ik;k x;k 7-05&7-60 dh jsatA Mh,I 421 feyhxzke@yhVj & 598 feyhxzke@yhVj dh jsat esa ik;k x;kA vU; iSjkehVj tSls IYQsV~I 15-72 feyhxzke@yhVj & 22-63 feyhxzke@yhVj ik, x,A vU; ekinaMksa ds fy, HkkSfrd&jklk;fud fo'ys"k.k Hkh ISO:10500 ds ekudksa ds vuqlkj vuqes; lhek ds Hkhrj FkkA

4-6 'kksj dh fuxjkuh

4-6-1 i;Zos{k.k

fnu ds le; 'kksj dk Lrj Leqday 1/4 fnu 1/2

ifj;"tuk {ks= esa fnu ds le; $\frac{1}{4}$ Leq_{day} $\frac{1}{2}$ 'k"j dk Lrj 61-1 Mhch $\frac{1}{4}$, $\frac{1}{2}$ ns[kk x;k gS t" 75 Mhch $\frac{1}{4}$, $\frac{1}{2}$ dh fu/kkZfjr lhek ds Òhrj gS vkSj vkoklh; {ks="a esa 45-9&61-1 Mhch $\frac{1}{4}$, $\frac{1}{2}$ dh lhek esa gS] t" 55 Mhch $\frac{1}{4}$, $\frac{1}{2}$ dh fu/kkZfjr lhek ds Òhrj gSaA

 \mathbf{X}

,uds ,uok;jks IfoZIst çkbosV fyfeVsM fyfeVsM]

t;iqj

अप्रैल '2024

)Z	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	EXECUTIVE SUMMARY
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

jkr le; /ofu Lrj Leqnight 1/4 jkr 1/2

la;a= {ks= esa jkr ds le; (Leqnight) 'k"j dk Lrj 39-1 Mhch $\frac{1}{4}$, $\frac{1}{2}$ ns[kk x;k gS t" 70 Mhch $\frac{1}{4}$, $\frac{1}{2}$ dh fu/kkZfjr lhek ds Òhrj gS vkSj vkoklh; {ks="a esa 39-1 Mhch $\frac{1}{4}$, $\frac{1}{2}$ dh lhek esa gS] t" 45 Mhch $\frac{1}{4}$, $\frac{1}{2}$ dh fu/kkZfjr lhek ds Òhrj gSaA

4.7 feêh dh fuxjkuh

feêh ds uewus आੱਠ çfrfufèk uewuk LFkkuksa ij ,d= fd, x, Fks] vkSj lHkh LFkkuksa ij çeq[k voyksdu ik, x, gSa:

ih ,p& 7-71 & 8-23

QkLQksjl & 8-7 ls 16-2 fd-xzk-@gs

iksVSf'k;e & 30 & 45 feyhxzke@100 xzke

4.8 tSfod i;kZoj.k

4.8.1 ouLifr

dksj vkSj cQj tksu esa ikbZ tkus okyh ouLifr;sssksa dh eq[; çtkfr;k¡ bl çdkj gSa%&

	ouLifr
dksj {ks=	cQj {ks=
	Äkl -6çtkfr;k¡
ioM + 0/ 10 otherwise	>kM+f;ki tM+h-cwfV;k -54 çtkfr;ki
isM+ %12 çtkfr;k _i	ioZrkj¨gh >kM+f;k _i - 2 çtkfr;k _i
	isM+ %35 çtkfr;ki

4-8-2 tho

,uds ,uok;jks lfoZlst çkbosV fyfeVsM fyfeVsM]

t;iqj

अप्रैल '2024

ΧI

33 120/38 // 2024 / REST PALWA PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED EXECUTIVE SUMMARY

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

eq[; vkSj cQj tksu esa ik, tkus okys thoksa dh eq[; çtkfr;k; fuEukuqlkj gSa &

	tho
dksj {ks=	cQj {ks=
mÒ;pj& 0 çtkfr;kį	mÒ;pj - 4 çtkfr;kį
ljhl`i & 2 çtkfr;k;	ljhl`i - 4 çtkfr;k;
,foQ+quk - 07 çtkfr;k;	,foQ+quk - 31 çtkfr;k;
Lru/kkfj - 02 çtkfr;k;	Lru/kkfj - 08 çtkfr;k;
frrfy;k; 0 çtkfr;k;	frrfy;ki -0 çtkfr;ki

5-0 [krjksa dh igpku vkSj mUgsa de djus ds mik;

[krjs dh igpku%

çLrkfor MkbZ vkSj MkbZ fuekZ.k la;a= lqfoèkk esa eq[; tksf[ke {kerk dks uhps oxÊ—r fd;k x;k gSA -

çfØ;k ds [krjs &

[krjukd lkefxz;ksa ;k çfØ;kvksa ds lapkyu ds nkSjku jksdFkke ds uqdlku ds dkj.k vkx] foLQksV] c,;yj esa mPp ncko ds dkj.k pØokrksa dk QVuk vkfnA ;kaf=d [krjs &

;kaf=d lapkyu tSls osfYMax] j[kj[kko] fxjus okyh oLrqvksa vkfn ds dkj.k & ewy :i ls tks [krjukd lkexzh ls tqM+s ugha gSaA

fctyh ds [krjs &

fctyh dk >Vdk] mPp oksYVst Lrj] 'k,VZ lfdZV] vkfnA

'keu mik;

- jklk;fud gkslsl dk fu;fer fujh{k.k vkSj çfrLFkkiuA
- fjlko tkap lfgr xkLdsV] fudyk gqvk fdukjk vkSj uyh dusD'ku ds fy,
 j[kj[kko ç.kkyhA
- mrjkbZ 'kq: gksus Is igys VSadj dks fLFkj djus dh çfØ;kA
- QSy fu;a=.k ds fy, cje ds lkFk VSadj vuyksfMax ds fy, iDdk {ks=A
- vo'kks"kd ds lkFk jklk;fud QSy çcaèku ç.kkyhA

0

uds ,uok;jks IfoZlst çkbosV fyfeVsM fyfeVsM]

t;iqj

अप्रैल '2024

XII

APPLIC	T: DRAFT EIA /EMP ANT: JYOTI STRIPS I IENT NO.: EESPL/JSF	PRIVATE LIMITED		ING MILL COMPLEX	EXECUTIV	E SUMMARY
•	psdfyLV vk	Sj fMLlys o	ksMZ dks	LFkkuh; Hkk"k	k esa mrkji	ukA
•	mrkjus	ds	fy,	ihihbZ	dk	mi;ksxA
				UB.		
			/			
		8				
		<i>\)</i> .				
عامير 🗽	uokiiko lfa7la4	okhoo\/ f-f-\/-	nM fy/fa\/-n41			
,uds t;iqj	,uok;jks lfoZlst	çkbosV fyfeV	sM fyfeVsM]			

6.0 o`{kkjksi.k dk;ZØe

			a v				Yea	r wise Plant programm		No of	Budget for proposed plantation			
S.No.	Scientific Name	Common Name	S. No.in CPCB Manual	НА	HT (m)	E/D	I Yr.	II Yr.	III Yr.	Trees to be planted	Plant cost including transportation, pitting, watering and fertilizers@ Rs. 300/sapling	Maintenance cost including causality replacement and watering @ Rs 200/ plants	Total	
1	Azadirachta indica	Neem	A-44	Tree		Evergreen	235	215	212	662	198600	132400	331000	
2	Polyalthia longifolia	Ashok	P-9	Tree	15	Evergreen	210	200	212	622	186600	124400	311000	
3	Albizia lebbeck	Siris	A-29	Tree	20	Deciduous	215	210	212	637	191100	127400	318500	
4	Cassia fistula	Amaltash	C-7	Tree	12	Deciduous	215	210	212	637	191100	127400	318500	
5	Dalbergia sissoo	Shisham	D-2	Tree	10	Evergreen	225	215	212	652	195600	130400	326000	
6	Ficus religiosa	Pipal	F-7	Tree	20	Evergreen	200	215	212	627	188100	125400	313500	
7	Ficus bengalensis	Bad	F-3	Tree	12	Evergreen	200	200	212	612	183600	122400	306000	
8	Terminalia arjuna	Arjun	T-6	Tree	15	Deciduous	215	210	212	637	191100	127400	318500	
9	Syzygium cumini	Jamun	S-20	Tree	20	Evergreen	230	215	212	657	197100	131400	328500	
10	Psidium guajava	Guava	P-20	Tree	05	Evergreen	230	215	212	657	197100	131400	328500	
11	Bauhinia variegata	Kachnar	B-10	Tree	05	Deciduous	215	215	212	642	192600	128400	321000	
12	Aegle marmelos	Beal tree	A-22	Tree	12	Evergreen	225	210	213	648	194400	129600	324000	
13	Annona squamosa	Sitaphal	A37	Tree	10	Evergreen	225	225	212	662	198600	132400	331000	
14	Mangifera indica	Aam	M-5	Tree	15	Evergreen	230	225	212	667	200100	133400	333500	
	Total							2980	2969	9019	2705700	1803800	4509500	

7-0 i;kZoj.kh; çHkko iwokZuqeku vkSj çcaèku ;kstuk

		f	uekZ.k pj.k	
Ø-	fof'k"V	i;kZoj.k	çcaèku ;kstuk	fVli.kh
la-		?kVd		
1-	mR[kuu]	Hkwfe	Åijh feêh dks lajf{kr fd;k	-
	fuekZ.k]		tk,xk vkSj dk;kZRed pj.k	
	eyck		esa HkwfuekZ.k ds fy,	
			mi;ksx fd;k tk,xkA	
			➤ fuekZ.k eycs dk iqu:	
			mi;ksx vkSj iqupZØ.k	
2-	mR[kuu Is	ifjos'kh ok;q	➤ fuekZ.k xfrfofèk;ksa ds	fuekZ.k pj.k ds
	èkwy	xq.koÙkk	lkFk&lkFk ikuh dk fu;fer	nkSjku çHkko
	mRltZu] .		fNM+dko fd;k tk,xkA	vLFkk;h
	e'khujh ls		➤ fuekZ.k midj.kksa dk	gksaxs vkSj
	ok;q mRltZu		vkofèkd j[kj[kkoA	de nwjh rd gh
			> vPNh xq.koÙkk okys	Ihfer jgsaxs]
			bZaèku dk mi;ksxA	D;ksafd eksVs
			➤ O;fäxr lqj{kk midj.kksa	d.k
			dk mi;ksx	xfrfofèk;ksa ls
				de nwjh ij gh cl
				tk,axsA
3-	ifj;kstuk	ty	viokg dks de djus ds fy,	LFky ds fudV
	LFky Is Irgh		xkn ckM+A <yku cnyuk<="" td=""><td>dksbZ ckjgeklh</td></yku>	dksbZ ckjgeklh
	viokgA		➤ fuekZ.k xfrfofèk ds	lrgh ty lalkèku
	rsy@bZaèku		nkSjku mRiUu ?kjsyw	ughaA
	vkSj vif'k"V		lhost dks e,Mîwyj ,lVhih	
	QSyukA		esa Hkstk tk,xkA	
	vuqfpr eyck]			
	?kjsyw lhost			
	ty			
	l			

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078

34 120/33/2024/RECEIBN PALWAL
PROJECT: DRAFT EIA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

EXECUTIVE SUMMARY

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

4- fuekZ.k xfrfofèk;ksa vkSj fuekZ.k midj.k vkSj fuekZ.k midj.k vkSj fuekZ.k midj.k vkSj fuekZ.k midj.k vkSj Mhth IsV ds lapkyu Is mRiUu 'kksj ——————————————————————————————————	
vkSj fuekZ.k midj.k vkSj Mhth IsV ds lapkyu Is mRiUu'kksj Mhth IsV ds lapkyu Is mRiUu'kksj Mijlyx@eQ dk mi;ksxA ightarrow fuekZ.k deZpkfj;ksa }kjk b;jlyx@eQ dk mi;ksxA ightarrow fuekZ.k ds nkSjku e'khujh ds j[kj[kko vkSj okguksa ds ifjogu dks fu;fer :i Is jksdukA ightarrow fin vko';d gks rks e'khu }kjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightarrow fin vko';d kjk Jfedksa ds mPp 'kksj Lrj ds laidZ ds le; dks de djsaA hkkijh fuekZ.k xfrfofèk dsoy fnu ds le; rd lhfer gSA fuekZ.k okguksa esa 'kksj eQyj dk mi;ksxA ightarrow fuekZ.k ds nkSjku e'khujh ds j[kj[kko vkSj okguksa ds ifjogu dks fu;fer :i Is jksdukA ightarrow fin vko';d gks rks e'khu jkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightarrow fin vko';d gks rks e'khu jkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightarrow fin vko';d gks rks e'khu jkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightarrow fin vko';d gks rks e'khu jkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightarrow fin vko';d gks rks e'khu jkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightarrow fin vko';d gks rks e'khu jkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightarrow fin vko';d gks rks e'khu jkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightarrow fin vko';d gks rks e'khu jkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightarrow fin vko';d gks rks e'khu jkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightarrow fin vko';d gks rks e'khu jkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk fykoèkkuA ightarrow fin vksi fyksi fyks	.k ds
midj.k vkSj Mhth IsV ds Iapkyu Is mRiUu 'kksj Miksy	Fkk;h
Mhth IsV ds lapkyu Is mRiUu 'kksj	
lapkyu Is mRiUu 'kksj esa 'kksj eQyj dk mi;ksxA ightharpoonup fuekZ.k deZpkfj;ksa kjk b;jlyx@eQ dk mi;ksxA ightharpoonup eichujh ds jkjku e'khujh ds jkjkijkko vkSj okguksa ds ifjogu dks fu;fer :i Is jksdukA ightharpoonup fin vko';d gks rks e'khu kjkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightharpoonup fin vko';d gks rks e'khu kjkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightharpoonup fin vko';d gks rks e'khu kjkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightharpoonup fin vko';d gks rks e'khu kjkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightharpoonup fin vko';d gks rks e'khu kjkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightharpoonup fin vko';d gks rks e'khu kjkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightharpoonup fin vko';d gks rks e'khu kjkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightharpoonup fin vko';d gks rks e'khu kjkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightharpoonup fin vko';d gks rks e'khu kjkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightharpoonup fin vko';d gks rks e'khu kjkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightharpoonup fin vko';d gks rks e'khu kjkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightharpoonup fin vko';d gks rks e'khu kjkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightharpoonup fin vko';d gks rks e'khu kjkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightharpoonup fin vko';d gks rks e'khu kjkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightharpoonup fin vko';d gks rks e'khu kjkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightharpoonup fin vko';d gks rks e'khu kjkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightharpoonup fin vko';d gks rks e'khu	
mRiUu 'kksj mi;ksxA fuekZ.k deZpkfj;ksa }kjk b;jlyx@eQ dk mi;ksxA èofu çnw"k.k dks de djus ds fy, fuekZ.k ds nkSjku e'khujh ds j[kj[kko vkSj okguksa ds ifjogu dks fu;fer :i ls jksdukA ;fn vko';d gks rks e'khu }kjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA t,c jksVs'ku }kjk Jfedksa ds mPp 'kksj Lrj ds laidZ ds le; dks de djsaA fuekZ.k lkSan;kZRed > çHkkoksa dh HkjikbZ	
b;jlyx@eQ dk mi;ksxA ightarrow èofu çnw"k.k dks de djus ds fy, fuekZ.k ds nkSjku e'khujh ds j[kj[kko vkSj okguksa ds ifjogu dks fu;fer :i ls jksdukA ightarrow ;fn vko';d gks rks e'khu jkjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ightarrow t,c jksVs'ku jkjk Jfedksa ds mPp 'kksj Lrj ds laidZ ds le; dks de djsaA fuekZ.k lkSan;kZRed ightarrow çHkkoksa dh HkjikbZ	
èofu çnw"k.k dks de djus ds fy, fuekZ.k ds nkSjku e'khujh ds j[kj[kko vkSj okguksa ds ifjogu dks fu;fer :i ls jksdukA ;fn vko';d gks rks e'khu }kjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA t,c jksVs'ku }kjk Jfedksa ds mPp 'kksj Lrj ds laidZ ds le; dks de djsaA 5- fuekZ.k lkSan;kZRed > çHkkoksa dh HkjikbZ	
djus ds fy, fuekZ.k ds nkSjku e'khujh ds j[kj[kko vkSj okguksa ds ifjogu dks fu;fer :i ls jksdukA ifn vko';d gks rks e'khu kjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA t,c jksVs'ku kjk Jfedksa ds mPp 'kksj Lrj ds laidZ ds le; dks de djsaA fuekZ.k lkSan;kZRed ikskoksa dh HkjikbZ	
nkSjku e'khujh ds j[kj[kko vkSj okguksa ds ifjogu dks fu;fer :i ls jksdukA > ;fn vko';d gks rks e'khu }kjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA > t,c jksVs'ku }kjk Jfedksa ds mPp 'kksj Lrj ds laidZ ds le; dks de djsaA 5- fuekZ.k lkSan;kZRed > çHkkoksa dh HkjikbZ	
j[kj[kko vkSj okguksa ds ifjogu dks fu;fer :i ls jksdukA > ;fn vko';d gks rks e'khu }kjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA > t,c jksVs'ku }kjk Jfedksa ds mPp 'kksj Lrj ds laidZ ds le; dks de djsaA 5- fuekZ.k lkSan;kZRed > çHkkoksa dh HkjikbZ	
ifjogu dks fu;fer :i Is jksdukA > ;fn vko';d gks rks e'khu }kjk mRiUu 'kksj dks fu;af=r djus ds fy, Ikbysalj dk çkoèkkuA > t,c jksVs'ku }kjk Jfedksa ds mPp 'kksj Lrj ds laidZ ds le; dks de djsaA 5- fuekZ.k IkSan;kZRed > çHkkoksa dh HkjikbZ	
jksdukA > ;fn vko';d gks rks e'khu }kjk mRiUu 'kksj dks fu;af=r djus ds fy, Ikbysalj dk çkoèkkuA > t,c jksVs'ku }kjk Jfedksa ds mPp 'kksj Lrj ds laidZ ds le; dks de djsaA 5- fuekZ.k IkSan;kZRed > çHkkoksa dh HkjikbZ	
 jfn vko';d gks rks e'khu }kjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA t,c jksVs'ku }kjk Jfedksa ds mPp 'kksj Lrj ds laidZ ds le; dks de djsaA fuekZ.k lkSan;kZRed ➤ çHkkoksa dh HkjikbZ 	
}kjk mRiUu 'kksj dks fu;af=r djus ds fy, lkbysalj dk çkoèkkuA ➤ t,c jksVs'ku }kjk Jfedksa ds mPp 'kksj Lrj ds laidZ ds le; dks de djsaA 5- fuekZ.k IkSan;kZRed ➤ çHkkoksa dh HkjikbZ	
fu;af=r djus ds fy, Ikbysalj dk çkoèkkuA	
Ikbysalj dk çkoèkkuA ➤ t,c jksVs'ku }kjk Jfedksa ds mPp 'kksj Lrj ds laidZ ds le; dks de djsaA 5- fuekZ.k IkSan;kZRed ➤ çHkkoksa dh HkjikbZ	
 t,c jksVs'ku }kjk Jfedksa ds mPp 'kksj Lrj ds laidZ ds le; dks de djsaA fuekZ.k lkSan;kZRed ➤ çHkkoksa dh HkjikbZ 	
ds mPp 'kksj Lrj ds laidZ ds le; dks de djsaA 5- fuekZ.k lkSan;kZRed ➤ çHkkoksa dh HkjikbZ	
laidZ ds le; dks de djsaA 5- fuekZ.k lkSan;kZRed ➤ çHkkoksa dh HkjikbZ	
djsaA 5- fuekZ.k lkSan;kZRed ≽ çHkkoksa dh HkjikbZ	
5- fuekZ.k lkSan;kZRed ➤ çHkkoksa dh HkjikbZ	
xfrfofèk;k¡ ,oa tSfod ifjlj esa vkSj NM+ksa ds	
vkSj mR[kuu nksuksa vksj o`{kkjksi.k	
vkSj ckxokuh ls dh tk,xh	

II

,uds ,uok;jks lfoZlst çkbosV fyfeVsM fyfeVsM]

5

t;iqj

अप्रैल '2024

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	EXECUTIVE SUMMARY
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

6-	fuekZ.k pj.k	O;kolkf;d	>	Bsdsnkjksa }kjk tqVk, x,	lqj{kk foHkkx
		LokLF; vkSj		fuekZ.k Jfedksa ds fy,	Bsdsnkj vkSj
		lqj{kk		vLFkk;h 'ksMksa dk	muds
				fuekZ.kA	deZpkfj;ksa ds
			>	dk;Z LFkyksa dks	lqjf{kr dkedkt
				lkQ&lqFkjk j[kk tk,xk]	dh fuxjkuh
				èkwy@èkq,a dks [kRe	djsxkA
				djus ds fy, b"Vre jks'kuh	
				vkSj i;kZlr osafVys'ku	
				çnku fd;k tk,xkA	
7-	fuekZ.k pj.k	lkekftd&	>	çcaèku çR;{k ,oa vçR;{k	ldkjkRed
		vkfFkZd		nksuksa çdkj ds jkstxkj	çHkko
				ds ekè;e ls LFkkuh;	
				yksxksa dks çkFkfedrk	
				nsxk	

	lapkyu pj.k
fooj.k	'keu mik;
v- midj.k Is	i,baV lkslZst
ok;q mRltZu vFkkZr 1- midj.k ls ok;q mRltZu vFkkZr 2- 3- Mh-th- IsV (1000 kVA-	 1- midj.k ls ok;q mRltZu vFkkZr 2- □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
ISV (1000 kVA- 2 Nos)	

ALC: U	_
(And	•
-	t

,uds ,uok;jks IfoZlst çkbosV fyfeVsM fyfeVsM]

t;iqj

अप्रैल '2024

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	EXECUTIVE SUMMARY
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

çklr djus ds fy, ifj;kstuk LFky ds Hkhrj daVsuj o`{kkjksi.k esa yxHkx 4-65% dh deh okyk o`{kkjksi.k fd;k tk,xkA			
 2 uacj 1000 dsoh, dh {kerk okyk Mh-th- lsV 30 ehVj LVSd ÅapkbZ ¼bZaèku&çk—frd xSl½ ls tqM+k gqvk gSA 			
dPps eky vkSj rS;kj eky ds ifjogu ds fy, okgu fudkl ds mRltZu esa thok'e bZaèku ds ngu ls ,lvks,Dl] ,uvks,Dl] lhvks 'kkfey gSaA ifj;kstuk ds fy, 15 okguksa ¼dPps eky ds fy, 1500 \$ rS;kj eky ds fy, 1500½ dk mi;ksx fd;k tk jgk gS@fd;k tk,xkA ekStwnk ifj;kstuk ds fy, ifjogu fooj.k			
dPps ek	ifjogu fooj.k dqy ½la[;k½@fnu dPps eky ds fy, Vad@Vasyj 1500 ½25 Vu½A ¼□□□½		
		1500 ⅓□□□□ और □□ ऍन □□ ½	
• çcaèk&			
ifjogu	çcaèk → ih;wlh çekf.kr ol mi;ksx fd;k tk jg tk,xk(→ orZeku esa] okgu vkSj dPps eky d fy, Mhty dk mi; gSa vkSj Hkfo"; okgu dk mi;ksx fd → xfr lhek 10 fdel la;a= ifjlj esa j[kk tk,xkA → la;a= ifjlj ds vanj	k gS@fd;k u rS;kj eky s ifjogu ds ksx dj jgs esa lh,uth ;k tk,xkA n@?kaVkA tk,xk@j[kk	
	esa yxHkx 4-65 2 uacj 1000 d LVSd ÅapkbZ gSA dPps eky vkSj mRltZu esa the lhvks 'kkfey gS ds fy, 1500 \$ rs gS@fd;k tk,xk uhps fn;k x;k gs ifjogu foo dPps ek 1/425 Vu1/rS;kj eky 1/425 Vu1/rS;kj eky	esa yxHkx 4-65% dh deh okyk o`{kkj} 2 uacj 1000 dsoh, dh {kerk okyk I LVSd ÅapkbZ 1/4bZaèku&çk—frd x8gSA dPps eky vkSj rS;kj eky ds ifjogu d mRltZu esa thok'e bZaèku ds ngu I lhvks 'kkfey gSaA ifj;kstuk ds fy, 15 ods fy, 1500 \$ rS;kj eky ds fy, 15001/2 gS@fd;k tk,xkA ekStwnk ifj;kstuk uhps fn;k x;k gS% ifjogu fooj.k dPps eky ds fy, Vad@Vasyj 1/425 Vu1/2A rS;kj eky ds fy, Vad@Vasyj 1/425 Vu1/2A rS;kj eky ds fy, Vad@Vasyj 1/425 Vu1/2A • çcaèk& ss	

0

,uds ,uok;jks lfoZlst çkbosV fyfeVsM fyfeVsM]

t;iqj

अप्रैल '2024

IV

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078

34 120/38/2024/REGIBN PALWAL
PROJECT: DRAFT EIA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED **EXECUTIVE SUMMARY** DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119 1/428-35%1/2 gS ftlesa 2500 isM+@gsDVs;j dh nj ls 9019 ikSèks qSaA ekunaMksa ds vuqlkj dqy 33% o`{kkjksi.k çklr djus ds fy, ifj;kstuk LFky ds Hkhrj daVsuj o`{kkjksi.k esa yxHkx 4-65% dh deh okyk o`{kkjksi.k fd;k tk,xkA HkaMkj.k;k Ikexzh gSaMfyax ifjogu ¼vU; èkwy ds d.k Qkbu] yksfMax vkSj vuyksfMax lokbaV] VakalQj dPps eky1/2 lokbaV vkSj HkaMkj.k {ks= ds eq[; cnw"kd qSaA Ifgr lkexzh ifjogu la;a= ifjlj ds vanj IHkh vkarfjd IM+dksa ij mM+rh gqbZ èkwy çcaèku Is gksus okyk mRiUu gksus dh ifidYiuk dh xbZ qSA {kf.kd çcaèk& > ¶+;wftfVo mRltZu dks de djus ds fy, dPps eky dk mRltZu LFkkukarj.k] yksfMax] vuyksfMax ,d can lfdZV esa fd;k tk,xkA èkwy laHkkfor {ks= esa ikuh dk fNM+dko fd;k tk;sxkA > fpr x`g O;oLFkk dh tk,xhA IM+dksa dh IQkbZ djkbZ tk,xhA > ykaV ifili ds vanj IHkh iDdh IM+dsa fodflr dh tk,axhA ➤ le;≤ ij] iDdh IM+d ij ikuh dk fNM+dko djus ls mM+us okyh èkwy dks jksdus ds fy, Irg ue gks tk,xhA xfr lhek 10 fdeh@?kaVk rd lhfer jgsxhA Ihost@vif'k"V: & ?kjsyw Ihost dks çLrkfor ,IVhih ds Hkhrj lhost Is la;a= LFky ij vuqØfed cSp fj,DVj rduhd 1/4{kerk&100 nqxZaèk ds,yMh½ dk mi;ksx djds mipkfjr fd;k tkrk gS vkSj mipkfjr vkSj ikuh dk mi;ksx rkts ikuh dh [kir dks de djus ds fy, o`{kkjksi.k vkSj ¶yf'kax mís'; ds fy, fd;k tk,xkA 'keu mik; vPNh gkmldhfiax dk vH;kl fd;k tk jgk gS vkSj mlh vH;kl

[krjukd vif'k"V mRiknu vkSj mudk fuiVku bl çdkj gSa

oxZ

dks

vuqlw

6

,uds ,uok;jks lfoZlst çkbosV fyfeVsM fyfeVsM]

Ø-

la

dks viuk;k tk,xkA

[krjukd

vif'k"V ds

t;iqj

[krjukd vif'k"V

mRiknu

अप्रैल '2024

43

rknkn

dh

HkaMkj.k dk

rjhdk

33 120/38//2024//RECEIBN PALWAL
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX APPLICANT: JYOTI STRIPS PRIVATE LIMITED **EXECUTIVE SUMMARY** DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

	çdkj		ph	M	bdkbZ		
	jklk;fud dhpM+ vif'k"V ty mipkj ½Vhih,½ ls c;qä;k [kpZ fd;k gqvk rsy		I	Cat- 35.3	16000 TPA	vfèk—r iqupZØ.kdrkZ dks	
			I	Cat-5.1	200 TPA	vfèk—r iqupZØ.kdrkZ dks	
	3	आयरन	I	Cat-5.2	4000 TPA	vfèk—r iqupZØ.kdrkZ dks	
Bksl vif'k"V	Bk	sl vif'k"V mRikn	u vkSj m	nudk fu	ıiVku bl ç	dkj gS%	
mRiknu		fooj.k	çLrkfor Vhih,	dqy Vhil		nipkj@fuiVku	
	uxjikfydk Bksl vif'k"V1/40-125 fdyksxzke@fnu@ O;fä1/2		0-25	U=23		re uxj ifj"kn dks Hkstk x;k	
			0-5	0-5 [k		kkjksi.k ds fy, kkn ds :i esa ksx fd;k tkrk gS	
	(çfØ;k ls LØSi	181-81	181-81 181- LFk 81		kuh; ckt+kj esa cspk x;k	
v,ijs'ku pj.k	Ø-la	rjy	ek=k	bdkk	o mip	kj@fuiVk	
ds nkSjku ty		cfg%lzko		u d		rjhdk	
i;kZoj.k	1	?kjsyw lhost	75	KLD	?kjs	yw vif'k"V ty	
					75	KLD dks STP	
						1⁄4{ke	erk&100 KLD½
					esa	mipkfjr fd;k	
					tk,xk	vkSj 37-5 kld	
					mipk	fjr ty dks	
					o`{kl	kjksi.k esa	
					iqu:	mi;ksx fd;k	

t;iqj

,uds ,uok;jks lfoZlst çkbosV fyfeVsM fyfeVsM]

अप्रैल '2024

VI

34 320/38 / 202 4 / RESIDN PALWA!
PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX
APPLICANT: JYOTI STRIPS PRIVATE LIMITED
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

EXECUTIVE SUMMARY

T		Т			
					tk,xkA vkSj 30
					ds,yMh dks
					¶yf'kax ç;kstuksa
					ds fy, iqupZfØr
					fd;k tk,xkA
	2	O;kikj çokg	318.75	KLD	➤ LVst&1%
					vkS ksfxd çfØ;k
					ls mRiUu 127-5
					кьр vif'k"V dks de
					cod vkSj de TDS
					okys ETP&1
				2	1⁄4160ĸL {kerk1∕2
					esa mipkfjr fd;k
				7	tk,xkA
					> pj.k&2% 48-75
					кьр ds [kpZ fd, x,
					vkSj 'khryd
					vif'k"V ty dks
) `			mPp con vkSj
					mPp tds ds etp 1
					& 2 1/465 KLD
					{kerk½ esa
					mipkfjr fd;k
					tk,xkA
					 > h7\/hih
					bZVhih 1 vkSj
					bZVhih 2 ls

,uds ,uok;jks lfoZlst çkbosV fyfeVsM fyfeVsM]
t;iqj

अप्रैल '2024

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 34 T20/38 / Z0Z4 / REGIBN PALWA PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX **EXECUTIVE SUMMARY** APPLICANT: JYOTI STRIPS PRIVATE LIMITED DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119 mipkfjr ikuh dks MCY;wvkjih&vkjv ks vkSj mlds ckn ,ebZbZ ¼tsM,yMh lykaV½ esa Hkstk tk,xkA 270 KLD ds lexz mipkfjr ikuh dks cocls dwfyax V,oj esa mipkį ds ckn iqu: mi;ksx fd;k tkrk gSA fdlh Hkh vif'k"V ty dk fuiVku la;a= ifjlj ds ckgj tehu ij ugha fd;k tk,xkA 'kksi ds lzksr% èofu ➤ ia[ks] eksVj@batu] yksfMax@vuyksfMax LØSi] Hkkjh çnw"k.k v,ijs'ku pj.k midj.k lapkyu ds dkj.k 'kksjA ds nkSjku > 'keu ds mik;% ➤ IHkh midj.k vuqes; 'kksj ekudksa dks iwjk djrs gq, [kjhns tk igs gSa@fd, tk,axsA > xeÊ vkSj ihihbZ dh jksdFkke vkSj gkfu ds fy, çnku fd;k x;k bUlqys'ku 'kksj de djus okys ds :i esa Hkh dk;Z djsxk@djsxkA > uhao vkSj lajpukvksa dks daju vkSj 'kksj dks de djus ds fy, fMt+kbu fd;k tk jgk gS@fd;k tk,xkA ➤ fu;fer midj.k j[kj[kko vkSj csgrj dk;Z vknrsa viukbZ tk jgh uds ,uok;jks lfoZlst çkbosV fyfeVsM fyfeVsM]

t;iqj

अप्रैल '2024

50

VIII

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078

34 120/38/2024/REGIBN PALWAL
PROJECT: DRAFT EIA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED **EXECUTIVE SUMMARY** DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119 gSa@viukbZ tk,axhA ➤ Mh-th- IsV dks Ihihlhch ekunaMksa ds vuqlkj LVSd AapkbZ ds lkFk ,d bufcYV èofud ckM+s esa j[kk x;k gSA Jfedksa dks vko';d lqj{kk vkSj O;fäxr lqj{kk midj.k tSls bZ;j lyx] bZ;j eQ] gsyesV vkfn çnku fd, tk jgs gSa@çnku fd, tk,axsA ➤ la;a= ds ifili ds Hkhri o`{kkjksi.k dk dk;kZUo;u 'kksj dks vo'kksf"kr djsxkA bl çdkj èofu çnw"k.k dks fu;af=r djus esa enn feysxh@feysxhA > vR;fèkd 'kksj mRiUu gksus Is cpus ds fy, mfpr Lusgu vkSj gkmldhfiax vkerkSj ij dh tk jgh gS@dh tk,xhA > i;Zos{kd e'khujh vkSj lkbysalj dh fLFkfr cuk, j[kdj 'kksj dks fu;af=r djus ds fy, ftEesnkj gS@jgsxkA dku lqi{kkRed midj.kksa dk mi;ksxA ➤ la;a= ifjlj ds vanj çLrkfor gfjr {ks= 36077-10 oxZ ehVj 1/428-35%½ gS ftlesa 2500 isM+@gsDVs;j dh nj ls 9019 ikSèks gSaA ekunaMksa ds vuqlkj dqy 33 çfr'kr o`{kkjksi.k çklr djus ds fy, ifj;kstuk LFky ds Hkhrj daVsuj o`{kkjksi.k esa yxHkx 4-65 çfr'kr dh deh okyk o`{kkjksi.k fd;k tk,xkA o"kkZ ty Nr ds 'kh"kZ vkSj iDds {ks=ksa ls ,df=r o"kkZ ty dks laj{k.k pkSuyksa ds ekè;e ls ,d= fd;k tk,xk vkSj o"kkZ ty lap;u xïksa esa Hkstk tk,xkA • 32-4 m³@hr dh {kerk ds lkFk Ng o"kkZ ty lap;u lajpuk,a cLrkfor gSaA LokLF; [k+rjs%& O;kolkf;d LokLF; vkSj ➤ IsdsaMjh LVhy IykaV esa çeq[k HkkSfrd [krjs èkq,a vkSj èkwy] èkqvka] fi?kyh gqbZ èkkrq vkSj 'kksj ds dkj.k gksrs lqj{kk gSaA xSlksa esa eq[; :i ls èkkrq ds èkq,a vkSj èkwy 'kkfey gSaA > ekè;fed bLikr la;a= esa mPp çkFkfedrk okys LokLF; [krjksa esa èkkrq ds èkq,a vkSj d.k 'kkfey gSa] ftUgsa dk;Z okrkoj.k esa Icls egRoiw.kZ tksf[keksa ds dkj.kksa ds :i esa igpkuk x;k FkkA

,uds ,uok;jks IfoZlst çkbosV fyfeVsM fyfeVsM]

vkx vkSj foLQksV-

t;iqj

अप्रैल '2024

IX

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	EXECUTIVE SUMMARY
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

[krjs&

- ➤ HkkSfrd [krjs: Mhth IsV ds fy, HkaMkj.k bZaèku rsy ds :i esa gkbZ LihM Mhty ¼,p,IMh½A
- ➤ lkexzh ;k çfØ;kvksa ds lapkyu ds nkSjku jksdFkke ds uqdlku ds dkj.k çfØ;k lacaèkh [krjs] ftlds ifj.kkeLo:i vkx] foLQksV vkfn gks ldrs gSaA
- osfYMax] j[kj[kko] fxjrh oLrqvksa vkfn tSls ";kaf=d" dk;ksZa ds dkj.k ;kaf=d [krjs & ewy :i ls os tks [krjukd lkefxz;ksa ls tqM+s ugha gSaA
- ➢ fo|qr lacaèkh [krjs: bysDVaksD;w'ku] mPp oksYVst Lrj]
 'k,VZ lfdZV] vkfnA buesa ls] lkexzh vkSj çfØ;k ds [krjs
 ;kaf=d vkSj fo|qr [krjksa dh rqyuk esa cgqr vfèkd {kfr {kerk
 okys gksrs gSa] tks cM+s iSekus ij cgqr lhfer gksrs gSaA

'keu ds mik;%&

- ➤ O;kogkfjd lhek rd dk;Z {ks= esa ok;q mRltZu ds laHkkfor lzksrksa dks ?ksjuk vkSj vyx djuk(
- ➤ mu {ks=ksa esa fujarj dk;Z {ks= dh fuxjkuh çnku djsa tgka vpkud vkSj vçR;kf'kr [krjs mRiUu gks jgs gSa ¼mnkgj.k ds fy, tgka vkflZu ;k gkbMakstu lkbukbM dk mRltZu laHko gks ldrk gS½(
- ➤ O;fäxr O;kolkf;d LoPNrk uewukdj.k midj.kksa dk mi;ksx djds dk;ZdrkZ tksf[ke dh fuxjkuh djsa(
- çf'k{k.k çnku djuk vkSj vPNh O;fäxr LoPNrk dks çksRlkfgr djuk] vkSj dk;ZLFky ij èkweziku vkSj [kkus ij çfrcaèk yxkuk(
- ➤ O;kogkfjd lhek rd çfØ;kvksa vkSj lkexzh çcaèku dks Lopkfyr djuk vkSj v,ijsVjksa ds fy, layXud çnku djuk(
- ➤ dk;Z {ks= lqj{kk ,oa LokLF; lkoèkkfu;k¡:
- > vkx çfrjksèkh nLrkuksa dk çkoèkku
- ➤ NhaVksa dks jksdus ds fy, psgjs vkSj vka[kksa dh lqj{kk
- ➢ èkq,a dks vanj ysus Is jksdus ds fy, Loh—r Üokl;a=
- ➤ i;kZlr osafVys'ku vkSj fudkl dk çkoèkku
- ➤ ifjHkkf"kr lwph ds lkFk i;kZlr HkaMkj.k lqfoèkk

X

➤ mi;qä LØfcax lekèkku ds lkFk i;kZlr xhyh LØfcax ç.kkyh

,uds ,uok;jks IfoZIst çkbosV fyfeVsM fyfeVsM]

t;iqj

अप्रैल '2024

33 320/38 / 202 4 / RECEISM PALVAL
PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX
APPLICANT: JYOTI STRIPS PRIVATE LIMITED
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119
EXECUTIVE SUMMARY

	➤ midj.k@e'khujh dk vkofèkd fujh{k.kA
Ikekftd&vkfF	● bl IykaV ds dk;Z'khy gksus ls çR;{k ,oa vçR;{k jkstxkj ds
kZd igyw	volj iSnk gksus dh laHkkouk gS-
	● LFkkuh; yksxksa dks 37 yksxksa dk çR;{k jkstxkj tks mudh
	vkthfodk dks cuk, j[kus esa enn djrk gSA
	 • ifjpkyu pj.k ds nkSjku dqN lhbZvkj xfrfofèk;ksa ds dk;kZUo;u ls vçR;{k jkstxkj Hkh mRiUu gksxkA
	• blds vykok] dPps eky vkSj mRiknksa dks ys tkus ds fy,
	V ^a dksa dh vkoktkgh ls yxHkx 40 yksxksa dks M ^a kboj vkSj
	Dyhuj ds :i esa jkstxkj feysxk] vkiwfrZ J`a[kyk ds ckgjh
	Jfedksa dks fu;fer :i ls {ks= esa yk;k tk,xk] vkSj LFkkuh;
	foØsrkvksa dks vfrfjä O;olk; çnku fd;k tk,xkA Hkkstu vkSj
	mudh vU; jkstejkZ dh vko';drk,a çnku djuk] bl çdkj vfrfjä vk;
	mRiUu djuk • LFkkuh; O;olk;A
	• vkthfodk esa lqèkkjA
	■ LFkkuh; O;fä;ksa dks çf'k{k.k çnku fd;k tk,xkA ■ LFkkuh; O;fä;ksa dks çf'k
	• tkx#drk dk;ZØe dk vk;kstu fd;k tk,xk-
LokLF; vkSj	LokLF; vkSj lqj{kk %
lqj{kk	lykaV esa fuEufyf[kr mik; viuk;s tk;saxs:&
	çnw"k.k fu;a=.k midj.kksa dk fu;fer fujh{k.k vkSj j[kj[kkoA
	➤ IHkh dk;ZdrkZvksa dks lqj{kk ls lacafèkr dk;Z tSls lqj{kk
	midj.k] çf'k{k.k] lqj{kk iqjLdkj] iksLVj] ukjs vkfn fn, tk,axsA
	> 'kksj okys Izksrksa ds laidZ esa vkus okys Jfedksa dks
	ihihbZ çnku fd;k tk,xkA ➤ deZpkfj;ksa dks ihus ds ikuh vkSj 'kkSpky; dh i;kZlr
	Iqfoèkk,a çnku dh tk,axhA
	fu;fer :i ls j[kj[kko fd;k tk,xkA
	➤ daiuh tkx:drk dk;ZØe vkSj lkeqnkf;d xfrfofèk;k¡ tSls
	LokLF;] f'kfoj] ifjokj dY;k.k f'kfoj vkfn pyk,xhA
L-70. ::(11 11) /	➤ Jfedksa dh fu;fer fpfdRlk tkap
bZ&vif'k"V	• la;a= ifjlj ds Hkhrj bZ&dpjs dk dksbZ mRiknu ugha gksrk

ΧI

,uds ,uok;jks lfoZlst çkbosV fyfeVsM fyfeVsM]

t;iqj

अप्रैल '2024

34 120/38 / 202 4 / REST PAL WAL
PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX
APPLICANT: JYOTI STRIPS PRIVATE LIMITED
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

EXECUTIVE SUMMARY

çcaèku	gSA
lykfLVd	• la;a= ifjlj ds Hkhrj lykfLVd dpjs dk dksbZ mRiknu ugha
vif'k"V	gksrk gSA
çcaèku	
tSfod	tSo fofoèkrk ij çfrdwy çHkko dks de djus vkSj vè;;u {ks= dh
i;kZoj.k	vkokl fLFkfr esa lqèkkj djus ds fy,: &
	●la;a= ifjlj ds vanj çLrkfor gfjr {ks= 36077-10 oxZ ehVj 1⁄428-
	35%½ gS ftlesa 2500 isM+@gsDVs;j dh nj ls 9019 ikSèks
	gSaA ekunaMksa ds vuqlkj dqy 33% o`{kkjksi.k çklr djus ds
	fy, ifj;kstuk LFky ds Hkhrj daVsuj o`{kkjksi.k esa yxHkx 4-65% dh deh okyk o`{kkjksi.k fd;k tk,xkA
	 orZeku esa dqy 12 ua- {ks= esa fofHkUu çtkfr;ksa ds isM+@>kfM+;ki ekStwn gSaA
oU; thou	ifj;kstuk LFky ds Hkhrj dksbZ vuqlwph&1 çtkfr ugha ikbZ xbZ
laj{k.k ;kstuk	gSA
çLrkfor gfjr	
{ks= fodkl	fn'kkfunZs'kksa ds vuqlkj yxHkx 2500 isM+@gsDVs;j
	Hkwfe ij o`{kkjksi.k fodflr fd;k tk,xkA dqy 9019 ux- ds isM+
	yxk, tk,axs-
	≽ ikSèkkjksi.k iwjh IM+d vkSj la;a= dh lhek vkSj la;a= ifjlj ds
	Hkhrj vU; mi;qä LFkku ij fd;k tk,xkA
	fuekZ.k dk;Z ds lkFk&lkFk ikSèkkjksi.k Hkh 'kq: fd;k tk,xkA
gfjr {ks=	lhihlhch fn'kkfunZs'k ds vuqlkj LFkyk—frd mi;qärk vkSj p;fur
fodkl ds fy,	çtkfr;ksa ds vkèkkj ij ikSèkksa ds la;kstu dk p;u fd;k tkrk gSA
rduhdsa	feêh dh fo'ks"krkvksa dks è;ku esa j[kk tk,xkA blds vkèkkj ij
	vkSj i;kZoj.kh; ifjfLFkfr;ksa ds vkèkkj ij o"kZokj o`{kkjksi.k
	dk;ZØe ds fy, mi;qä ns'kh ikSèkksa dh çtkfr;k¡ çLrkfor dh xbZ
afir (ka- dk	gSaA
gfjr {ks= dk fMt+kbu	ikSèkksa ds p;u esa fuEufyf[kr dkjdksa dks Hkh è;ku esa j[kk tk,xk%
IIVICIKDU	,dA
	xSIh; mRItZu ds vo'kks"k.k ds fy,%

,uds ,uok;jks lfoZlst çkbosV fyfeVsM fyfeVsM]

t;iqj

अप्रैल '2024

33 20/38 / 2024 / RECEIPN PAL WAI
PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX
APPLICANT: JYOTI STRIPS PRIVATE LIMITED
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119
EXECUTIVE SUMMARY

çnw"kdksa ds çfr [fg".kgrk] [kaærk ij] tks rRdky ?kkrd gksus ds fy, cgqr vfèkd ugha gSa] iÙks dh yach vofèk] rkt dh i;kZlr AapkbZ ds ekè;e ls] Lora= :i ls mtkxj iÙks] N= esa iÙkksa dk [kgykiu] cM+h ifÙk;k; ¼yach vkSj pkSM+h ykfeuk lrg½ jaèkz fNæksa dh cM+h la[;k jaèkz vPNh rjg ls mtkxj ¼Lrj esa lkekU; ,fiMeZy lrg gksxh½ fuyafcr d.kksa dks gVkus ds fy,% egdqV dh AapkbZ vkSj QSyko ifÙk;k; -<+ MaByksa ij fVdh gksrh gSa] Nky vkSj iÙks ij Irg dh cpgjrk] ds ekè;e Is Nky dk [kqjnjkiu] MaByksa ij ,fiMeZy o`f)] cxy ds ckyksa dh cpqirk] ysfeuj Irgksa ij cky ;k rjktw jaèkz lajf{kr 1/4Fkk] esgjkc @ NYys] cky] vkfn }kjk½ p;fur IHkh ikSèks LFkkuh; :i Is vuqdwfyr gSa] vkSj orZeku LFky mi;qä ckxokuh çFkkvksa ds lkFk muds fodkl dk leFkZu djus esa l{ke gSA yxHkxA 10 QhV vkdkj ¼ÅapkbZ½ ds ikSèks 2500 çfr gsDVs;j ds ?kuRo ij mi;qä nwjh ij yxk, tk,axsA igys 3 o"kksZa ds Hkhrj yxHkx 9019 ikSèks mxk, tkus dk çLrko gSA çLrkfor o`{kkjksi.k fodkl dk;ZØe ds vUrxZr 45-09 yk[k& ctV çLrkfor gSA IHkh ikSèks LFkkuh; :i ls vuqdwfyr gSa vkSj orZeku LFky mi;qä ckxokuh cFkkvksa ds lkFk muds fodkl dk leFkZu djus esa l{ke qSA vPNs o`{kkjksi.k çcaèku ds fy, fodkl vkSj j[kj[kko ds fy, i;kZlr lalkèku vkSj tu'kfä vko';d gS

8-0 i;kZoj.kh; dkjZokbZ dk;ZØe -

i;kZoj.k laj{k.k] çcaèku] çnw"k.k fu;a=.k] mipkj vkSj fuxjkuh ds fy, flLVe] mfpr ctVh; çkoèkku fd;k tk,xkSA ifj;kstuk ds i;kZoj.k çcaèku ds fy, vkorÊ O;; fd;k tk,xkA miyCèkrk lqfuf'pr djus ds fy, lexz ifj;kstuk foÙkiks"k.k ds ,d Hkkx ds :i esa çnw"k.k fu;a=.k mik;ksa ds fy, i;kZlr èkujkf'k çnku dh tk,xhA mfpr mipkjksa rFkk lqfoèkkvksa ds EMP ds fy,

0

uds ,uok;jks lfoZlst çkbosV fyfeVsM fyfeVsM]

t;iqj

अप्रैल '2024

XIII

2	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	EXECUTIVE SUMMARY
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

dqy iwath fuos'k 4000 yk[k #i;s gSA i;kZoj.k çcaèku dk;ZØe ds fy, çLrkfor ykxr dk fooj.k fuEukuqlkj fn;k x;k gS &

lkj.kh 8% i;kZoj.kh; mik;ksa ds fy, ykxr çkoèkku

Ø- la	oLrq dk fooj.k	çLrkfor iwathxr ykxr ¼yk[k½	çLrkfor vkorÊ ykxr ¼yk[k½	dqy çLrkfor iwath ykxr ¼yk[k½	dqy çLrkfor vkorÊ ykxr ¼yk[k½	fVli.kh
1	fcanq Izksr] {ks= Izksr vkSj ykbu Izksr ds fy, ok;q mRltZu 'keu mik; viuk;k x;k	1500	500	1500	500	Twin type fume scrubber, Water sprinkling
2	ZLD dks çHkko'khyrk ds lkFk cuk, j[kus ds fy, ty fuoZgu 'keu mik;	200	20	200	20	MEE with MBR technology will be proposed
3	o"kkZ ty laj{k.k	200	20	200	20	
4	o`{kkjksi.k fodkl	100	10	100	10	
5	vfXu'keu	1500	150	1500	150	Firefighting equipments as per NBC code are installed and FIRE NOC will be obtained.
6	d,ikZsjsV i;kZoj.kh; ftEesnkjh *vafre bZvkbZ,@bZ,eih fjiksVZ esa okafNr dksbZ Hkh xfrfofèk tksM+h tk,xhA	500	50	500	50	Reduction of carbon and emission trading will be projected
	dqy	4000	770	4000	770	

9-0 fu"d"kZ -

,uds ,uok;jks lfoZlst çkbosV fyfeVsM fyfeVsM]

t;iqj

अप्रैल '2024

XIV

33 320/38 / 202 4 / RECTION DATA VALUE | PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX |
APPLICANT: JYOTI STRIPS PRIVATE LIMITED | EXECUTIVE SUMMARY |
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

mijksä ppkZ ls ;g dgk tk ldrk gS fd bl ifj;kstuk ls dksbZ egRoiw-kZ ifj-kke gksus dh laHkkouk ugha gSA mijksä ppkZ ls ;g dgk tk ldrk gS fd bl ifj;kstuk ls dksbZ egRoiw-kZ ifj-kke gksus dh laHkkouk ugha gS A {ks= ds pkjksa vksj gfjr iêh dk fodkl ,d çHkkoh çnw"k.k 'keu rduhd ds lkFk&&lkFk fu;a=.k ds fy, Hkh fd;k tk,xk T;ksfr fLVail çkbosV fyfeVsM ds ifjlj ls fudyus okys çnw"kdA

0

,uds ,uok;jks IfoZIst çkbosV fyfeVsM fyfeVsM]

t;iqj

अप्रैल '2024

53

XV

34 120/38//2024/KECIBN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	TOR COMPLIANCE
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

TERMS OF REFERENCE

Standard Terms of Reference. ToR is issued by SEIAA, Haryana vide letter no. File No. SEIAA/HR/2023/426 dated 27.10.2023. in favor of Jyoti Strips Private Limited. Copy of the same is enclosed as Annexure -I. The point wise compliance of the TOR is as under:-

Table 1.1: TOR COMPLIANCE

S. No.	Items in the letter of the TORs	Reply / Response by the PP
1.	Introduction	
i.	Background about the project	This is a Greenfield project of "Proposed Cold Rolling Mill
		Complex with Galvanizing and colour coating line" having
		total Capacity of Various products 7,80,000 MTPA (Metric
		tons per annum)" located at # Kila No. 4 to 24, Prithla -
		Tatarpur Road, Village Tatarpur, Palwal, Haryana over an
		area of 127294.69 Sq.m. The total cost of the Project is
		800 Cr.
ii	Need of the project	The Company Supplies material to various automobile,
		home appliances, Pre-Engineered Buildings and Stamping
		Sectors. Steel Tubes made out of the material is used for
		plumbing, water mains, firefighting systems, Hollow
		Sections for structural purposes, Scaffolding, Electrical
		Poles and Telecom towers. Material is supplied to
		manufacturers of Compressor Shells also.
iii.	Purpose of the EIA study	To evaluate the existing scenario due to proposed project
		activity in respect to Air, water, noise, soil, Biological and
		Socio economic attributes and predict the impacts and
		suggest its mitigation measures by Environmental
iv.	Same of the EIA study	Management Plan. As per standard TOR issued by SEIAA, Haryana the scope
IV.	Scope of the EIA study	
		of the EIA Study includes detailed study of the environment for an area of 10Km radius from the project
		• '
		area. The various environmental parameters like Air, Water, Noise, Land, Biological and Socio-economic
		aspects attributes cover for the baseline study.
2	Project Description	aspects attributes cover for the basefine study.
i.	<u> </u>	This is a proposed project of "Proposed Cold Rolling Mill
1.	Location of the project site	This is a proposed project of Proposed Cold Rolling Mill

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	TOR COMPLIANCE
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

covering	village,	Taluka/Tehsil,	Complex with Galvanizing and colour coating line"
District ar	nd State		located at # Kila No. 4 to 24, Prithla - Tatarpur Road,
			Village Tatarpur, Palwal, Haryana .The co-ordinates
			(Latitude -Longitude) of Boundary Pillars of the sites has
			been given below: -

Pillars	Latitude	Longitude	Pillars	Latitude	Longitude
1	28°13′ 49.432″ N	77°18' 31.314" E	17	28°14' 2.236" N	77°18' 24.172" E
2	28°13′ 50.833″ N	77°18' 31.345" E	18	28°14′ 3.333″ N	77°18' 22.975" E
3	28°13′ 50.836″ N	77°18' 31.654" E	19	28°14' 3.715" N	77°18' 22.884" E
4	28°13′ 52.438″ N	77°18' 31.647" E	20	28°14' 3.764" N	77°18' 23.103" E
5	28°13′ 52.453″ N	77°18' 29.086" E	21	28°14′ 3.873″ N	77°18' 23.099" E
6	28°13′ 54.055″ N	77°18' 29.067" E	22	28°14′ 3.863″ N	77°18' 37.584" E
7	28°13′ 54.093″ N	77°18' 22.769" E	23	28°14' 2.146" N	77°18' 37.581" E
8	28°13′ 55.727" N	77°18' 22.805" E	24	28°14' 2.113" N	77°18' 43.109" E
9	28°13′ 55.746″ N	77°18' 19.856" E	25	28°14' 0.630" N	77°18' 43.081" E
10	28°13′ 57.356″ N	77°18' 19.866" E	26	28°14′ 0.622" N	77°18' 37.542" E
11	28°13′ 57.355″ N	77°18' 22.838" E	27	28°13′ 56.366″ N	77°18' 37.533" E
12	28°13′ 58.621″ N	77°18' 22.821" E	28	28°13′ 56.409″ N	77°18' 34.474" E
13	28°13′ 58.589″ N	77°18' 25.772" E	29	28°13′ 52.776″ N	77°18′ 34.501″ E
14	28°13′ 58.963″ N	77°18' 25.774" E	30	28°13′ 52.822″ N	77°18′ 34.295″ E
15	28°13′ 58.954″ N	77°18' 27.586" E	31	28°13′ 51.933″ N	77°18′ 33.506″ E
16	28°14' 0.696" N	77°18' 25.774" E	32	28°13′ 49.436″ N	77°18' 32.551" E

ii.	Site accessibility	The project site is accessible by Rail, Road & Air.				
		• The project site is easily accessible by NH-2 1.03 km,				
		wsw.				
		• Indira Gandhi International Airport, Delhi – 40 Km,				
	0.4	NNW direction				
		• Asaoti Railway Station– 2.35 Km, NE direction.				
iii.	A digital toposheet in pdf or shape	A Toposheet of the study area of radius of 10 Km and site				
	file compatible to google earth of	location on 1:50,000 on an A3 sheet including all eco-				
	the study area of radius of 10km	sensitive area is enclosed as Annexure-II.				
	and site location preferably on					
	1:50,000 scale. (including all eco-					
	sensitive areas and					
	environmentally sensitive places)					
iv.	Latest High-resolution satellite	Land use map based on High Resolution Satellite Imagery				
	image data having 1m-5m spatial	(GPS) of the proposed expansion project is enclosed as				
	resolution like quickbird, Ikonos,	Annexure – III.				
	IRS P-6 pan sharpened etc., along					

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

with delineation of plant boundary

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	TOR COMPLIANCE
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

co-ordinates. Area must include at least 100m all around the project location. v. Environment settings of the site Environment settings of the site and its surrounding along with incorporated in Chapter 2 of EIA/E						
v. Environment settings of the site Environment settings of the site and and its surrounding along with incorporated in Chapter 2 of EIA/E						
v. Environment settings of the site Environment settings of the site and and its surrounding along with incorporated in Chapter 2 of EIA/E						
v. Environment settings of the site Environment settings of the site and and its surrounding along with incorporated in Chapter 2 of EIA/E						
and its surrounding along with incorporated in Chapter 2 of EIA/E						
	l its surrounding					
	MP report and th					
map map showing the Environment setting	map showing the Environment settings of the site and its					
	_					
surrounding is enclosed as Annexure						
vi. A list of major industries with List of industries with 10 km radius is	given as below:					
name, products and distance from						
plant site within study area (10km						
radius) and the location of the						
industries shall be depicted in the						
study area map.						
	<u> </u>					
Sr.No.Name of IndustryDistance (in KM)1.DEE PIPING SYSTEMS, PLANT-20.38	Direction E					
2. SIAC SKH INDIA CABS MANUFACTURING PVT LTD 0.50	SW					
3. WIDE INDIA INDUSTRIES 0.95	SW					
4. STERLING TOOLS LIMITED 0.94	SSW					
5. VEEGEE INDUSTRIAL ENTERPRISES 2.50	SW					
6. OOD AND BIOTECH ENGINEERS INDIA PVT. LTD. 3.60	WNW					
7. PROMPT ENTERPRISES 3.0	NW					
PVT. LTD. 8. ICD, PIYALA 2.98	NNE					
9. BPCL PIYALA LPG TERRITORY 4.10	NNE					
10. HENNA EXPORTS 1.55	SE					
	SE					
11. OMP INDIA PVT. LIMITED 1.65	SSE					
11.OMP INDIA PVT. LIMITED1.6512.KNORR-BREMSE INDIA PRIVATE LIMITED3.14						
12.KNORR-BREMSE INDIA PRIVATE LIMITED3.1413.ICD PALWAL-HIND TERMINALS3.83	SE					
12. KNORR-BREMSE INDIA PRIVATE LIMITED 3.14 13. ICD PALWAL-HIND TERMINALS 3.83 PVT. LTD.						
12.KNORR-BREMSE INDIA PRIVATE LIMITED3.1413.ICD PALWAL-HIND TERMINALS3.83	SW					
12. KNORR-BREMSE INDIA PRIVATE LIMITED 3.14 13. ICD PALWAL-HIND TERMINALS PVT. LTD. 14. ACE- ACTION CONSTRUCTION EQUIPMENT LTD 3.76 vii. In case if the project site is in No water body present in vicinity	SW of the project sit					
12. KNORR-BREMSE INDIA PRIVATE LIMITED 13. ICD PALWAL-HIND TERMINALS PVT. LTD. 14. ACE- ACTION CONSTRUCTION EQUIPMENT LTD 3.76 vii. In case if the project site is in No water body present in vicinity vicinity of the water body, 50 However, The boundary wall of the pro	SW of the project sit					
12. KNORR-BREMSE INDIA PRIVATE LIMITED 13. ICD PALWAL-HIND TERMINALS PVT. LTD. 14. ACE- ACTION CONSTRUCTION EQUIPMENT LTD 3.76 vii. In case if the project site is in No water body present in vicinity vicinity of the water body, 50 However, The boundary wall of the prometers from the edge of the water from Pahladpur Distributary in NNE december 1.	SW of the project sit					
12. KNORR-BREMSE INDIA PRIVATE LIMITED 13. ICD PALWAL-HIND TERMINALS PVT. LTD. 14. ACE- ACTION CONSTRUCTION EQUIPMENT LTD 3.76 Vii. In case if the project site is in vicinity vicinity of the water body, 50 However, The boundary wall of the prometers from the edge of the water body towards the site shall be	SW of the project sit					
12. KNORR-BREMSE INDIA PRIVATE LIMITED 13. ICD PALWAL-HIND TERMINALS PVT. LTD. 14. ACE- ACTION CONSTRUCTION EQUIPMENT LTD 3.76 vii. In case if the project site is in No water body present in vicinity vicinity of the water body, 50 However, The boundary wall of the prometers from the edge of the water body towards the site shall be treated as no development/	SW of the project sit					
12. KNORR-BREMSE INDIA PRIVATE LIMITED 13. ICD PALWAL-HIND TERMINALS PVT. LTD. 14. ACE- ACTION CONSTRUCTION EQUIPMENT LTD 3.76 vii. In case if the project site is in vicinity vicinity of the water body, 50 However, The boundary wall of the prometers from the edge of the water from Pahladpur Distributary in NNE described body towards the site shall be treated as no development/construction zone. If it's near the	SW of the project sit					
12. KNORR-BREMSE INDIA PRIVATE LIMITED 13. ICD PALWAL-HIND TERMINALS PVT. LTD. 14. ACE- ACTION CONSTRUCTION EQUIPMENT LTD 3.76 vii. In case if the project site is in vicinity vicinity of the water body, 50 However, The boundary wall of the prometers from the edge of the water body towards the site shall be treated as no development/construction zone. If it's near the wetland, Guidelines for	SW of the project sit					
12. KNORR-BREMSE INDIA PRIVATE LIMITED 13. ICD PALWAL-HIND TERMINALS PVT. LTD. 14. ACE- ACTION CONSTRUCTION EQUIPMENT LTD 3.76 vii. In case if the project site is in vicinity of the water body, 50 meters from the edge of the water body towards the site shall be treated as no development/construction zone. If it's near the wetland, Guidelines for implementing Wetlands	SW of the project sit					
12. KNORR-BREMSE INDIA PRIVATE LIMITED 13. ICD PALWAL-HIND TERMINALS PVT. LTD. 14. ACE- ACTION CONSTRUCTION EQUIPMENT LTD 3.76 vii. In case if the project site is in vicinity vicinity of the water body, 50 However, The boundary wall of the prometers from the edge of the water body towards the site shall be treated as no development/construction zone. If it's near the wetland, Guidelines for	SW of the project sit					
12. KNORR-BREMSE INDIA PRIVATE LIMITED 13. ICD PALWAL-HIND TERMINALS PVT. LTD. 14. ACE- ACTION CONSTRUCTION EQUIPMENT LTD 3.76 vii. In case if the project site is in vicinity of the water body, 50 meters from the edge of the water body towards the site shall be treated as no development/construction zone. If it's near the wetland, Guidelines for implementing Wetlands	SW of the project sit					

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	TOR COMPLIANCE
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

	vicinity of the river, the industry shall not be located within the river flood plain corresponding to one in 25 years flood, as certified by concerned District Magistrate/Executive Engineer from State Water Resources	Disaster Management Authority, 2023 shows that the palwal district is not affected by floods. Despite this, the project site is 1.14 KM away towards NNE of the Pahladpur Distributary. Attached as Annexure-V
	Department (or) any other officer authorized by the State Government for this purpose as per the provisions contained in the MoEF&CC Office Memorandum dated 14/02/2022.	
ix.	Type of land, land use of the project site	Industrial land.
X.	Status of acquisition of land. If acquisition is not complete, stage of the acquisition process as per the MoEF&CC O.M. dated 7/10/2014 shall be furnished.	Total project land is acquired for the area of 127294.69 sq.m.
xi.	Engineering layout of the area with dimensions depicting existing unit as well as proposed unit indicating storage area, plant area, greenbelt area, utilities etc. If located within an Industrial area/ Estate/ Complex, layout of Industrial Area indicating location of unit within the Industrial area/Estate.	
3.	Forest and wildlife related issues	
i.	Status of Forest Clearance for the use of forest land shall be submitted.	No forest land is involved in the proposed project; thus, no such permission/approval is required.
ii.	Copy of application submitted for	No forest land is involved in the proposed project. Hence,

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	TOR COMPLIANCE
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

l.							
	clearance	e under the Wildlife	it is not applicable.				
	(Protecti	on) Act, 1972, to the					
	Standing	Committee of the					
	National	Board for Wildlife if the					
	project s	site located within notified					
	Eco-Sens	sitive Zone, 10km radius of					
	national	park/sanctuary wherein					
	final ESZ	notification is not in place					
	as pe	er MoEF&CC Office	Office				
	Memorai	ndum dated 8/8/2019.					
iii.	The proj	jects to be located within	There are no National	Park, Sanctuaries, Biosphere			
	10 km	of the National Parks,	Reserves, and Migratory C	orridors of Wild animals within			
	Sanctuar	ries, Biosphere Reserves,	10 Km radius from the pro	posed site.			
	Migrator	y Corridors of Wild					
	Animals,	Eco-sensitive Zone and					
	Eco-sens	sitive areas, the project					
	propone	nt shall submit the map					
	duly aut	thenticated by Divisional	Y				
	Forest O	fficer showing the distance					
	between	the project site and the					
	said area	ıs.					
iv.	Wildlife	Conservation Plan duly	One schedule-I species are	e found in the buffer zone of the			
	authenti	cated by the Competent	project site namely:				
	Authority	y of the State Government	Peafowl (Pavo cristatus)				
	for cons	servation of Schedule I					
	fauna, if	any exists in the study					
	area.						
4.	Salient f	eatures of the project					
i.	Products	with capacities in Tons					
	per An	num for the proposed					
	project						
	S. No.	Name	Proposed Capacity (TPA)	Total Capacity (TPA)			
	a)	HRPO coils/sheets	120000	120000			
	b)	Cold rolled full hard coils	60000	60000			
	c)	CRCA coils/sheets	90000	90000			

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR APRIL'2024

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	TOR COMPLIANCE
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

								T				
				zed/galvalu	me coils							
	<u> </u>			oated coils						120000		
		,	<u>CDW</u> HR tube					000		30000		
		0,	CR tube				30000 30000 60000 60000					
			Stampin	g			30000 30000					
			Total capacity					780,	000			
ii.		If expansion project, status of			Not applicable as this is a proposed project of Proposed							
		implement	nentation of existing project,			Cold Rolling Mill Complex with Galvanizing and colour						
		details of existing/proposed				_		having total	_	-	rious prod	ucts
		products with production			ıction	7,80,000	MTF	PA (Metric ton	ıs per	annum)".		
		_		per Annum								
iii.		Site preparatory activities.				Clearanc	e of	vegetation, su	ırface	e levelling v	vill be done	e for
						the prop	osed	project.				
iv.		List of raw materials required and						erial required			_	
		their source along with mode of			de of	transpor	tatio	n is given be	low &	& incorpora	ated in Cha	pter
		transportation			2 of EIA/	'EMP	report:					
	S. No.	-		otal		Source		Mode of transport	Remarks			
	1.				ООТРА	f	rom Tata steel		transport			
					Limited, SAIL, Jindal Trans Steel and Power ed b			Transport ed by Trucks	Local Market			
								Limited				
v.		Other tha	n raw	materials,	other	Other raw material or chemical & materials are required.					red.	
		chemicals	and ma	aterials req	uired							
		with qua	antities	and st	orage							
		capacities.										
		S.N	No.		Chemic	al		Ca	apaci	ty		
			L.		Lime				0 TPI			
			2.		austic S				0 Lt/c			<u> </u>
vi		Manufactu						g process de		_	_	
		o .	-	s flow diagr		diagram of proposed unit are given in Chapter -2 of EIA					EIA	
		proposed units.				EMP report.						
vii	i	Consolidated materials and energy			0.0			materials a				the
		balance for						ject in Chapte				
vii	i		-	nt of su	-			f water will b				
		ground wa	iter and	power with	their	surface water will be used for the proposed project.						
Ì		respective	sour		C	Fresh Water requirement for proposed grinding unit is						
				ces, statu	s of	riesii w	ater	requirement	101. İ	oroposea g	rinaing uni	It IS

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	TOR COMPLIANCE
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

	approval.			50.0KLI	D. The CG	WA ap	pplication is	under process.
	S. No.	Particulars	Fresh (KLD)		cycled KLD)		l Water and (KLD)	
	1.	Industrial	382.5		270	Dem	652.5	
	2.	Domestic	67.5		30		97.5	
	3.	Plantation and others		37.5*(S	TP treated	37.5	*(STP treated	
				waste v	water will	wast	e water will b	e
					ised in	used	in plantation)
		Total	450		tation) 300		750	
	Source:	- Ground water (*-Reuse]		730	
	Permiss	sion for abstraction of gr	ound water					
ix	Water bala	nce diagram	Water	balance	diagram	for p	proposed ph	ase is given in
			•		A/EMP re			
X.	Details of	ŕ			Emission,		•	ardous waste
		waste generation and						construction as
	mode o	1		Ī	on phase	is in	corporated	in Chapter 4 of
		on as well as operation	i EIA rep	ort				
	phase.			Q.				
xi.	Man-power	r requirement.		-		_		ployment for
			around	around 2000Nos. Preference for employment will be				
			given to	given to local persons. Following staff & workers will be				
			employ	employed: -				
			Parti	cular	Construc Phase		Operation Phase	Remarks
			Perm	anent	250		50	Preference for
			Ski	lled	500		150	employment
			Semi-s	skilled	750		300	will be given to
			Tot	tal	1500)	500	local persons
xii.	Cost of pro	ject and scheduled time	Propose	ed Proje	ct Cost: -	Rs 80	0.0 Crore;	
	of completi	on	Time of	f Comple	etion: -Wi	thin 2	4 months	
xiii.	Brief on pr	resent status of compli	ance Exp	ansion/	' modern	izatio	on proposa	s)
a.		e Environment Impac			• •		-	old Rolling Mill
	Assessmen	t for the existing as wel	Comple	x with	Galvani	zing	and colour	coating line
	as	the proposed	proposed Environment Impact A		Assess	sment for	the proposed	
	expansion/modernization shall be		project	is com	puted and	d inco	orporated ir	Chapter -4 of
	expansion/		EIA/EMP report.					
	carried out		EIA/EM	IP repor	t.			
b.	carried out		•			ithdra	w the groun	nd water for the
b.	carried out		Propos	ed proje	ect will wi		· ·	nd water for the

34 120/38//2024//KECIBIN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	TOR COMPLIANCE
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

the ground water, the unit has implemented following phasing out of ground water actions within the plant site which are as follows:abstraction in next three years except for domestic purposes and 1. Rain water storage tank is proposed to be installed shall switch over to 100 % use of within the plant site. 2. STP treated water will be reused in plantation. No surface water from nearby source. fresh water will be used. Copy of all the Environment Not applicable as this is a Green Field Project c. Clearance(s) including Amendments thereto obtained for the project from MoEF&CC/SEIAA shall be attached as an Annexure. A certified copy of the latest Monitoring Report of the Regional Office the Ministry of Environment and Forests as per circular dated 30th May, 2012 on the status of compliance conditions stipulated in all the existing environment clearances including amendments shall be provided. d. In case the existing project has not Not applicable as this is a Green Field Project obtained Environment Clearance, reasons for not taking EC under provisions of the EIA the Notification 1994 and/or **EIA** Notification 2006 shall be provided. Copies of Consent to Establish/No Objection Certificate and Consent to Operate (in case of units operating prior to EIA Notification 2006, CTE and CTO of FY 2005-2006) obtained from the SPCB shall be submitted. Further, compliance report the

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	TOR COMPLIANCE
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

	conditions of consents from the	
	Regional Office of the SPCB shall be	
	submitted.	
5.	Description of the Environment	
i.	Study period	Site - Specific Micro Meteorological data (Temperature,
		Relative Humidity, Hourly Wind Speed and Direction,
		Rainfall) were collected during Pre-Monsoon season (!st
		March-31 st May'2023) and description is incorporated in
		Chapter-3 of EIA/EMP report.
ii.	Approach and methodology for	The approach and methodology is given in chapter 3 of
	data collection as furnished as per	EIA/EMP report.
	the TOR.	
iii.	Interpretation of each	Interpretation of Environmental attributes of air, ground
	environment attribute shall be	& surface, water, noise, Soil, Biological Environmental,
	enumerated and summarized as	Land use, Socioeconomic study is incorporated in Chapter
	given below:	3 of EIA/EMP report.
a.	Ambient air quality	The raw data of all AAQ measurement for 12 weeks of
		eight stations as per frequency given in the NAAQM
		Notification of November 2009 has been given in Chapter
		- 3 of EIA/ EMP report.
		The Baseline Monitoring report of same has been
		enclosed as Annexure- VII
b.	Ambient Noise quality	Noise level monitoring was carried out at 8 locations
		within the study area during post monsoon season (Oct,
	~	Nov, Dec, 2022) as per CPCB/ MoEF&CC guidelines. The
		analysis is given in Chapter- 3, Chapter - 3 of EIA/ EMP
		report.
c.	Surface water quality	Three surface water samples were collected and were
		analyzed for various parameters as per CPCB/ MoEF&CC
		guidelines. The analysis has been given in Chapter – 3 of
		EIA/ EMP report.
d.	Ground water quality	Eight locations of ground water samples have been
3.	The second secon	analyzed for various parameters as per CPCB/ MoEF&CC
		guidelines. The analysis has been given in Chapter – 3 of
		EIA/ EMP report.
		LIM LIMI TEPOIL

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	TOR COMPLIANCE
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

e.	Soil quality	Soil sampling was carried out at Eight locations within
		the study area during post monsoon season (Oct, Nov,
		Dec, 2022). The analysis is given in Chapter – 3 of EIA/
		EMP report.
f.	Biological Environment	The study of flora and fauna (terrestrial) in the study area
		is given in Chapter – 3 of EIA/ EMP report.
g.	Land use	Land use of the study area in section 3.10, Chapter-3 of
		EIA report
h.	Socio-economic environment	Socio economic survey is incorporated in Chapter – 3 of
		EIA/ EMP report.
6.	Anticipated Environment Impac	ts and mitigation measures (In case of expansion,
	cumulative impact assessment sha	ıll be carried out)
i.	Identification of potential impacts	Potential impacts in the form of a matrix for the
	in the form of a matrix for the	construction and operation phase for all the environment
	construction and operation phase	components as per the TOR is given is Chapter 4 of
	for all the environment	EIA/EMP report.
	components as per the TOR	
ii.	Impact on ambient air quality	Impact on ambient air quality in Construction as well as
	(Sources; Embedded control	proposed phase is incorporated in Chapter 4- of EIA
	measures; Assessment; Mitigation	/EMP report.
	measures; Residual impact)	
	a. Construction phase	
	b. Operation phase	
iii.	Details of stack emissions from the	The stack details of proposed is given below:-
	existing as well as proposed	
	activity.	

S. No.	Parameters	Units	Stack-I (BOILER 10TPH) (Fuel-LNG)	Stack II (PICKLING)	Stack - III (DG SET 1000KVA) (fuel-NG)	Stack - IV (DG SET 1000KVA) (fuel-NG)
1	Stack Height	m	30	30	30	30
2	Top diameter of flue	m <u>.</u>	0.85	0.6	0.3	0.3
3	Flue gas velocity	m/s	10	8	10	10
4	Exit Flue gas temperature	K	433	323	453	453
5	Flue gas flow rate	m³/s	5.67	2.26	0.707	0.707
6	Emission rate at stack	exit				
A	PM ₁₀ emission rate	g/s	0.15	0.04	0.024	0.024
В	PM _{2.5} emission rate	g/s	0.1	0.03	0.02	0.02

3 **3 120/3/3//2/0/24//KEGIBIN** PALWAL

iv.

•			
	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX		
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	TOR COMPLIANCE	
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119		

С	NOx	g/s	0.78		0.14	0.14
D	CO	g/s	0.39		0.07	0.07
Е	Acid Mist	g/s		0.0315		
7	APCM attached		N/A	FUME	N/A	N/A
				SCRUBBER		

Assessment of ground level concentration of pollutants from the stack emission based on AQIP Modelling The air quality contours shall be plotted on a location map showing the location of project site, habitation nearby, sensitive receptors, if any along with wind rose map for respective period

Order to predict the incremental particulate emissions, AERMOD Version 7.1.0 model was used to predict changes in air quality i.e., maximum ground level concentration (GLC's) of PM_{10} , $PM_{2.5}$, NO_X and CO due to the proposed project activity. The inputs required for the model is:-

- Hourly meteorological data
- Source data
- Receptor data
- Programme control parameters.

The GLC's were predicted for the scenario, with EMP in the project.

Cumulative impact of all sources of emissions (including transportation) on the AAQ of the area is done.

Isopleths showing ground level concentration has been given in chapter 4, Sub- heading – 4.33..5 of the EIA/EMP report. . Maximum ground level concentration due to project activities are as follows:

Pollutant	Maximum Incremental			
	Concentration (µg/m³)			
PM ₁₀	0.813			
PM _{2.5}	0.588			
NO ₂	2.408			
HCL Mist	0.265			
CO (8 hrly)	2.808			

Impact on ground level concentration, under normal, abnormal and emergency conditions. Measures to handle emergency situations in the event of uncontrolled release of

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	TOR COMPLIANCE
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

	emissions.	
iii.	Impact on ambient noise quality	Impact on ambient Noise quality in Construction as well
111.	(Sources; Embedded control	as proposed phase is incorporated in Chapter 4- of EIA
	measures; Assessment; Mitigation	/EMP report.
	measures; Residual impact)	/ Esti Tepore
	a. Construction phase	
	b. Operation phase	
iv	Impact on traffic (Sources;	> There will be no major impact of the
	Embedded control measures;	transportation of the raw materials and end
	Assessment; Mitigation measures;	products on the surrounding environment due to
	Residual impact)	proposed project as proper mitigation measures
	a. Construction phase	will be adopted.
	b. Operation phase	> The impact of the transport of the raw material
		and end products on the surrounding environment
		has been assessed as a Line Source Emissions. The
		emission rate computed for the proposed
		incremental load for transportation is as follows: -
		Emission Source Emission rate
		Line emissions $PM_{10} - 1.65 \times 10^{-3} \text{ g/s/m}$
		$PM_{2.5} - 6.63 \times 10^{-4} \text{ g/s/m}$ $NOx - 4.9 \times 10^{-5} \text{ g/s/m}$
		CO – 2.1 x 10 ⁻⁵ g/s/m
v	Impact on soil quality (Sources;	No impact on soil quality with suitable measures is
	Embedded control measures;	envisaged to the proposed activity. During Site levelling
	Assessment; Mitigation measures;	work, top soil will be removed. Top soil will be stored
	Residual impact)	separately for the plantation purpose. Impact &
	a. Construction phase	mitigation measures for soil quality in Construction as
	b. Operation phase	well as proposed phase is incorporated in Chapter 4- of
		EIA /EMP report.
vi	Impact on land use (Sources;	Impact & mitigation measures for Land use in
	Embedded control measures;	Construction as well as proposed phase is incorporated
	Assessment; Mitigation measures;	in Chapter 4- of EIA /EMP report.
	Residual impact)	
	a. Construction phase	
	b. Operation phase	
	•	

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	TOR COMPLIANCE
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

	Impact on surface water resource and quality (Sources; Embedded	Impact & mitigation measures for surface water in
	and quality (Sources: Embedded	
	and quanty (boarces) Embedded	Construction as well as proposed phase is incorporated
	control measures; Assessment;	in Chapter 4- of EIA /EMP report. No waste water will be
	Mitigation measures; Residual	discharged outside the plant premises.
j	impact)	
	a. Construction phase	
1	b. Operation phase	
viii	Impact on ground water resource	Ground water will be withdrawn for proposed project.
	and quality (Sources; Embedded	Total fresh water requirement for proposed project will
	control measures; Assessment;	be 450 KLD
	Mitigation measures; Residual	Impact & mitigation measures for ground water in
j	impact)	Construction as well as proposed phase is incorporated
:	a. Construction phase	in Chapter 4- of EIA /EMP report.
1	b. Operation phase	
ix	Impact on terrestrial and aquatic	Impact terrestrial and aquatic habitat in Construction as
]	habitat (Sources; Embedded	well as proposed phase is incorporated in Chapter 4- of
	control measures; Assessment;	EIA /EMP report.
	Mitigation measures; Residual	
j	impact)	
;	a. Construction phase	
1	b. Operation phase	
X	Impact on socio-economic	Impact socio-economic environment in Construction as
	environment (Sources; Embedded	well as proposed phase is incorporated in Chapter 4- of
	control measures; Assessment;	EIA /EMP report.
	Mitigation measures; Residual	
	impact)	
	a. Construction phase	
	b. Operation phase	
xi	Impact on occupational health and	For Occupational & safety Hazards following measures
	safety (Sources; Embedded control	will be taken:
	measures; Assessment; Mitigation	> All employees will be trained, educated and
	measures; Residual impact)	encouraged to follow best and safe work practices.
	a. Construction phase	Personnel Protective Equipments like face mask,
	b. Operation phase	earmuffs, ear plugs, gloves, safety goggles and safety boots is already provided.

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX		
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	TOR COMPLIANCE	
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119		

	T	
		Awareness programme regarding the use,
		maintenance and up-keep of materials will be
		conducted on regular basis so that employees are
		trained to handle the equipment properly.
7.	Analysis of Alternatives (Technolo	Regular mock drill will be performed.
	,	
i.	Project scenario	The proposed project of Proposed Cold Rolling Mill
		Complex with Galvanizing and colour coating line"
		having total Capacity of Various products 7,80,000 MTPA
		(Metric tons per annum)" located at # Kila No. 4 to 24,
		Prithla - Tatarpur Road, Village Tatarpur, Palwal,
		Haryana over an area of 127294.69 Sq.m.
ii.	Site alternative	No alternative site is considered as proposed project lies
		in industrial area, Tatarpur, Palwal, Haryana.
iii.	Technical and social concerns	No alternate technology is considered. The technology
		already adopted for manufacturing for Proposed Cold
		Rolling Mill Complex with Galvanizing and colour coating
		line .Social study and their outcome is incorporated in
		Chapter -4 of EIA/EMP report.
iv.	Conclusion	The operation of the proposed adopts system to have
		least impact on the environment, and thus have an
		overall positive impact on the society and the region.
8.	Environmental Monitoring Progra	m
i.	Details of the Environment	Details of the Environment Management Cell is
	Management Cell	incorporated in Chapter 6 of EIA/EMP report.
ii.	Performance monitoring schedule	Monitoring schedule for all pollution control devices is
	for all pollution control devices	incorporated and given in Chapter 6 of EIA/EMP report.
	shall be furnished.	
iii.	Corporate Environment Policy	
a.	Does the company have a well laid	The Company has a well laid down Environmental Policy
	down Environment Policy	under the supervision of Environmental Cell. Enclosed as
	approved by its Board of	Annexure -VIII
	Directors? If so, it may be detailed	
	in the EIA report.	
b.	Does the Environment Policy	
	<u> </u>	

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

67

XIV

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	TOR COMPLIANCE
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

	prescribe for standard operating	
	process / procedures to bring into	
	focus any infringement / deviation	
	/ violation of the environment or	
	forest norms / conditions? If so, it	
	may be detailed in the EIA.	
C.	What is the hierarchical system or	The company has well defined hierarchical system to deal
	Administrative order of the	with the environmental issues and for ensuring
	company to deal with the	compliance with the Environmental Clearance conditions.
	environment issues and for	
	ensuring compliance with the	
	environment clearance conditions?	
	Details of this system may be given	
d.	Does the company have system of	Management Representative will appraise the highest
	reporting of non-compliances /	authority on quarterly basis regarding the performance
	violations of environment norms	of the plant on environmental measures.
	to the Board of Directors of the	
	company and / or shareholders or	
	stakeholders at large? This	
	reporting mechanism shall be	
	detailed in the EIA report	
iv.	Action plan for post-project	Action plan for post-project environment monitoring in
	environment monitoring matrix: as	operation phase is given in Chapter -6 of EIA/EMP report.
	per the TOR	
9.	Additional Studies	
i.	Public consultation details (Entire	This is a drat EIA/EMP report for Public hearing. After
	proceedings as separate annexure	public hearing the entire proceedings as separate
	along with authenticated English	annexure along with authenticated English Translation of
	Translation of Public Consultation	Public Consultation proceedings will be attached with
	proceedings).	Final EIA/EMP report.
ii.	Summary of issues raised during	The details of issues raised during Public Hearing
	public consultation along with	addressed with proceeding and time bound action plan
	action plan to address the same as	will be incorporated in Chapter 7 of EIA/EMP report.
	per MoEF&CC O.M. dated	

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 34 P20/38/2024/REGIBN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	TOR COMPLIANCE
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

	30/09/2020 as per the TOR	
iii.	Risk assessment	Risk Assessment methodology, hazard identification is
111.	75.1.1.1	incorporated in Chapter-7 of EIA/EMP Report.
		incorporation in disaptor , or 200, 200 reports
	Hazard identification	
	Frequency analysis	
	Consequence analysis	
	Risk assessment outcome	
iv.	Emergency response and	Onsite and Offsite Disaster (Natural and Manmade)
	preparedness plan	Preparedness and Emergency Management Plan is
40	D 1 1 D G	incorporated in Chapter-7 of EIA/EMP Report.
10.	Project Benefits	
i.	Environment benefits	Environment benefits due to the Proposed project is
		incorporated in Chapter 8 of EIA/EMP report.
ii.	Social infrastructure	Social infrastructure improvement details due to the
		proposed project are incorporated in Chapter 8 of
		EIA/EMP report.
iii.	Employment and business	During the operation phase total 2000 employees will be
	opportunity	given employment by the industry. The employment will
		be given as per their skill set. Due to proposed industry,
		other allied activity and business are also envisaged.
iv.	Other tangible benefits	The proposed green area inside the plant
		premises is 36077.10 sq. mtr (28.35%) with 9019
		No.s of plants @ 2500 trees/ha. The deficit
		plantation of about 4.65% will be done in
		container plantation within the project site to
		achieve total 33% plantation as per norms.
		Twin type fume scrubber is proposed to be
		installed to control emissions from the
		manufacturing process
		The solid waste generated from the process at
		plant site is Sent to Nearest Municipal Council.
		• 318.75 KLD water generation in the process will
		be sent to ETP1 & ETP2. Treated water from ETP
		1 and ETP 2 will be sent to WRP-RO followed by
		1 and ETP 2 will be sent to WRP-RO followed by MEE (ZLD plant)

б9

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 34 120/38/2024/REGIBN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

TOR COMPLIANCE

		 after treatment in COC to Cooling Tower. Domestic sewage 75 KLD will be treated STP (Capacity-100KLD) and 37.5 KLD of Treated water will be reused in plantation. And 30 KLD will be recycled for flushing purposes. No waste water will be disposed of on ground outside the plant premises. Installed LED Lights at admin building and street lights inside the plant premises.
11.	Environment Cost Benefit Analysis	
i.	Net present value	The details are given in Chapter- 9 of EIA/EMP report
ii.	Internal rate of return	
iii.	Benefit cost ratio	
iv.	Cost effectiveness analysis	
12.	Environment Management Plan (C	Construction and Operation phase)
i	Air quality management plan	Environment Management plan with respective
ii	Noise quality management plan	environmental attributes is incorporated in Chapter 10 of
iii	Solid and hazardous waste management plan	EIA/EMP report.
iv	Effluent management plan	
v	Storm water management plan	
vi	Rain water harvesting plan	
vii	Occupational health and safety	
	management plan	
viii	Green belt development plan	• The proposed green area inside the plant premises is 36077.10 sq. mtr (28.35%) with 9019 No.s of plants @ 2500 trees/ha. The deficit plantation of about 4.65% will be done in container plantation within the project site to achieve total 33% plantation as per norms.
ix.	Socio-economic management plan	The details are incorporated in Chapter-10 of EIA
X.	Wildlife conservation plan (In case	One schedule-I species are found in the buffer zone of the
	of presence of schedule I species)	project site namely:
		Peafowl (Pavo cristatus)
	•	

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

70

34 70/38/2024/KECIBN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	TOR COMPLIANCE
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

xi. Total capital cost and recurring cost/annum for environment pollution control measures shall be included.

Total capital cost of Rs4000 lacs. and recurring cost of Rs.
770 lac for Environmental pollution Control Measures.
The details breakup of the same are given below:

	S. No.	Description of Item	Proposed capital cost (Lacs)	Proposed Recurring cost (Lacs)	Total proposed Capital Cost (Lacs)	Total proposed Recurring Cost (Lacs)	Remarks
	1	Air Emission mitigation measure adopted for point source, area source and line source	1500	500	1500	500	Twin type fume scrubber, Water sprinkling
	2	Water discharge mitigation measures to maintain ZLD with effectiveness	200	20	200	20	MEE with MBR technology will be proposed
	3	Rain water Harvesting	200	20	200	20	
	4	Plantation Development	100	10	100	10	
	5	Fire fighting	1500	150	1500	150	Firefighting equipments as per NBC code are installed and FIRE NOC will be obtained.
	6	Corporate Environmental Responsibility *Any activity desired in the Final EIA /EMP report will be added.	500	50	500	50	Reduction of carbon and emission trading will be projected
		Total	4000	770	4000	770	
13.	Conclusion of the EIA study			The details are	given in Chap	l pter -11 of EIA/	EMP report.
14.	litigati projec	Idition to the ablion pending agant to and/or any directed by any Court of La	ainst the tion/order	There is no project.	litigation per	nding against	the proposed

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

the project, if so, details thereof shall also be included. Has the unit

34 320/38 / 2024 / RECTION PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

TOR COMPLIANCE

DOCUMEN	VT NO.: EESPL/JSPL/IND/EC/	2022-23/119				
	received any noti	ce under the				
	Section 5 of	Environment				
	(Protection) Act, 19	986 or relevant				
	Sections of Air and	Water Acts? If				
	so, details t	hereof and				
	compliance/ATR to	the notice(s)				
	and present status of	of the case.				
Special	Conditions	[
1.	A 3-D view i.e.	DEM (Digital	3-D view i.e. D	EM (Digital	Elevation Model) for the area in	
	Elevation Model) fo	(0			ated with MRL details of project	
	km radius from the			•	ources of water in Chapter 3 of	
	MRL details of proj		EIA/EMP repo	-	various or water in snapter s or	
	of nearby sources o					
	indicated.					
2.	Plan for the implem	entation of the	The CREP guid	delines are	incorporated in Chapter -10 of	
2.	recommendations		EIA/EMP repo		incorporated in diapter 10 of	
	proposed Unit in					
	Responsibility for	-				
	Protection (CREP) g					
3.	Plan for solid waste		The solid was	ste genera	tion and their disposal are as	
<i>3</i> .	Tian for some waste.	delization	follows:	ste genera	don and then disposal are as	
	Particulars	Waste Quantity i			Treatment/ disposal	
	1 al ticulai s	Type of Waste	proposed	Total	Treatmenty disposar	
	Sludge	STP Sludge	0.5	0.5	Used as manure for plantation	
	TPA				-	
	Municipal Solid Waste (@0.125	Biodegradable	0.25	0.25	Sent to Nearest Municipal site	
	Kg/ day					
	Scrap from Process	Scrap	181.81	181.81	Sold to Local market	
4.	Plan for utilization	of energy in off	Not Applicable	<u> </u> !		
*	gases (coke oven, bl		F.F			
5.	System of coke que		Not Applicable	·.		
	with full justification	9	. 1			
6.	Details on environi		The hazardous	waste gen	eration and their disposal are as	
	technologies for	recycling of	follows:	<i>U</i>	r	
	hazardous material	, ,				
	I IIII A I I I I I I I I I I I I I I I	-, as per arab				

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 34 1200/38/2024/REGIBIN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	TOR COMPLIANCE
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

	Guidelines, may be me	ntioned in				
	case of handling scrap					
	recycled materials					
	Hazardous Waste Qua	antity in TP/	1			Treatment/
	Type of Waste	Schedule	Code	Proposed	Total	disposal
	Chemical Sludge from waste water treatment (TPA)	1	35.3	16000	16000	Send to registered recyclers
	Used Oil or Spent Oil	1	5.1	200	200	Send to registered recyclers
	Iron oxide	1	5.2	4000	4000	Send to registered recyclers
7.	Details on toxic metal the waste material composition and (particularly of slag).	and its	Not App	olicable	\	
8.	Details on toxic cont Toxicity Characteristic Procedure (TCLP), co and end use of slag.	Leaching	Not App	olicable		
9.	100 % dolo char genera	ated in the	Not App	plicable		
	plant shall be used to	generate				
10.	Fourth Hole fume system shall be pro SAF.WHR system shall b to recover sensible heat gases of EAF. Prov installation of jigg briquetting plant to u fines generated in the pro-	e installed from flue rision for ing and utilize the	Not app	olicable		
	No tailing pond is per- Iron ore slimes. Dewat filtration system shall be	tering and	Not App	olicable.		
	Emission/effluent norm	ıs as per	The det	ails are given	below:	
	G.S.R 894 (E) dated 4	_		ion Particula		lard
	[EPA Rules 1986].	. ,	СО	nt (mg/l)	50mg 1 %(

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

73

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 34 120/38//2024//ESCIBIN PALWAL PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX TOR COMPLIANCE APPLICANT: JYOTI STRIPS PRIVATE LIMITED DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119 6.0-8.5 рН BOD, 3 days at 27°C 30 250 Suspended Solids 50 Oil & Grease 10 ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR APRIL'2024 XXI 78

No. I	HSPCB-060001(0014)/9/	2024-SOLID WASTE	MANAGEMENT	CELL-HSPCB	(Computer I	Vo.	107
3437	OB3/2074/R5G ON PALWA PROJECT: DRAFT EIA /EMP R	EPORT OF PROPOSED COLD ROL	LING MILL COMPLEX		CHAPTER - 1		
	APPLICANT: JYOTI STRIPS PI				INTRODUTION		

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER-I INTRODUCTION

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

33. PO/38/ZO/4/RESTERN PAL WAI
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX
APPLICANT: JYOTI STRIPS PRIVATE LIMITED
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER - 1
INTRODUTION

CHAPTER - I

INDEX

1.1	INTRODUCTION	3
1.2	SITE HISTORY	3
1.3	IDENTIFICATION OF PROJECT AND PROJECT PROPONENT	4
1.4	MARKET SCENARIO	4
1.5	BRIEF DESCRIPTION OF NATURE OF THE PROJECT	5
1.5.1	NATURE OF THE PROJECT	5
	SIZE OF THE PROJECT	
1.6	NEED FOR THE PROJECT AND ITS IMPORTANCE TO THE COUNTRY OR REGION	5
1.7	EIA PURPOSE	6
1.7.1	Scope of the Study	7
1.7.2	Regulatory Compliance	8

33 20/38 / 20/4 / RESERVANDE PAL WAR PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER - 1
INTRODUTION

CHAPTER-1

INTRODUCTION

1.1 INTRODUCTION

Jyoti Strips Private Limited is a Proposed Cold Rolling Mill Complex with Galvanizing and colour coating line having total Capacity of Various products 7,80,000 MTPA (Metric tons per annum)" located at # Kila No. 4 to 24, Prithla - Tatarpur Road, Village Tatarpur, Palwal, Haryana over an area of 127294.69 Sq.m. The proposed capacity of the project is given below:

Table 1: Proposed Production Capacity

S. No.	Name	Proposed Capacity	Total Capacity
		(TPA)	(TPA)
2)	HRPO coils/sheets (Hot	120000	120000
a)	Rolled Pickled And Oiled)		
b)	Cold rolled full hard coils	60000	60000
رم	CRCA coils/sheets (Cold	90000	90000
c)	Rolled Close Annealed)		
d)	Galvanized/galvalume coils	240000	240000
e)	Colour coated coils	120000	120000
f)	CDW (Cold Drawn Welded)	30000	30000
g)	HR tube (Hot Rolled)	30000	30000
h)	CR tube (Cold-rolled)	60000	60000
i)	Stamping	30000	30000
	Total capacity	780,0	00

The project area is 127294.69 Sq.m. No additional land is required. The proposed project cost is 800 Cr. The proposed project is categorized under **3(a)** {(**Metallurgical Industries (ferrous & non-ferrous) – All other non-toxic secondary metallurgical processing industries >5000 tones/annum)**} of Gazette Notification dated 14th September, 2006 and its subsequent amendments. The project is categorized as B-1 category.

The application for obtaining Terms of Reference along with all documents was submitted to SEIAA, Haryana online vide proposal no. SIA/HR/IND1/438851/2023 dated 11.10.2023. ToR (Terms of Reference) is issued by SEIAA, Haryana vide letter no. File No. SEIAA/HR/2023/426 dated 27.10.2023. Copy of the same is enclosed as **Annexure-I.**

EESPL is assigned the EIA/EMP based on the eligibility of accreditation as per NABET to carry out EIA/EMP report preparation for obtaining Environmental Clearance from SEAC, Haryana.

PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER - 1
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	INTRODUTION
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	INTRODUTION

Based on field visit and monitoring, potential environmental impacts due to the proposed project activities are identified, evaluated and their suitable mitigation measures are incorporated in draft EIA/EMP report in sync with the defined Terms of Reference (TOR) issued by SEIAA, Haryana.

Public Hearing will be conducted as per EIA Notification 14th September' 2006 and its subsequent amendments.

1.2 SITE HISTORY

The site is a converted industrial land parcel, The details for the same are mentioned below;

S.No.	Letter No.	Date	Khasra No.	Area
				(sq.m.)
1.	Memo No. PL- 1443-JE(S) - 2017/3660	27-02-2017	Khasra No. 40/13,14,17/1,18,17/2,23,24 and 42/4 of village jatoal and 76/8,9,10/2,11/1,11/2,11/3,12/2,12/1,13,18,19/1,19/2,20,23/2,24,77/15/1 min, 15/2 min, 98/4, 7 min and 8/1 min of village prithla sector-11, prithla district palwal	53674.76
2.	Memo No. PL- 1443-B-PA(SS)- 2018/5405	09.02.2018	Khasra No. 38/21,23/1,22,40/2,3/1,8/2,9 of village maidapur and 40/7 of village jatola, secotr-11, palwal	18714.60
3.	Memo No. PL- 1443-JE(SK)- 2019/6273	06.03.2019	One year extension of CLU permission issued vide memo no. 3660 dated 27.02.2017 upto 26.02.2020	
4.	Memo No. PL- 1443-JE(SK)- 2020/3896	10.02.2020	Further one year extension of CLU permission issued vide memo no. 3660 dated 27.02.2017 upto 26.02.2021	
5.	Memo No. PL- 1443-JE(SK)- 2020/3893	10.02.2020	Two-year extension of CLU permission issued vide memo no. 5405 dated 09.02.2018 upto 09.02.2020	
6.	Application No. CLU/PL-1681A	06.08.2021	Additional CLU has been applied for khasra no. 38/16/2 min, 17 min, 18/1 min, 18/2 min, 19min, 20min,23/2,24/1,25/1,25/2/2,40/3/2,4/1,4/2/1, 4/2/2/,5/1,5/2,6,8/1,15/1	35406.82 7
7.	Memo No. CLU/PL- 1681A/CTP/675 7/2022	11.03.2022	A letter of intent for grant of additional change of and use has been issued with reference to the application dated 06.08.2021	

- > The project is located at Kila No. 4 to 24, Prithla Tatarpur Road, Village Tatarpur, Palwal, Haryana
- ➤ The project site falls on Survey of India Toposheet No. 53H/3,4,7&8.
- ➤ The geographical location with respect to boundary pillars of the proposed project are given below:-

Table 3: Geographical Position of the Boundary Pillars

Pillars	Latitude	Longitude	Pillars	Latitude	Longitude
,					
ENKAY ENVIRO SERVICES PVT. LTD., IAIPUR					

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUI

2	PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER - 1
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	INTRODUTION
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	INTRODUTION

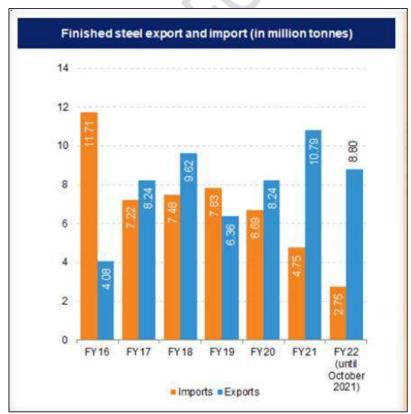
1	28°13′ 49.432″ N	77°18′ 31.314″ E	17	28°14' 2.236" N	77°18' 24.172" E
2	28°13′ 50.833″ N	77°18′ 31.345″ E	18	28°14' 3.333" N	77°18' 22.975" E
3	28°13′ 50.836″ N	77°18' 31.654" E	19	28°14' 3.715" N	77°18' 22.884" E
4	28°13′ 52.438″ N	77°18' 31.647" E	20	28°14' 3.764" N	77°18' 23.103" E
5	28°13′ 52.453″ N	77°18' 29.086" E	21	28°14' 3.873" N	77°18' 23.099" E
6	28°13′ 54.055″ N	77°18' 29.067" E	22	28°14' 3.863" N	77°18' 37.584" E
7	28°13′ 54.093″ N	77°18' 22.769" E	23	28°14' 2.146" N	77°18' 37.581" E
8	28°13' 55.727" N	77°18' 22.805" E	24	28°14' 2.113" N	77°18' 43.109" E
9	28°13′ 55.746″ N	77°18' 19.856" E	25	28°14' 0.630" N	77°18' 43.081" E
10	28°13′ 57.356″ N	77°18' 19.866" E	26	28°14' 0.622" N	77°18' 37.542" E
11	28°13′ 57.355″ N	77°18' 22.838" E	27	28°13′ 56.366″ N	77°18' 37.533" E
12	28°13′ 58.621″ N	77°18' 22.821" E	28	28°13′ 56.409″ N	77°18' 34.474" E
13	28°13' 58.589" N	77°18' 25.772" E	29	28°13′ 52.776″ N	77°18' 34.501" E
14	28°13′ 58.963″ N	77°18' 25.774" E	30	28°13′ 52.822″ N	77°18' 34.295" E
15	28°13′ 58.954″ N	77°18' 27.586" E	31	28°13′ 51.933″ N	77°18' 33.506" E
16	28°14' 0.696" N	77°18' 25.774" E	32	28°13′ 49.436″ N	77°18' 32.551" E

1.3 IDENTIFICATION OF PROJECT AND PROJECT PROPONENT

Jyoti Strips Private Limited ('JSPL or the 'Company') was incorporated on January 18, 2007, Jyoti Strips Private Limited is an ISO 9001:2015 company which was originally incorporated by Mr. Naresh Kumar and Late Sh. Harprasad Garg in 2007. Before this, promoters of the company had set up a Proprietorship Company for trading of Iron & Steel. The promoter group are into this business for more than 30 years. The Head Office is situated at B-103 Mithapur Extention, Badarpur New Delhi DL 110044 IN. As on September 30, 2020. JSPL is engaged in trading, cutting and slitting of flat steel products viz. HR coils / sheets, CR Coils / sheets and plates. JSPL has presence (sales depots / steel processing centres) at various locations like Ludhiana (Punjab), Jaipur (Rajasthan), Faridabad (Haryana), Delhi and Raipur (Chhattisgarh). JSPL has established market presence serving the customers in the northern region of India and enjoys healthy relationship with its clients given its focus on quality, timely supplies and responsive customer service. ISPL is well equipped with plant & machinery and infrastructure with staff strength of about 650 people including both skilled and unskilled persons. Committed to continuously standardize, improvise & innovate its product offerings, JSPL supplies products to Auto, Auto-Component, Infrastructure, Electrical, Accumulator, Barrel Ancillary, Fabricator and General Engineering industries and has over 2,000 client base Pan India. JSPL caters to automobile industry, bicycle industry, furniture, drums and barrels, precision tubes, home appliances and sheet metal components etc.

7	NOW WESTERNIE DAT WATER	
~	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER - 1
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	INTRODUTION
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	INTRODUTION

Name and
address of the
Applicant


Mr. Sanjay Batra (Chief executive head)
Address S-320 FIRST FLOOR GREATER KAILASH 1 SOUTH
DELHI 110048
Mobile no 9811840212
Email: - sanjaybatra@Jyotistrips.com

1.4 DEMAND - SUPPLY GAP

In order to meet the in-house demand and also to meet the market requirement in timely manner the project is undertaken.

1.4.1. MARKET SCENARIO

In the past 10–12 years, India's steel sector has expanded significantly. Production has increased by 75% since 2008, while domestic steel demand has increased by almost 80%. The capacity for producing steel has grown concurrently, and the rise has been largely organic. In FY22, the production of crude steel and finished steel stood at 133.596 MT and 120.01 MT, respectively. The consumption of finished steel stood at 105.751 MT in FY22. In April 2022, India's finished steel consumption stood at 9.072 MT. In April-July 2022, the production of crude steel and finished steel stood at 40.95 MT and 38.55 MT respectively

Ref: https://www.ibef.org/industry/steel

2	PROJECT: DRAFT EIA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER - 1
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	INTRODUTION
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	INTRODUTION

1.5 BRIEF DESCRIPTION OF NATURE OF THE PROJECT

1.5.1 NATURE OF THE PROJECT

The proposed project is categorized under 3(a) {(Metallurgical Industries (ferrous & non-ferrous) – All other non-toxic secondary metallurgical processing industries >5000 tones/annum)} of Gazette Notification dated 14th September, 2006 and its subsequent amendments. The project is categorized as B-1 category.

1.5.2 SIZE OF THE PROJECT

Table 1.1: proposed Capacity

S. No.	Name	Proposed Capacity (TPA)	Total Capacity (TPA)
a)	HRPO coils/sheets	120000	120000
b)	Cold rolled full hard coils	60000	60000
c)	CRCA coils/sheets	90000	90000
d)	Galvanized/galvalume coils	240000	240000
e)	Colour coated coils	120000	120000
f)	CDW	30000	30000
g)	HR tube	30000	30000
h)	CR tube	60000	60000
i)	Stamping	30000	30000
Total capacity		780	0,000

1.6 NEED FOR THE PROJECT AND ITS IMPORTANCE TO THE COUNTRY AND OR REGION

The Company Supplies material to various automobile, home appliances, Pre-Engineered Buildings and Stamping Sectors. Steel Tubes made out of the material is used for plumbing, water mains, firefighting systems, Hollow Sections for structural purposes, Scaffolding, Electrical Poles and Telecom towers. Material is supplied to manufacturers of Compressor Shells also.

1.7 EIA PURPOSE

The project is categorized under item **3(a) {(Metallurgical Industries (ferrous & nonferrous) – All other non-toxic secondary metallurgical processing industries >5000 tones/annum)}** of Schedule, EIA Notification dated Sep 14th, 2006 and its subsequent amendments issued by MoEF&CC, New Delhi.

The Environmental Clearance process for the proposed cold rolling mill complex is comprised of three stages. These stages in sequential order are: -

- 1. Scoping;
- 2. Public Hearing will be conducted as per EIA Notification 14th September' 2006 and its subsequent amendments.
- 3. Appraisal

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

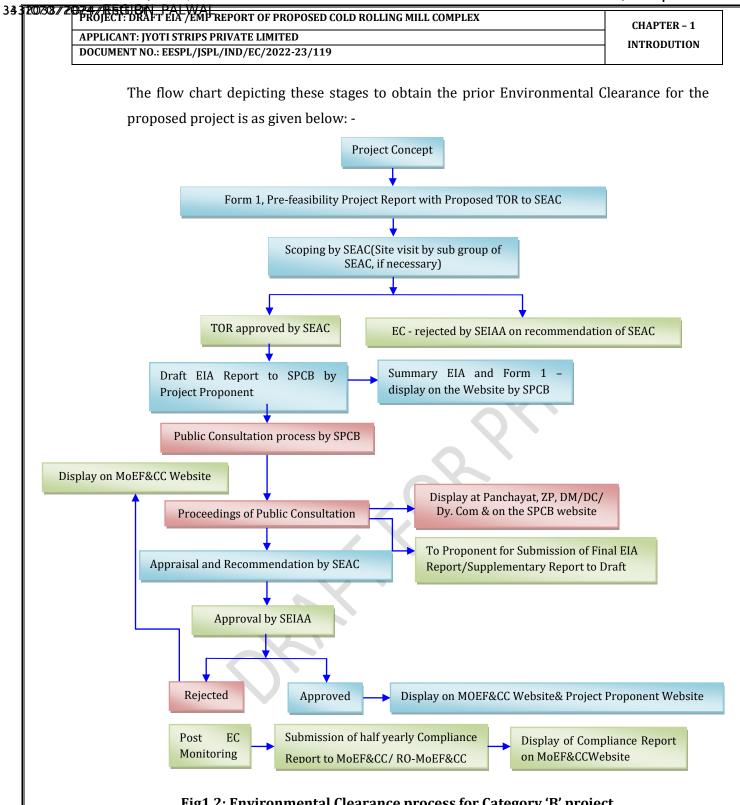


Fig1.2: Environmental Clearance process for Category 'B' project

1.7.1 Scope of the Study

The scope of the EIA Study includes detailed study of the environment for an area of 10Km radius from the project area as per Prescribed TOR issued by SEIAA, Haryana. The various environmental parameters like Air, Water, Noise, Land, Biological and Socio-economic aspects attributes cover for the baseline study.

PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER - 1
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	INTRODUTION
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	INTRODUTION

1.7.2 Regulatory Compliance

Applicable rules and regulations to proposed project

	ipplicable rules and regulations to proposed project		
S.No.	Rules and Regulations		
1.	Environment (Protection) Act, 1986		
2.	EIA Notification, 2006 and subsequent amendments therafter		
3.	Air (Prevention and Control of Pollution) Act, 1981 and subsequent amendments		
4.	The Water (Prevention and Control of Pollution) Act, 1974 and subsequent		
	amendments		
5.	Hazardous and Other Wastes (Management and Transboundary Movement) Rules,		
	2016 and subsequent amendments		
6.	The Solid Waste Management Rules, 2016 and subsequent amendments		
7.	Plastic Waste Management Rules, 2016 and subsequent amendments		
8.	E-Waste Management Rules, 2016 and subsequent amendments		
9.	The Wild Life (Protection) Act, 1972 and subsequent amendments		
10.	Biological Diversity Act, 2002 and subsequent amendments		
11.	The Public Liability Insurance Act, 1991 and subsequent amendments		
12.	The Factories Act, 1948 and subsequent amendments		
13.	The Batteries (Management and Handling) Rules, 2001 and subsequent amendments.		
14.	Biomedical waste management rules, 2016		

ME#/IDBUILDIN FALVVAL			
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 2		
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	PROIECT DESCRIPTION		
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119			

CHAPTER-2 PROJECT DESCRIPTION

343720738//2024//E5GIBIN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER- 2
PROJECT DESCRIPTION

CHAPTER-2 INDEX

	INDLA	
2.1	PROJECT DESCRIPTION	12
2.2	SITE DETAILS	13
2.2.1	LOCATION OF THE PROJECT	13
2.2.2	SITE ACCESSIBILITY (Accessibility to Project Site)	16
2.2.3	Environmental Settings of the Site	17
2.2.5	List of Industries within 10Km Radius of Study Area	19
2.2.6	DETAILS OF PROJECT SITE WITHIN THE VICINITY OF WATER BODIES	20
2.2.5	TYPE OF LAND & LAND USE	20
2.2.6	Engineering layout plan with area statement	21
2.3	DETAILS OF FOREST AND WILDLIFE	
2.5	SALIENT FEATURES OF THE PROJECT	
2.5.1	PRODUCTION DETAILS	
2.5.2	SIZE OR MAGNITUDE OF OPERATION	24
2.5.2	BRIEF ON PRESENT STATUS OF THE PROJECT	24
2.5.3	RAW MATERIALS REQUIRED ALONG WITH ESTIMATED QUANTITY, LIKELY SOURCE AND M	ODE
OF TR	ANSPORTATION OF RAW MATERIALS	
2.5.4	MANUFACTUIRNG PROCESS DESCRIPTION	25
2.5.5	MATERIAL BALANCE & ENERGY BALANCE	28
2.6	POWER, WATER SUPPLY AND OTHER INFRASTRUCTURE REQUIREMENTS	29
2.6.1	POWER	
2.6.2	FUEL REQUIREMENT	29
2.6.3	WATER DEMAND	29
2.6.4	MANPOWER REQUIREMENTS	31
2.6.5	DETAILS OF EMISSION, EFFLUENTS, HAZARDOUS WASTE GENERATION AND THEIR	
MANA	AGEMENT DURING CONSTRUCTION AS WELL AS OPERATION PHASE	31
2.7	PROPOSED SCHEDULE FOR APPROVAL AND IMPLEMENTATION	31
2.8	Ground water drawl for the existing unit, action plan for phasing out of ground water	
	abstraction in next two years except for domestic purposes and shall switch over to 100 $\%$ u	se of
	surface water from nearby source. Permission will be obtain from CGWA for ground water	
	withdrawal	31
2.9	WASTE GENERATION DETAILS	32
2.10	EQUIPMENT DETAILS	32
2.12	ASSESSMENT OF NEW & UNTESTED TECHNOLOGY FOR THE RISK OF TECHNOLOGICAL	
	FAILURE	33

34 120/38//2024//ESCIBIN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 2
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	PROIECT DESCRIPTION
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	1110,201 2200111 11011

CHAPTER-2

PROJECT DESCRIPTION

2.1 PROJECT DESCRIPTION

Jyoti Strips Private Limited is a Proposed Cold Rolling Mill Complex with Galvanizing and colour coating line having total Capacity of Various products 7,80,000 MTPA" located at # Kila No. 4 to 24, Prit hla - Tatarpur Road, Village Tatarpur, Palwal, Haryana over an area of 127294.69 sq.m.

The proposed project is categorized under item <u>3(a) Metallurgical industries (ferrous</u> & nonferrous) of Schedule, EIA Notification dated Sep 14th, 2006 and its subsequent <u>amendments issued by MOEF&CC</u>.

2.2 SITE DETAILS

2.2.1 LOCATION OF THE PROJECT

Proposed Greenfield Project for Cold Rolling Mill Complex with Galvanizing and colour coating line having total Capacity of Various products 7,80,000 MTPA" located at # Kila No. 4 to 24, Prithla - Tatarpur Road, Village Tatarpur, Palwal, Haryana. The project site falls in Survey of India Toposheet No. 53H/3,4,7&8. The geographical location with respect to boundary pillars of the project are:-

Table 2.1: Geographical Position of the Boundary Pillars

Pillars	Latitude	Longitude	Pillars	Latitude	Longitude
1	28°13' 49.432" N	77°18′ 31.314″ E	17	28°14' 2.236" N	77°18' 24.172" E
2	28°13′ 50.833″ N	77°18' 31.345" E	18	28°14′ 3.333″ N	77°18' 22.975" E
3	28°13′ 50.836″ N	77°18′ 31.654″ E	19	28°14' 3.715" N	77°18' 22.884" E
4	28°13′ 52.438″ N	77°18' 31.647" E	20	28°14' 3.764" N	77°18' 23.103" E
5	28°13′ 52.453″ N	77°18' 29.086" E	21	28°14' 3.873" N	77°18' 23.099" E
6	28°13′ 54.055″ N	77°18' 29.067" E	22	28°14' 3.863" N	77°18' 37.584" E
7	28°13′ 54.093″ N	77°18' 22.769" E	23	28°14' 2.146" N	77°18' 37.581" E
8	28°13′ 55.727" N	77°18' 22.805" E	24	28°14' 2.113" N	77°18' 43.109" E
9	28°13′ 55.746″ N	77°18' 19.856" E	25	28°14' 0.630" N	77°18' 43.081" E
10	28°13′ 57.356″ N	77°18' 19.866" E	26	28°14' 0.622" N	77°18' 37.542" E
11	28°13′ 57.355″ N	77°18' 22.838" E	27	28°13′ 56.366″ N	77°18' 37.533" E
12	28°13′ 58.621″ N	77°18' 22.821" E	28	28°13′ 56.409″ N	77°18' 34.474" E
13	28°13′ 58.589″ N	77°18' 25.772" E	29	28°13′ 52.776″ N	77°18' 34.501" E
14	28°13′ 58.963″ N	77°18' 25.774" E	30	28°13′ 52.822″ N	77°18' 34.295" E
15	28°13' 58.954" N	77°18' 27.586" E	31	28°13′ 51.933″ N	77°18' 33.506" E
16	28°14' 0.696" N	77°18' 25.774" E	32	28°13′ 49.436″ N	77°18' 32.551" E

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 34 1700/38/2024/REGIBN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER- 2
PROJECT DESCRIPTION

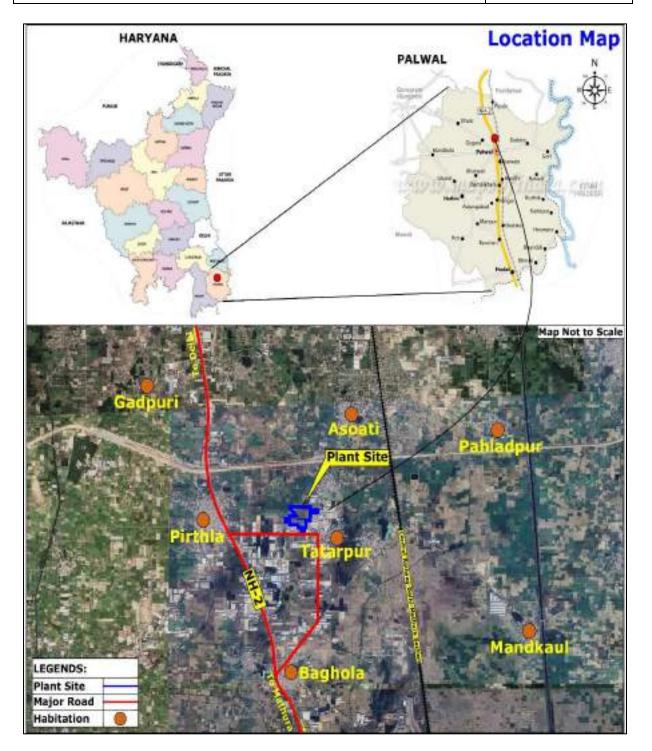
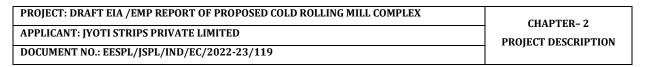



Figure 2.2: Location Map of Project Site

3 **3 120/30/2024/REGIBN PALWAL**

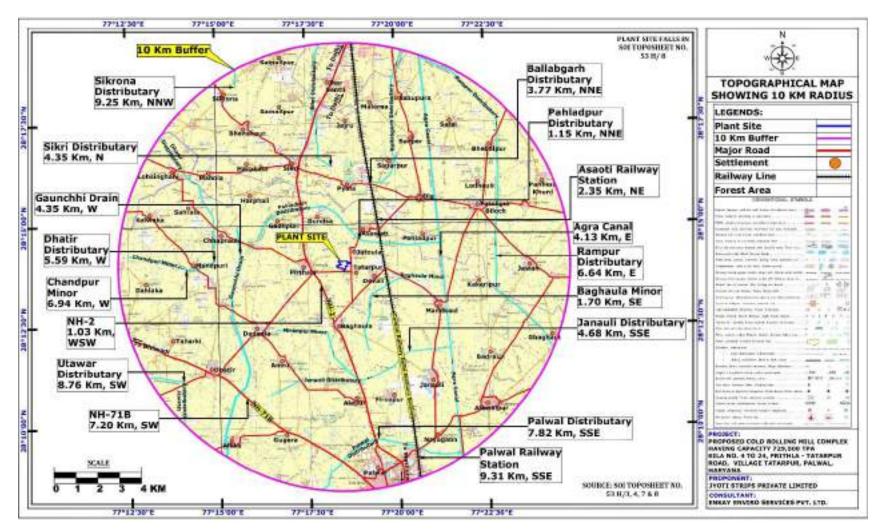
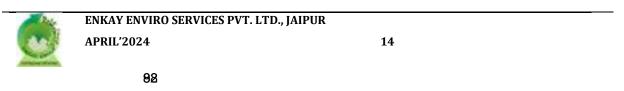



Figure 2.3: Topographical map of the project site with surrounding features

34 120/38//2024//ESCIBIN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 2
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	PROJECT DESCRIPTION
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	, 2200 11011

2.2.2 SITE ACCESSIBILITY (Accessibility to Project Site)

A. NEAREST RAILWAY STATION

The details of nearest railway station is given below:

Table 2.2(a): Nearest Railway station

Particulars	Name	Distance, Direction	
		(From Project Boundary)	
Railway Station	Asaoti Railway Station	2.35 Km,NE	
	Palwal Railway Station	9.31 Km, SSE	

B. NEAREST AIRPORT

The nearest airport detail is as follows:-

Table 2.2(b): Nearest Airport

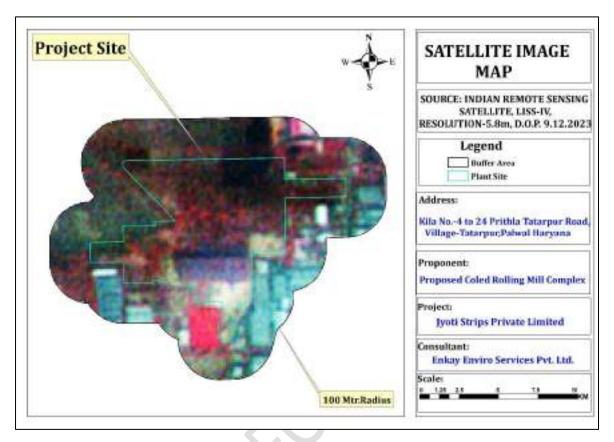
Particulars Name		Distance, Direction (From Project Boundary)		
Airport	Indira Gandhi International	40Km, NNW		
	Airport -New Delhi			

C. NEAREST HIGHWAY

The nearest State Highway/National Highway detail is as follows:-

Table 2.2(c): Nearest Highway

S.	Particulars	Connectivity	Distance (Km)	Direction
No.			(From Project Boundary)	
1	NH-2	Mathura to Delhi	1.03 Km	WSW
2	NH-71B	Bhiwadi to Palwal	7.20 Km	SW


2.2.2 Latest High-resolution satellite image data having 1 m - 5 m spatial resolution like quickbird, Ikonos, IRS P-6 pan sharpened etc., along with delineation of plant boundary co-ordinates. Area must include at least 100 m all around the project location

Latest high resolution setellite image is attached below.

34 720/38//2024/REGIBIN PALWAL

- ",		
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 2	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	PROIECT DESCRIPTION	
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	,	

2.2.3 Environmental Settings of the Site

Figure 2.3 is showing the Environmental Settings of the surrounding area along with Topographical Map.

S.	Particulars	Details				
No.						
1.	Name of the Project	Proposed Cold Rolling Mill Complex with Galvanizing and colour coating line having total				
	·	Capacity of Various products 7,80,000 MTPA				
2.	Applicant	Jyoti Strips Private Limited				
3.	Location	located at # Kila No. 4 to 24, Prithla - Tatarpur Road, Village Tatarpur, Palwal, Haryana.				
4.	Plot Area	127294.69 Sq.m.(No additional land is required)				
5.	Land Type	Industrial Land				
7.	Toposheet No.	53H/3,4,7&8				
8.	Terrain &Elevation	Flat terrain with Highest – 198 MSL; Lowest – 192 MSL.				
9.	Nearest Habitation	Tatarpur, 0.43 Km, SE				
10.	Nearest Major	Town: Palwal, 8.17, S				
	Town					
14.	Nearest Tourist	None within the study area.				
	Places					
15.	Defense	None within the study area.				
	Installations					
16.	Archaeological	None within the study area.				
	Sites					
17.	Eco-sensitive Zones	None within the study area.				
18.	Reserved/	None within 10 km from project site				
	Protected Forest					

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

34 120/38//2024//KECIBIN PALWAL

Т		
	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 2
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	PROIECT DESCRIPTION
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	1110,201 2200111 11011

9.	Nearest Streams/ Rivers/ Water		S.	No. Particulars		Distance (Km) (From Project F	•
	Bodies				Water B		
			1.	Pahladpur Dist	ributary	1.15 Km	NNE
			2.	Baghaula Mino		1.70 Km	SE
			3.	Ballabgarh Dis	ributary	3.77 Km	NNE
			4.	Agra Canal		4.13 Km	Е
			5.	Sikri Distributa	ry	4.35 Km	N
			6.	Gaunchhi Draii	ı	4.35 Km	W
			7.	Janauli Distribi	ıtary	4.68 Km	SSE
			8.	Dhatir Distribu	tary	5.59 Km	W
			9.	Rampur Distril	outary	6.64 Km	Е
			10			6.94 Km	W
			11			7.82 Km,	SSE
			12			8.76 Km	SW
			13			9.25 Km	NNW
			ances are taken with respect to S.O.I. GT Sheet).				
20.	Medical facilities			nd Govt. Hospital and	_		
	and educational		S.	Name		istance	Direction
	facilities		No.			m Project	
					Medical F	undary)	
			1.	Nobel Charitable	1.16 Km		W
			1.	Hospital - GT Road,	1.10 Km		VV
				Prithla			
			2.	ESI Dispansary	1.67 Km	,	WNW
			2.	Prithla	1.07 Km		*****
			3.	Shri Hari Hospital,	1.67 Km		WNW
				Tatarpur			
					Schoo	ols	
			1.	Govt Primary School	0.48 Km		ESE
				Tatarpur			
			2.	Govt. Primary	0.58 Km		NNE
				School Jatola			
			3.	BDM Public School,	0.66 Km		E
				Tatarpur			
			4.	GPS Prithla	1.27 Km		W
			5.	Govt.Girl High	1.40 Km		W
				School Prithla	4.60.17		YA7NYA7
			6.	Chotu Ram Public School Prithla	1.60 Km		WNW

"High Damage Risk" Zone-IV.

2.2.5 List of Industries within 10Km Radius of Study Area

School, Prithla

The details and map are given below:

Table 2.3: List of Industries within 10Km Radius from project site

(Source: All distances are taken with respect to S.O.I. GT Sheet).

Sr.No.	Name of Industry	Distance (in KM)	Direction
1.	DEE PIPING SYSTEMS, PLANT-2	0.38	Е
2.	SIAC SKH INDIA CABS MANUFACTURING PVT LTD	0.50	SW

Seismic Zone

21.

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

17

As per the 2002 Bureau of Indian Standards (BIS) seismic zone map of India, categorized as

_						
Ī	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 2				
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	PROIECT DESCRIPTION				
ſ	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	1110,201 2200111 11011				

3.	WIDE INDIA INDUSTRIES	0.95	SW
4.	STERLING TOOLS LIMITED	0.94	SSW
5.	VEEGEE INDUSTRIAL ENTERPRISES	2.50	SW
6.	OOD AND BIOTECH ENGINEERS INDIA PVT. LTD.	3.60	WNW
7.	PROMPT ENTERPRISES	3.0	NW
	PVT. LTD.		
8.	ICD, PIYALA	2.98	NNE
9.	BPCL PIYALA LPG TERRITORY	4.10	NNE
10.	HENNA EXPORTS	1.55	SE
11.	OMP INDIA PVT. LIMITED	1.65	SE
12.	KNORR-BREMSE INDIA PRIVATE LIMITED	3.14	SSE
13.	ICD PALWAL-HIND TERMINALS	3.83	SE
	PVT. LTD.		
14.	ACE- ACTION CONSTRUCTION EQUIPMENT LTD	3.76	SW

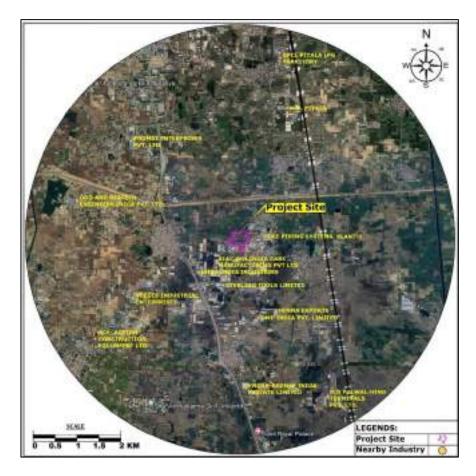


Figure 2.4: List of Industries within 10Km Radius of Study Area Map 2.2.6 DETAILS OF PROJECT SITE WITHIN THE VICINITY OF WATER BODIES

S. No.	Particular	Remarks	
1.	In case if the project site is in vicinity of the water body, 50 meters	The boundary wall of the	
	from the edge of the water body towards the site shall be treated as	project will be 1.15 Km	
	no development/construction zone. If it's near the wetland,	from Pahladpur	

34320/38//2024//RECTION PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER- 2
PROJECT DESCRIPTION

	Guidelines for implementing Wetlands (Conservation and	Distributary in NNE
	Management) Rules, 2017 may be followed.	direction.
2.	In case if the project site is in vicinity of the river, the industry shall	Cumulative flood
	not be located within the river flood plain corresponding to one in 25	inundation maps generated
	years flood, as certified by concerned District Magistrate/ Executive	by National Disaster
	Engineer from State Water Resources Department (or) any other	Management Authority,
	officer authorized by the State Government for this purpose as per	2023 shows that the
	the provisions contained in the MoEF&CC Office Memorandum dated	palwal district is not
	<u>14/02/2022.</u>	affected by floods.
		Despite this, the project
		site is 1.14 KM away
		towards NNE of the
		Pahladpur Distributary.
		Attached as annexure-V
3.	In case of canal/ nala/ seasonal drain and any other water body	Not Applicable.
	passing through project site, the PP shall submit the suitable steps	
	/conservation plan/mitigation measures along with contouring, Run	
	-off calculations, disposal etc. A robust and full proof Drainage	
	Conservation scheme to protect the natural drainage/water bodies	
	and its flow parameters; along with Soil conservation scheme and	
	multiple Erosion control measures shall be provided in the report.	

2.2.5 TYPE OF LAND & LAND USE Status of Land

The proposed project lies in Tatarpur Village, Palwal, Haryana. So no change in the land use is required. The Land use break-up of total land area has been given below:-.

Table 2.5: Land use Break Up of the proposed project site

S. No.	Land Use	Area (Sq.m)	Percentage
		Proposed Area	(%)
1.	Plant Area	55219.97	43.38
2.	Paved Area (Road, Corridor,)	35,997.62	28.27
3.	Green Area	36,077.10	28.35
4.	Open area	0.0	0.0
	Total	127294.69	100

The proposed green area inside the plant premises is 36077.10 sq. mtr (28.35%) with 9019 No.s of plants @ 2500 trees/ha. The deficit plantation of about 4.65% will be done in container plantation within the project site to achieve total 33% plantation as per norms.

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 2
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	PROIECT DESCRIPTION
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

2.2.6 Engineering layout plan with area statement

The plant layout is showing Admin Block, Manufacturing process area, Plantation, Raw material storage area, Finished Goods storage area, parking area, Assembly point, Utility area etc. is given in Figure 2.5.

34 120/38//2024/KECIBN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 2
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	PROJECT DESCRIPTION
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

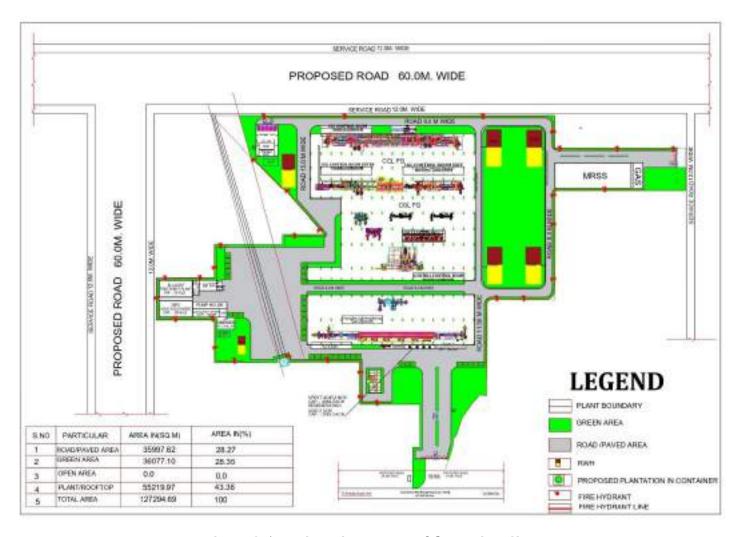


Figure 2.5: Engineering Layout of the Project Site

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

21

99

2 C	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 2
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	PROIECT DESCRIPTION
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	1 110,201 2200HH 110H

2.3 DETAILS OF FOREST AND WILDLIFE

S. No.	Particular	Remarks
а	Status of Forest Clearance for the use of	No forest land is involved in the proposed
	forest land shall be submitted	project. Hence, it is not applicable.
b	Copy of application submitted for clearance	Not Applicable as there is no national park
	under the Wildlife (Protection) Act, 1972, to	or wildlife sanctuary are present within the
	the Standing Committee of the National	10km radius from the project site.
	Board for Wildlife if the project site located	
	within notified Eco-Sensitive Zone, 10 km	
	radius of national park/sanctuary wherein	
	final ESZ notification is not in place as per	
	MoEF&CC Office Memorandum dated	
	<u>8/8/2019.</u>	
С	The projects to be located within 10 km of	Not Applicable as there is No National
	the National Parks, Sanctuaries, Biosphere	Parks, Sanctuaries, Biosphere Reserves,
	Reserves, Migratory Corridors of Wild	Migratory Corridors of Wild Animals, Eco-
	Animals, Eco-sensitive Zone and Eco-	sensitive Zone and Eco-sensitive areas
	sensitive areas, the project proponent shall	located within 10 km radius of the
	submit the map duly authenticated by	proposed project site.
	<u>Divisional Forest Officer showing the</u>	
	distance between the project site and the	
	said areas.	
d	Wildlife Conservation Plan duly	One schedule-I species are found in the
	authenticated by the Competent Authority	buffer zone of the project site namely:
	of the State Government for conservation of	Peafowl (Pavo cristatus)
	Schedule I fauna along with budget and	
	action plan, if any exists in the study area.	

2.5 SALIENT FEATURES OF THE PROJECT

2.5.1 PRODUCTION DETAILS

Table 2.6: Production details

S. No.	Name Proposed Capacity		Total Capacity	
		(TPA)	(TPA)	
a)	HRPO coils/sheets	120000	120000	
b)	Cold rolled full hard coils	60000	60000	
c)	CRCA coils/sheets	90000	90000	
d)	Galvanized/galvalume coils	240000	240000	
e)	Colour coated coils	120000	120000	

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

22

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
PROJECT: DRAFT EIA / EMP REFORT OF PROFUSED COLD ROLLING MILE COMPLEX	CHAPTER- 2
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	
	PROIECT DESCRIPTION
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	.,

f)	CDW	30000	30000
g)	HR tube	30000	30000
h)	CR tube	60000	60000
i) Stamping		30000 30000	
Total capacity		780,000	

2.5.2 SIZE OR MAGNITUDE OF OPERATION

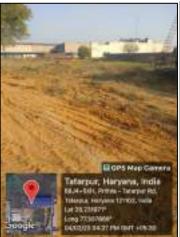
The size and magnitude of the proposed cold rolling mill is as given below: -

Table 2.7: Size or Magnitude

S. No.	Particulars	Details				
1.	Project Type	Greenfield				
2.	Area (Sq.m)	127294.69 Sq.m	127294.69 Sq.m (No additional land acquired).			
3.	Power and fuel	Phase	Demand		Source	e
	Demand	Electricity				
		Power demand	15 MVA		DHBVI	
				(Nearest	t GSS – 4.	18 km SSE)
		Fuel (for machin	nery operation	ns)-		
		Fuel	Demand		Source	e
		CNG	4441.8 TPA	GAIL (Ind	-	ed (Through
		pipeline)				
		Source: Power Demand is being met from AVVNL				
		Two DG set of		A will use	in the	emergency
		situation/ powe				
4.	Water requirement	Total one time V				
		Proposed-Fresh	water Demai	nd-450 KLI	D	
		(Industry: 382.5, Domestic: 67.5 KLD and)				
		Recycled Water -300 KLD				
5.	Manpower	Construction	Phase	350	Nos	(direct-50,
		indirect/contract	ctual-300); (Operation	Phase	(direct-300,
		indirect/contrac	ctual-1700) –	2000 Nos.		

2.5.2 BRIEF ON PRESENT STATUS OF THE PROJECT

The Standard ToR (Terms of Reference) is issued by SEIAA, Haryana vide letter no. File No. SEIAA/HR/2023/426 dated 27.10.2023


34 120/38 // 2024 // RESETTION PATROL PARTY OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER - 2
PROJECT DESCRIPTION

2.5.3 RAW MATERIALS REQUIRED ALONG WITH ESTIMATED QUANTITY, LIKELY SOURCE AND MODE OF TRANSPORTATION OF RAW MATERIALS

Following raw materials are required for the proposed project.

Table 2.8(a): Details of Raw Material Procured

S.	Raw	Proposed	Total	Source	Mode of	Remarks
No.	Material	Consumption			transport	
1.	HR Coil	8,40,000TPA	8,40,000TPA	from Tata steel		
			75	Limited, SAIL, Jindal Steel and Power Limited, Jindal Steel Limited	Transport ed by Trucks	Local Market

Table 2.8(b): Details of Chemicals

S.No.	Chemical	Capacity
1.	Lime	20 TPD
2.	Caustic Soda	200 Lt/day

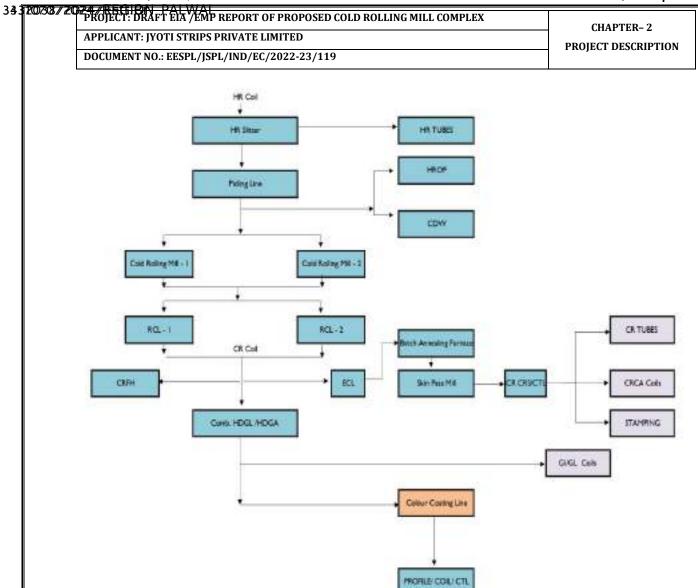
2.5.4 MANUFACTUIRNG PROCESS DESCRIPTION

1. CRCA Strips/CRCA Tubes process:

Input Material: Input material Hr Coil of wider size which is Procured From M/S Tata Steel and JSW is slitted in Sizes of Lesser widths as per mill rolling capabilities related to width. The Production process involves following steps.

- **a) HR Slitter:** HR Coils are sent to HR slitter. The Slitting Operations are carried out as per Customer Requirements Like 1500x2mm is Slitted in Sizes 750+750mm. Similar is the Case with other wider widths also. In this process only Side trimmings get generated. This Scrap goes for melting.
- **b) Pickling Line:** Process is used for removing oxide scale from the raw material by using Hydrochloric Acid of 12-16% Strength. Sheet is further washed with water. This results in

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR


APRIL'2024

C	ROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 2
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	PROJECT DESCRIPTION

invisible loss as Iron oxide of 0.5-0.6% which cannot be recovered.

- **c) 4-HI Rolling Mill:** After Pickling the Coil is rolled in required thicknesses as per customer requirements.
- **d) Rewinding Line:** After rolling the Coils are further rewinded to reduce the tension to avoid Stickiness in Annealing. Here No Scrap gets generated.
- **e) Annealing:** After Rolling and Rewinding material gets hard which is process for Softened during Annealing and Annealing further Imparts the mechanical properties as per customer requirements. The Coils are annealed in Furnaces in closed cover. The temperature is maintained for 650°C for 56hrs from heating to cooling in closed protective cover and closed furnace. These are the CNG Fired furnace and the exhaust gases also used through Recuperator for hot air which is used in furnaces.
 - **f) Skin Pass Mill:** After Annealing Skin Pass is done for shape improvement and further working of the material. No Scrap Gets Generated.
 - **g) CR Slitter:** After Skin Passing the material is Slitted in required widths as per customer requirements. Here side trimmings get generated which sell it in market.
 - **h) Cut to Length:** After Slitting the Strip is cut to lengths in different Sizes as per customer requirements. No Scrap Gets Generated.
 - **i) Packing:** After Slitting and cut to length the material is packed with Stretch film and Hession. No Scrap Gets Generated.
 - **j) Dispatch:** After packing the material is Stacked in Stockyard for further dispatch to designated customers.

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR APRIL'2024

26

34 120/38//2024//KECIBIN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 2
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	PROIECT DESCRIPTION
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	,

2.5.5 MATERIAL BALANCE & ENERGY BALANCE

The material balance is mentioned below:

Table 2.9: Materials Balance for HR Coil

DESCRIPTION	INPUT (TPA)	OUTPUT (TPA)	REMARS
HR Coil	840000		
HRPO coils/sheets		120000	
Cold rolled full hard coils		60000	
CRCA coils/sheets		90000	
Galvanized/galvalume coils		240000	The steel scrap is
Colour coated coils		120000	1
CDW		30000	being sold in the open market
HR tube		30000	illai ket
CR tube		60000	
Stamping		30000	
Scrap		60000	
Total	840000	84,000	

2.6 POWER, WATER SUPPLY AND OTHER INFRASTRUCTURE REQUIREMENTS

2.6.1 **POWER**

The existing power demand is as given below: -

Table 2.10: Power Demand

Phase	Demand	Source
Electricity		
Power demand	15 MVA	DHBVN (Nearest GSS – 4.18 km SSE)
Two DG set of 1000 KVA will use in the emergency situation/power failure.		

2.6.2 FUEL REQUIREMENT

The proposed fuel requirement is given below:-

Table 2.11: Fuel Consumption

Phase	Demand	Source
Fuel (for machinery operations)-		
Fuel	Demand	Source
CNG	4441.8 TPA	GAIL (India) Limited
		(Through pipeline)

2.6.3 WATER DEMAND

Total one-time water demand is 750KLD. Out of which 450KLD fresh water is supplied from Ground Water and 300 KLD of water will be recycled. 37.7KLD STP treated water will be reuse for green area.

Table 2.12: Water Demand

S. No. Particulars Fresh Recycled Total Water

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

27

34 120/38//2024//ESCIBIN PALWAL

·· // · ·- · · · · · · · · · · · ·	
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 2
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	PROIECT DESCRIPTION
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	1110,201 22001111 11011

		(KLD)	(KLD)	Demand (KLD)
1.	Industrial	382.5	270	652.5
2.	Domestic	67.5	30	97.5
3.	Plantation and others		37.5*(STP treated	
			waste water will	waste water will be
			be used in	used in plantation)
			plantation)	
	Total	450	300	750

Source: - Ground water (*-Reuse)

Permission for abstraction of ground water from CGWA will be applied soon.

CGWA Application: The water demand will be met from ground water supply. Permission from CGWA will be obtained.

0

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

^{*}Source: - Water will be sourced from ground water.

34 120/38//2024/KECIBN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 2
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	PROIECT DESCRIPTION
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	,

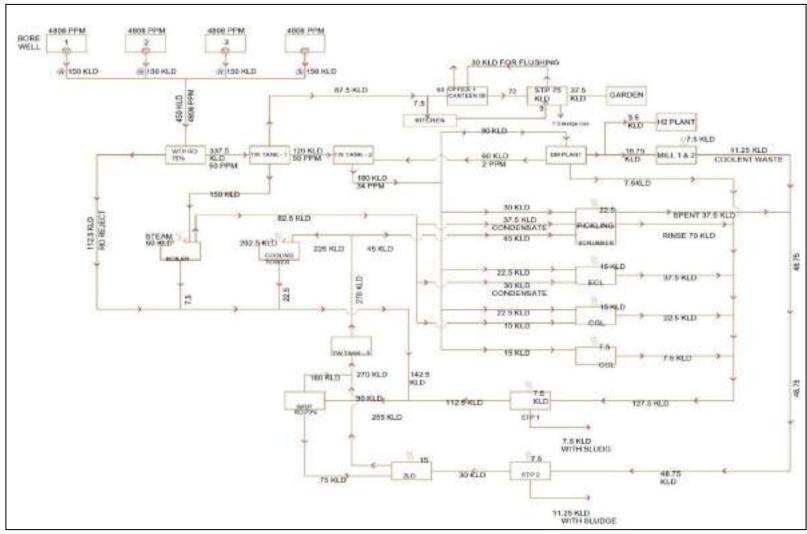


Figure: Proposed Water balance flow diagram

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024 29

103

34 120/38//2024//KECIBN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 2	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	PROJECT DESCRIPTION	
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	,	

2.6.4 MANPOWER REQUIREMENTS

The proposed employment is approx. 2000 people. Following staff & workers are employed: -

Table 2.13: Manpower Details

Category	Proposed	Total
Permanent staff	300	300
Skilled worker	650	650
Semi-skilled workers	350	350
Unskilled workers	700	700
Total	2000	2000

2.6.5 DETAILS OF EMISSION, EFFLUENTS, HAZARDOUS WASTE GENERATION AND THEIR MANAGEMENT DURING CONSTRUCTION AS WELL AS OPERATION PHASE

Construction phase is envisaged as it is a proposed project. Emission during the operation phase is given below in chapter 10 of EIA/EMP report

2.7 PROPOSED SCHEDULE FOR APPROVAL AND IMPLEMENTATION

Project Cost:- Proposed – 800 Cr; Total-Rs. 800 Cr.

Time of Completion: - Within year after obtaining the EC

2.8 Ground water drawl for the existing unit, action plan for phasing out of ground water abstraction in next two years except for domestic purposes and shall switch over to 100 % use of surface water from nearby source. Permission will be obtain from CGWA for ground water withdrawal

Proposed project will withdraw the ground water for the industrial and domestic purpose. CGWA application will be applied soon. To reduce the stress on the ground water, the unit will implement the following actions within the plant site which are as follows: -

S. No.	Measures taken	Action Plan
1.	Roof top water harvesting and rain	Rain water storage tank is proposed to
	water harvesting structure will be	be installed within the plant site.
	installed and details are given in	
	chapter 4 of EIA/EMP report.	
2.	The unit has proposed STP (SBR	Treated water will be reused in
	technology) of 100 KLD for domestic	plantation. No fresh water will be used
	treatment	in plantation purposes.

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

34 120/38//2024//KECIBIN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 2
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	PROJECT DESCRIPTION
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	1 110,201 2200111 11011

2.9 WASTE GENERATION DETAILS

2.9.1 Solid waste

Particulars	Waste Quantity in TPD			Treatment/ disposal
	Type of Waste	proposed	Total	
Sludge TPA	STP Sludge	0.5	0.5	Used as manure for plantation
Municipal Solid Waste (@0.125 Kg/ day	Biodegradable	0.25	0.25	Sent to Nearest Municipal site
Scrap from Process	Scrap	181.81	181.81	Sold to Local market

2.9.2 Hazardous waste

The Hazardous waste is being/will be generated is as follows;

Hazardous Waste Quantity in TPA						t/ disposal
Type of Waste	Schedule	Code	Proposed	Total		
Chemical Sludge from waste water treatment (TPA)	1	35.3	16000	16000	Send to recyclers	registered
Used Oil or Spent Oil	1	5.1	200	200	Send to recyclers	registered
Iron oxide	1	5.2	4000	4000	Send to recyclers	registered

The details are elaborated in Chapter -4 of EIA/EMP report.

2.10 EQUIPMENT DETAILS

2.10.1 Equipment/Machinery Details for Proposed Plant

Table 2.15: Proposed Equipment detail

EQUIPMENTS	QUANTITY
CRM EQUIPMENTS	12
GP-GL EQUIPMENTS	12
CRCA EQUIPMENTS	20
COLOUR COATING EQUIPMENTS	7
MATERIAL HANDLING EQUIPMENTS	84
UTILITY EQQUIPMENTS	41
WORK SHOP EQUIPMENTS	3
ELECTRICAL ITEMS	27
LABORATORY INSTRUMENTS	15
TUBE EQUIPMENTS	15
STAMPING EQUIPMENTS	24

2.11 Details of Environmental Clearance

1. Copy of all the Environmental Clearance(s) including amendments there to obtain for the project from MoEF/SEIAA greenfield project. shall be attached as Annexure. A certified copy of the latest
shall be attached as Anneyure A certified conv of the latest
shall be attached as Annexare. A certified copy of the latest

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

31

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 34 120/38/2024/REGIBN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 2
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	PROIECT DESCRIPTION
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	,

	Monitoring Report of the Regional Office of the Ministry of	
	Environment and Forests as per circular dated 30th May, 2012	
	on the status of compliance of conditions stipulated in all the	
	existing Environmental Clearances including amendments shall	
	be provided. In addition, status of compliance of Consent to	
	operate for the ongoing/ existing operation of the project from	
	SPCB shall be attached with the EIA-EMP Report.	
2.	In case the existing project has not obtained Environmental	Not applicable as this is
	Clearance, reasons for not taking EC under the provisions of the	greenfield project.
	EIA Notification 1994 and/ or EIA Notification 2006 shall be	
	provided. Copies of Consent to Establish/ No Objection	
	Certificate and Consent to Operate (in case of units operating	
	prior to EIA Notification 2006, CTE and CTO of FY 2005-2006)	
	obtained from the SPCB shall be submitted. Further, compliance	
	report to the conditions of consent from the SPCB shall be	
	submitted.	

2.12 ASSESSMENT OF NEW & UNTESTED TECHNOLOGY FOR THE RISK OF TECHNOLOGICAL FAILURE

No new technology & untested technology is being adopted for the proposed project of cold rolling mill complex. Hence no risk of technological failure is envisaged.

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

2	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER - 3
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	DESCRIPTION OF ENVIRONMENT
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

CHAPTER-3 DESCRIPTION OF ENVIRONMENT

e No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 10789)
34 2038/2024/RESTEIDN PALWAL
PROJECT: DRAFT EIA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

CHAPTER 2

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER - 3

DESCRIPTION OF ENVIRONMENT

CHAPTER - 3

INDEX

3.0	INTRODUCTION	36
3.1	METHODS OF MONITORING AND ANALYSIS& SELECTION OF MONITORING	
	STATIONS	36
3.1.1	CRITERIA FOR SAMPLING STATIONS	36
3.2	COLLECTION OF BASELINE DATA	37
3.3	LAND ENVIRONMENT	37
3.3.1	Land Use of Study Area	
3.4.6	SOIL ENVIRONMENT	
3.5	WATER ENVIRONMENT	53
3.5.1	GROUND WATER ANALYSIS	
3.5.2	INTERPRETATION OF RESULT	
3.5.2.	1 Ground Water	57
3.5.2.	2 Surface Water	58
3.6	AIR ENVIRONMENT	59
3.6.1	MICRO-METEOROLOGICAL DATA	59
3.6.2	WIND ROSE DIAGRAM	61
3.6.3	AMBIENT AIR QUALITY DATA	62
3.6.4	INTERPRETATION OF RESULTS	64
3.7	NOISE ENVIRONMENT	65
3.7.1	AMBIENT NOISE LEVEL DATA	65
3.7.2	INTERPRETATION OF RESULT	67
3.8	BIOLOGICAL ENVIRONMENT	68
3.8.1	METHODOLOGY Error! Bookmark not d	efined.
3.8.2	STUDY OF FAUNA Error! Bookmark not d	efined.
3.8.2.	2 Herpetofauna Error! Bookmark not d	efined.
3.8.2.	3 Mammals Error! Bookmark not d	efined.
3.8.3	FLORAL PROFILE THE CORE AND BUFFER ZONE Error! Bookmark not d	efined.
3.8.4	FAUNAL PROFILE THE CORE AND BUFFER ZONE Error! Bookmark not d	efined.

e No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 10789)
34 2038/2024/RESTEIDN PALWAL
PROJECT: DRAFT EIA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

CHAPTER 2

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER - 3

DESCRIPTION OF ENVIRONMENT

3.10	SOCIO-ECONOMIC ENVIRONMENT	68
3.10.1	OBJECTIVES	83
3.10.2	METHODOLOGY	83
3.10.3.1	l Population in Core Zone	84
3.10.3.2	Population in Buffer Zone	84
310.3.3	Gender Distribution	84
3.9.3.4	Literacy Profile	84
3.9.3.5	Occupation Profile	84
3.10.4	SOCIAL INFRASTRUCTURE	89
3.10.5	Socio-economic conditions of the study region (Primary data)	90
3.10.6	SUMMARY	93

34 120/38 / 20/24 / RESTRICT PAL WATER PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER - 3

DESCRIPTION OF ENVIRONMENT

CHAPTER-3

DESCRIPTION OF ENVIRONMENT

3.0 INTRODUCTION

The anthropogenic activities related to industrial sector cause impacts on environmental components in and around the project site. However, the intensity of environmental impacts vary from project to projects, depending upon several factors like; Physical, Chemical, & other involved in the project like processing capacity (scale / size of the project), type and extent of pollution control measures, project location surrounding geomorphology etc. To assess environmental impacts from the existing project (specific), it is essential to monitor the environmental quality prevailing in the surrounding area prior to implementation of the project. The environmental status (baseline status) within the study area is used for prediction of anticipated environmental impact assessment study. The impacts from an existing industrial project on its surrounding environment are due to the nature of pollutants, their quantities discharged to the environment, existing environmental quality, assimilative capacity of the surrounding environment and topography.

3.1 METHODS OF MONITORING AND ANALYSIS& SELECTION OF MONITORING STATIONS

3.1.1 CRITERIA FOR SAMPLING STATIONS

The criteria for selection of sampling stations were based on the impact zone-4-5 km from the plant site. The baseline data was collected as per CPCB guidelines during the period of 1^{st} march to 31^{st} may 2023.

The following criteria were adopted while selecting the monitoring locations: -

- > One location on the upwind depending upon the wind profile/ pattern.
- Two locations on the downwind side depending upon wind pattern (predominant directions).
- ➤ One location covering the sensitive areas within the vicinity.
- > One location covering the transportation convergences route.
- One location covering the major habitation.
- One location on the downwind direction where the max GLC's are falling.

The monitoring station selected is as described under:-

Table 3.1: List of Monitoring Stations

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR APRIL'2024

2	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER - 3
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	DESCRIPTION OF ENVIRONMENT
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

Sampling Location	Distance (Km)	Direction	Components
Project Site			Air, Ground Water, Noise, Soil
Devli	1.42	ESE	Air, Ground Water, Noise, Soil
Asawati	1.80	NNE	Air, Ground Water, Noise, Soil
Pyala	3.56	N	Air, Ground Water, Noise, Soil
Dundsa	2.34	NNW	Air, Ground Water, Noise, Soil
Gadpuri	3.31	NW	Air, Ground Water, Noise, Soil
Pirthala	1.50	W	Air, Ground Water, Noise, Soil
Baghaula	2.56	S	Air, Ground Water, Noise, Soil
Pahladpur	1.14	NNE	Surface water
Distributary			
Agra Canal	4.42	NE	Surface water
Pirthala Pond	1.50	W	Surface water
NH-2	1.08	WSW	Traffic

Baseline data generation was carried out by M/s Alkom Synergy Pvt. Ltd., Jaipur accredited & approved by MoEF&CC & NABL. The NABL certificate is enclosed as **Annexure-**VII(i)

3.2 COLLECTION OF BASELINE DATA

Environmental Baseline Monitoring data was collected in relation to existing project for: -

- 1. Land Environment
- 2. Water Environment
- 3. Air Environment
- 4. Noise Environment
- 5. Biological Environment
- 6. Socio-Economic Environment

3.3 LAND ENVIRONMENT

Objective of the study is to provide a baseline status of the study area covering 10Km radius around the existing project site so that temporal changes due to the existing project activities on the surroundings can be assessed in future.

3.3.1 Land Use of Study Area

LAND ENVIRONMENT

Since, a major part of 10km study area comprises of Forest Area, Agricultural Area, and Waste Land thus study on land environment of ecosystem play an imperative role in identifying susceptible issues and taking appropriate action to uphold ecological equilibrium in the region. The main objective of this section is to provide a baseline status of the study area covering 10 km radius around the project site so that temporal changes due to the industrial activities on the surroundings can be assessed in future.

PROJECT: DRAFT EIA JEMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER - 3
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	DESCRIPTION OF ENVIRONMENT
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

Source of information:

The data in this work is collected from the following sources: -

- **1.** Topographic data Survey of India Toposheet.
- 2. Remote Sensing Data LISS IV Data of Resource sat R2A NRSC, Hyderabad.
- 3. Ground Truthing of the area

Since, a major part of 10km study area comprises of Forest Area, Agricultural Area, and Waste Land thus study on land environment of ecosystem play an imperative role in identifying susceptible issues and taking appropriate action to uphold ecological equilibrium in the region. The main objective of this section is to provide a baseline status of the study area covering 10 km radius around the project site so that temporal changes due to the industrial activities on the surroundings can be assessed in future.

Methodology

The LISS IV of Dec 2023 was procured for interpretation and classification of Core and 10 Km Buffer zone of the project. Both the data were fused to attain high quality and used for interpretation of data in conjunction with secondary/collateral data. The methodology followed for extraction of information from satellite data is especially at standard visual interpretation based on tone, texture, shape, size and colour.

Salient features of the adopted methodology are given below:

- **1.** Acquisition of satellite data
- **2.** Preparation of base map from Survey of India topo sheets
- **3.** Data analysis using visual interpretation techniques
- 4. Ground truth studies or field checks using GPS
- **5.** Finalization of the map
- **6.** Digitization using head up vectorisation method
- 7. Topology construction in GIS
- **8.** Area calculation for statistics generation
- **9.** Masking

Data Collection & Masking

The IRS LISS IV of Dec 2023 satellite imagery having 5.8 m spatial resolution satellite data of Cell size 10 m is collected in different band width i.e. Blue, Green, and Red& NIR. FCC has been prepared using Green (Band 2) (0.52-0.59 μ), Red (Band 3) (0.62-0.69 μ) and near Infrared (NIR) (Band 4) (0.77-0.89 μ) with the combating of 4-3-2. After that masking is

PROJECT: DRAFT EIA ZEMP REPORT OF PROPOSED COLD ROLL	ING MILL COMPLEX CHAPTER - 3
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	DESCRIPTION OF ENVIRONMENT
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

done to understand and analyze the land use/land cover pattern of the Study area for the 10 Km Buffer areas.

Digital Image Processing

The digital image processing was performed on Sentinel Toolbox, Arc GIS/QGIS software system on high-configuration computer. This software package is a collection of image processing functions necessary for pre-processing, rectification, band combination, filtering, statistics, classification, etc.

Pre-field Interpretation of Satellite Data

The False Colour Composite (FCC) of IRS Liss-IV satellite imagery having 5.8 m spatial resolution satellite data 1:50,000 scales have been used for pre-field interpretation work. Taking the help of Toposheet, geology, and geo-morphology and by using the image elements, the features were identified and the boundaries were delineated. Each feature was identified on image by the image elements like tone, texture, colour, shape, size, pattern and association. A tentative legend in terms of land cover and land use was formulated. The sample area for field check is selected covering all the physiographic, land use/land cover feature cum image characteristics.

Ground Truth Collection

The Survey of India Toposheet data were downloaded for field verification and a systematic traverse were undertaken using existing road network to study Land Use Pattern of the area, covering as many representative sample areas as possible to observe the broad land use features and to adjust the sample areas according to field conditions. Detail field observations and investigations were carried out and noted the land use features and plotted on the Satellite image Data.

Post Field Work for Land Use/Land Cover Classification:

The base maps of the study area were prepared, with the help of Survey of India Toposheet on 1:50,000 scale. Field information and the final details were transferred onto the base maps. The final interpreted and classified map was then categorically differentiated with standard colour coding and described features with standard symbols. All the classes were identified and marked by the standard legend on the map. The following Land Cover classes were derived and classified as under:

34 320/38 / 20/24 / RESERVANDE PAL WALL
PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER - 3

DESCRIPTION OF ENVIRONMENT

- ✓ Built-up, Rural
- ✓ Built-up, Industries
- ✓ Plantation
- ✓ Crop land
- ✓ Fallow land
- ✓ Water Body
- ✓ Mining Area

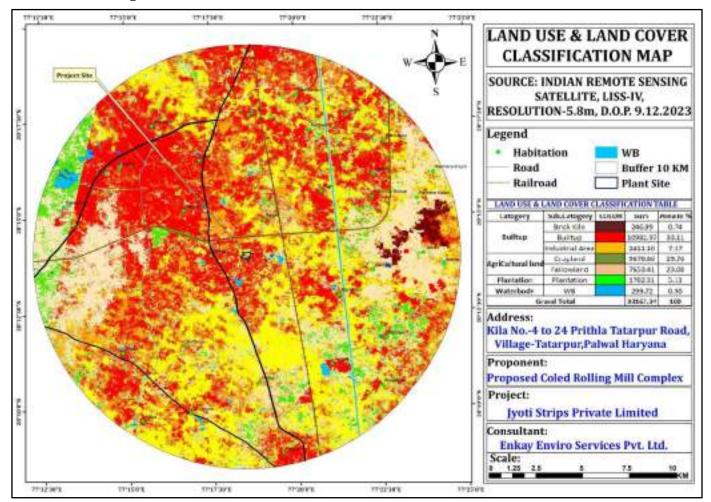


Figure: 3.1 Land Use & Land Cover Map of 10km radius from Satellite Image

e No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 10789)
33-120038//2024/REGIBN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER - 3

DESCRIPTION OF ENVIRONMENT

Land Use and Land Cover (LULC) for 10 km radius from boundary:

The land use will be changed slightly as the proposed project is coming within the 10 km buffer area. Classification scheme adopted for the preparation of land use/ land cover maps on 1:50,000 scales. Land use/ Land cover classification standardized by NRSC/ ISRO. Total Seven major land use/land cover classes were demarcated in the study area. A thematic map of 1:50,000 scales were generated incorporating these classified categories considering the area of the project. The LULC map of the study area is shown in **Figure 3.3**

The LU/LC Class Index to modify in both the maps as per below table:

Catogery	atogery Sub.Catogery		Area In %
	Brick Kiln	246.99	0.74
Builtup	Builtup	10982.97	33.11
	Industrial Area	2411.10	7.27
Agricultural land	Cropland	9870.86	29.76
Agricultural land	Fallowland	7653.41	23.08
Plantation Plantation		1702.31	5.13
Waterbody	WB	299.72	0.90
Grand Total		33167.34	100

Land Use and Land Cover (LULC) of project site:

The land use will be changed slightly as the project is a green field after the construction land is duly converted for industrial purpose. Total land area is **127294.69**Sq,m.

The land use pattern is given below:

Table: 3.3 LU/LC Classes and their Coverage Area in hectares:

S. No.	Land Use	Area (Sq.m)	Percentage
		Proposed Area	(%)
1.	Plant Area	55219.97	43.38
2.	Paved Area (Road, Corridor,)	35,997.62	28.27
3.	Green Area	36,077.10	28.35
4.	Open area	0.0	0.0
	Total	127294.69	100

The proposed green area inside the plant premises is 36077.10 sq. mtr (28.35%) with 9019 No.s of plants @ 2500 trees/ha. The deficit plantation of about 4.65% will be done in container plantation within the project site to achieve total 33% plantation as per norms.

34 120/38//2024/ESCEIBIN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER - 3
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	DESCRIPTION OF ENVIRONMENT
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

3.3.2 TOPOGRAPHY/DEM

The major physiographic unit of the area is comprises almost flat plains traversed by one ridge running N-S to NNE-SSW direction, divides the alluvium into two parts. Total geographical area is 1364.55 sq.km which is bounded on western side Mewet district, Eastern side by U.P. state and northern side by Faridabad district. There were two main canals Agra canal and Gurgaon canal which passes through western and central part from north to south. In the northern part Budia nala is flowing from east to west and discharges its rainy water in river Yamuna. The Gaunchi main drain passes through north south direction of the district running in between Agra canal and Gurgaon canal.

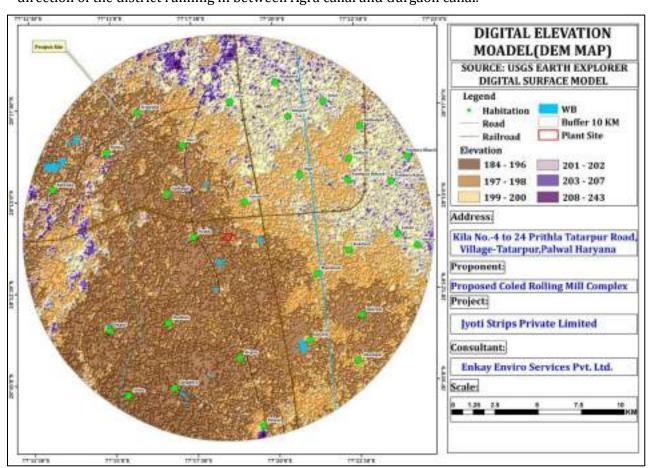


Figure. 3.2: DEM Map of 10 km radius

Study Area Topography/DEM:

Topographically, the lease area comprises of older alluvial plain. The highest and lowest elevation of the study area ranges from 184 mRL to 243 mRL.

3.3.3 Drainage

34 120/38//2024//ESCIBIN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER - 3
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	DESCRIPTION OF ENVIRONMENT
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

Drainage System of Regional Area:

The district is occupied by Indo-Gangetic alluvial plain of Quaternary age, and falls in Yamuna sub-basin of Ganga basin. The major river is Yamuna which is a perennial river.

Study Area Drainage:

The buffer area of 10 km radius comprises Agra canal which was at the distance of 4.16 km from the project area. The drainage of the area form the dendritic pattern of stream order of 4-9 in which 9 is the main stream order , which flow from NE to SW direction of the project area which shown in fig.3.6

Proposed Plant Site Drainage: In the project site, there are no stream fl

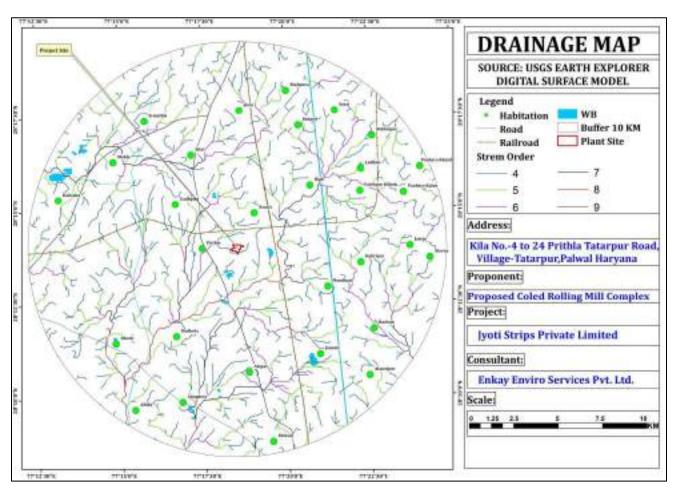


Fig. 3.3: Drainage Map of 10 km radius

3.3.4 CLIMATE & RAINFALL

3 **3 120/38 // 2024 / REGIBIN PALWAL**

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER - 3
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	DESCRIPTION OF ENVIRONMENT
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

Climate:

The climate of Palwal district can be classified as tropical steppe, semiarid and hot which is mainly characterized by the extreme dryness of the Air except during monsoon months. During three months of south west monsoon from last week of June to September, the moist air of oceanic penetrate into the district and causes high humidity, cloudiness and monsoon rainfall. The period from October to December constitutes post monsoon season. The cold weather season prevails from January to the beginning of March and followed by the hot weather or summer season which prevails up to the last week of June.

Rainfall:

The normal annual rainfall in Palwal district is about 542 mm spread over 27 days. The south west monsoon sets in the last week of June and withdraws towards the end of September and contributes about 85% of the annual rainfall. July and August are the wettest months 15% of the annual rainfall occurs during the non-monsoon months in the wake of thunder storms and western disturbances.

Normal Annual Rainfall : 542 mm Normal Monsoon Rainfall : 460 mm

Temperature: 410 C (May & June)

3.3.5 SEISMICITY OF THE AREA

Many parts of the Indian subcontinent have historically high seismicity. Seven catastrophic earthquakes of magnitude greater than 8 (Richter scale) have occurred in the western, northern and eastern parts of India and adjacent countries in the past 100 years.

Approx. 59 % of the land area of India is liable to seismic hazard damage. In India, seismic zones are divided into four zones i.e. V, IV, III and II. The Modified Mercalli (MM) Intensity, which measures the impact of the earthquakes on the surface of the earth, broadly associated with various zones is given in Table. The project site falls in Seismic zone-IV.

S. No.	Seismic Zone	Risk	Intensity on MMI scale
1	Zone - V	Very High Risk Zone	IX & above
2	Zone - IV	High Risk Zone	VIII
3	Zone - III	Moderate Risk Zone	VII
4	Zone - II	Low Risk Zone	VI & below

3.3.5.1 GEOMORPHOLOGY

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER - 3
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	DESCRIPTION OF ENVIRONMENT
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

The district is classified as tropical and brown soils, existing in major parts of the district. In Hathin block the organic content of soils ranging from 0.41 to 0.75 percent which is of medium category. In rest of the area organic contents is 0.2 to 0.4 percent and falls in Low category. The average conductivity of the soil is not more than 0.80 μ mhos /cm and the average pH of the soil is between 6.5 and 8.7. The area comprises almost flat plains traversed by one ridge running N-S to NNE-SSW direction, divides the alluvium into two parts. The major river is Yamuna which is a perennial river.

Table 3.5: Geomorphological divisions of the district

Origin	Landform Unit	Occurrence
Fluvial	Alluvial Plain	Along rivers- Khari, Masi, Banas, Kothari
	Valley Fill	Small scattered patches in east & west
	Ravine	Along Berach River in south
Denudational	Pediment	Scattered in entire district, mainly in east
		& west
	Buried Pediment	Almost entire district except in east,
		southeast & north
	Intermontane Valley	Scattered in east & southeast
Aeolian	Sandy Plain	North
Structural	Plateau	Southeast
Hills	Linear Ridges	Near Jahazpur town
	Structural Hill	In northwest & eastern part of the
		district and Bhilwara town

Study Area Geomorphological Features:

Geomorphologically, the study area covered by the older alluvial plain and water bodies as shown in figure 3.5

34 120/38 // 2024 / RECIBIN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER - 3

DESCRIPTION OF ENVIRONMENT

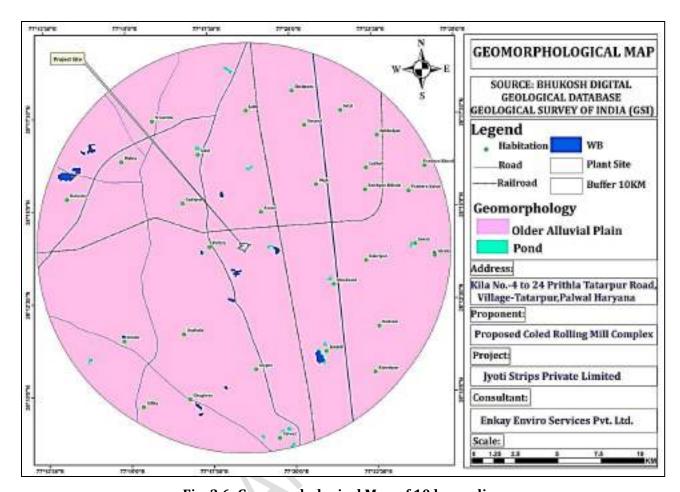


Fig. 3.6: Geomorphological Map of 10 km radius

3.3.7 GEOLOGY

A. REGIONAL GEOLOGY

The district is occupied by Indo-Gangetic alluvial plain of Quaternary age, and falls in Yamuna sub -basin of Ganga basin. The permeable granular zones comprising fine to medium grained sand and occasionally coarse sand and gravel. North western part of the district occupies the quartzite formation. In alluvium, granular zones are evenly distributed in entire thickness which is negligible near the quartzite outcrops to over 350 m in the eastern parts near Yamuna River.

B. LOCAL GEOLOGY

Geologically, allotted area is belonging to Middle-Late Pleistocene and Holocene age. Oxidised silt-clay with kankar and micaceous sand and yellowish brown loose sand with or without

33 320/38/2024/REGIBN PALWAL
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL CO

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER - 3	
ICANT: JYOTI STRIPS PRIVATE LIMITED		
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONME	

kankar are the major litho unit observed in the allotted area. The Stratigraphic sequence of the litho units present in the area are given in Table 3.7:-

AGE	GROUP NAME	FORMATION	MEMBER	LITHOLOGIC
MIDDLE - LATE PLEISTOCENE	OLDER ALLUVIUM	VARANASI=AMBALA= LUDHIANA	CLAYEY FACIES	OXIDISED SILT-CLAY WITH KANKAR AND MICACEOUS SAND
HOLOCENE	NEWER ALLUVIUM	LOHARU / AEOLIAN DEPOSIT		YELLOWISH BROWN LOOSE SAND WITH OR WITHOUT KANKAR

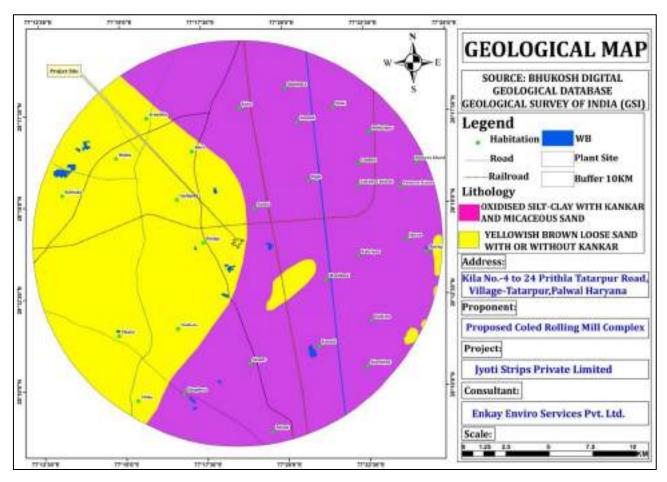


Fig. 3.7: Geological Map of 10 km radius

C. HYDROGEOLOGY

Aquifer Distribution and its characteristic

Ground water occurs in alluvium and the underlying weathered/fractured quartzites. Alluvium comprises sands silt, Kankar and gravel. Which form the principal ground water bearing horizon. In Quartzite formation, occupying the north- western part of the district, ground water occurs in weathered and jointed fractured horizons. Weathering and fracturing has resulted in formation of semi-consolidated sand beds (BADARPUR SANDS) which form potential aquifer zones. This quartzite formation has not been explored for ground water occurrence. In alluvium, granular zones are evenly distributed in entire thickness which is negligible near the quartzite outcrops to over 350 m in the eastern parts near Yamuna River. The discharge of the wells ranges from 750 lpm to 900 lpm at a drawdown of 5.5 to 7.00m. The transmissivity "T" value ranges between 55 to 200 m 2 /day was determined. Shallow tube wells for irrigation use are generally constructed up to a depth of 40 m. The discharge of these shallow tube wells range 360 -600 liters per minutes.

AQUIFER MANAGEMENT PLAN:

Due to pressure of population and improvement in the standard of living, the demand of fresh water for both agriculture and domestic use has substantially increased. As surface flow is available only for a limited period ground water withdrawal has sharply increased. The top layer of fresh ground water is also reducing every year. Artificial recharge serves as a means for restoring the depleted ground water storage, slow down the quality deterioration and put back into operation many groundwater abstraction structures.

DEPTH TO WATER LEVEL:

Central Ground Water Board periodically monitors the ground water regime through active National Hydrograph Network Stations (NHNS) stations four times a year i.e. in January, May (Pre monsoon), August and November (Post monsoon) including one time ground water sampling during May measurement. Depth to water level varies widely depending upon topography, drainage, bed rock, geology etc.

Pre & Post monsoon Water level:

Depth to water level in pre monsoon is ranges from 2 m bgl to 10.75 m bgl.

Depth to water level in post-monsoon is ranges from 2 to 9.40 m. bgl.

(Source: gwb.gov.in/sites/default/files/2022-10/bhilwara district suwana block.pdf

Project Site:

Depth to water level project site is 10-15 m.

D. GROUND WATER RESOURCE

Dynamic Resources

Dynamic Resource of the area for 2020 has been calculated jointly by CGWB and SWID (State Water Investigation Directorate) using GEC-1997 methodology. The irrigation data available to the 5th Minor Irrigation Census, block wise demographic data of 2011 Census, CGWB water level data, cropping pattern, annual monsoon rainfall and normal rainfall provided the basic input for calculating the resources of the state. Block wise (Groundwater assessment unit) geographical area, area under different hydro-geological sub-provinces (sub-units), area under command and non-command, poor ground water quality area and ground worthy recharge area has also been considered. The categorization of the blocks has been done based on their Stage of Development and long term water level trend.

Dynamic Ground Water Resource & Development Potential in Palwal

Total Annual Ground Water Recharge (Ham)	Annual Irrigation Draft	Annual GW Allocation for Domestic and Industrial Use	Annual Replenishable Groundwater Resources (Total)	Net Ground Water Availability for future use	Stage of Ground Water Extraction (%)	Category
4264.760	3871.590	393.170	3126.030	2813.430	151.586	Over Exploited

Ground Water Development

The unit of assessment is categorized for groundwater development based on two criteria; Stage of ground water development and long-term water level trends. The stage of ground water development in Palwal district (77.474 %). All the blocks in the district are under 'Semi-Critical' category as their stage of groundwater development is less than 100 % and there is steady water level over the years.

3.4.6 SOIL ENVIRONMENT

The objectives of the soil sampling are:-

- > To determine the baseline soil characteristics of the study area;
- ➤ To determine the impact of existing activity on soil characteristics and;
- > To determine the impact on soil more importantly with agriculture production point of view.

e No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 10789)
33 T20038//2024/REGIBIN PALWAL

8 soil samples around the project area were collected and analyzed. The analytical results are given in below.

Table 3.7: Soil Sampling Locations

Location Code	Sample Collection Details	Location Name	Co-ordinates
S-1	Soil Sample	Plant Site	28°13'57" N 77°18'28" E
S-2	Soil Sample	Village:-Devali	28°13'49" N 77°19'15" E
S-3	Soil Sample	Village:-Asawati	28°14'55" N 77°19'11" E
S-4	Soil Sample	Village:-Pyala	28°16'02" N 77°18'51" E
S-5	Soil Sample	Village:-Dundsa	28°15'23" N 77°17'44" E
S-6	Soil Sample	Village:-Gadpuri	28°15'08" N 77°16'40" E
S-7	Soil Sample	Village:-Pirthala	28°14'06" N 77°17'19" E
S-8	Soil Sample	Village:-Baghaula	28°12'22" N 77°18'17" E

The soil analysis results are given below: -

34320/38//2024/RECEIBN PALWA PROJECT: DRAFT EIA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER- 3
DESCRIPTION OF ENVIRONMENT

S.No.	Parame	ters	Unit	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	
1	Colour		-	Brown								
2	Texture		-	Sandy Loam								
3	Particle size	Sand	%	42	38	39	45	39	42	43	46	
	Distributions	Silt	%	26	28	25	21	27	26	22	24	
		Clay	%	32	34	36	34	34	32	35	30	
4	pH (1:5 Solution)	-	7.78	8.10	8.23	7.71	7.96	8.25	7.90	7.80	
5	Electrical Condu	ctivity	μS/cm.	250	289	243	210	203	277	228	193	
6	Bulk Density		gm/cm ³	1.45	1.40	1.53	1.43	1.39	1.46	1.52	1.41	
7	Porosity		% v/v	29	25	26	27	31	28	26	32	
8	Organic Carbon		%	0.35	0.38	0.33	0.29	0.25	0.36	0.28	0.23	
9	Sodium (Na)		mg/100 gm	24.0	26.0	32.0	29.1	28.0	24.0	19.0	25.0	
10	Potassium (K)		mg/100 gm	40.0	35.0	45.0	36.4	34.58	32.0	33.0	30.0	
11	Moisture Conter	ıt	%	6.5	7.1	7.9	7.7	7.9	6.8	8.2	6.4	
12	Total Nitrogen		%	30.0	33.0	22.0	21.0	20.0	30.0	19.0	20.0	
13	Available Phosph	orous	kg/hectare	15.4	16.2	13.28	10.34	9.27	12.8	8.7	7.4	
14	Organic Matter		%	0.61	0.65	0.57	0.51	0.44	0.63	0.49	0.39	
15	Total Soluble Ch	oride	mg/kg	180	210	242	219	202.52	189	175	150	
16	Total Soluble Sul	phate	%	0.031	0.042	0.035	0.033	0.03	0.045	0.028	0.029	
17	Water Holding C	apacity	%	31	36	40	38	38	39	31.2	43	

34 2038/2024/RECEEDA PALWAL
PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX APPLICANT: JYOTI STRIPS PRIVATE LIMITED CHAPTER-3 **DESCRIPTION OF ENVIRONMENT** DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

TABLE-3.9: STANDARD SOIL CLASSIFICATION

S. No.	Soil Test	Classification
1	рН	<4.5 Extremely acidic
		4.51- 5.50 Very strongly acidic
		5.51-6.00 moderately acidic
		6.01-6.50 slightly acidic
		6.51-7.30 Neutral
		7.31-7.80 slightly alkaline
		7.81-8.50 moderately alkaline
		8.51-9.0 strongly alkaline
		9.01 very strongly alkaline
2	Salinity Electrical	Up to 1.00 Average
	Conductivity (µmhos/cm)	1.01-2.00 harmful to germination
	(1ppm = 640 μmho/cm)	2.01-3.00 harmful to crops (sensitive to salts)
3	Organic Carbon (%)	Up to 0.2: very less
		0.21-0.4: less
		0.41-0.5 medium,
		0.51-0.8: on an average sufficient
		0.81-1.00: sufficient
		>1.0 more than sufficient
4	Nitrogen (Kg/ha)	Up to 50 very less
		51-100 less
		101-150 good
		151-300 Better
		>300 sufficient
5	Phosphorus (Kg/ha)	Up to 15 very less
		16-30 less
		31-50 medium,
		51-65 on an average sufficient
		66-80 sufficient
		>80 more than sufficient
6	Potash (Kg/ha)	0 -120 very less
		120-180 less
		181-240 medium
		241-300 average
		301-360 better
		>360 more than sufficient

Source: Hand Book of Agriculture, Indian Council of Agricultural Research

Interpretation of soil results

- It is observed that the pH of the soil in the study area ranged from 7.71 to 8.23. The maximum pH value of 8.23 is observed at S-3 and whereas the minimum value of 7.71 was observed at S-4.
- The electrical conductivity was observed to be in the range of 193μS/cm to 289μS/cm with the maximum observed at S-2 and the minimum observed at S-8.
- The phosphorus values range between 8.7 to 16.2 kg/ha. Indicating that the phosphorus content in the study area falls in medium category.

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

U	PROJECT: DRAFT EIA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX		
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 3	
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT	

• The potassium values range between 30.0 to 45.0 mg/100gm.

The result obtained is compared with the standard soil classification given Agriculture Soil Limits. It has been observed that the soils are Sandy loam in texture and slightly alkaline in nature. The nutrient and organic matter contents are medium to average sufficient and the soil is normally fertile.

3.5 WATER ENVIRONMENT

The purpose of the study is to: -

- 1. Assess the water quality characteristics for critical parameters;
- 2. Evaluate the impacts on agriculture productivity, habitat conditions, recreational resources and aesthetics of the vicinity; and
- 3. Predict the likely impacts on water quality due to the project and other related activities.

3.5.1 GROUND & SURFACE WATER ANALYSIS

8 ground water samples and 3 surface water sample were collected as grab samples and were analyzed for various parameters as per the procedures specified in "Standard Methods for the Examination of Water and Wastewater" published by American Public Health Association (APHA). Different physico-chemical parameters of ground water during study period were compared with standard at each monitoring stations and shown below.

Table 3.10: Ground Water Sampling Locations

Sample code No	Location Name
GW-1	Project Site
GW-2	Villeage:-Devali
GW-3	Village:-Pahladpur
GW-4	Village:-Pyala
GW-5	Village:-Dundsa
GW-6	Village:-Gadpuri
GW-7	Village:-Pirthala
GW-8	Village:-Baghaula
SW-1	Pahladpur Distributary
SW-2	Agra Canal
SW-3	Village:-Pirthala Pond

34 120/38 // 2024 // RECEIBN PALWA PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

CHAPTER- 3

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

DESCRIPTION OF ENVIRONMENT

Table 3.11(a): Ground Water Analysis

S. No	Parameter	Units	GW1	GW2	GW3	GW4	GW5	GW6	GW7	GW8	Acceptable Limit	Permissible Limit
1	Color	Hazen	<1	<1	<1	<1	<1	<1	<1	<1	5	15
2	рН	•	7.02	7.28	7.19	7.26	7.22	7.60	6.92	6.98	6.5-8.5	No Relaxation
3	Turbidity	NTU	0.14	0.18	0.16	0.15	0.12	0.13	0.16	0.17	1	5
4	Total Dissolved Solids	Mg/L	423	461	502	528	488	421	589	546	500	2000
5	Electrical Conductivity	μS/cm	651	709	772	813	750	648	906	840	-	-
6	Aluminum as Al	Mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.03	0.2
7	Ammonia (as total ammonia-N)	Mg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.5	No Relaxation
8	Anionic Detergents as MBAS	Mg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	1.0
9	Barium as Ba	Mg/L	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	0.7	No Relaxation
10	Boron as B	Mg/L	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	0.5	1.0
11	Calcium as Ca	Mg/L	31.10	36.93	38.88	36.93	31.10	28.64	29.16	23.33	75	200
12	Chloramines	Mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.0	No Relaxation
13	Chloride as Cl	Mg/L	102.25	126.25	135.79	147.82	149.94	123.95	210.29	192.94	250	1000
14	Copper as Cu	Mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.05	1.5
15	Fluoride as F	Mg/L	0.25	0.29	0.33	0.36	0.33	0.27	0.77	0.84	1.0	1.5
16	Free Residual Chlorine	Mg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	1.0
17	Iron as Fe	Mg/L	0.06	0.08	0.10	0.11	0.12	0.16	0.15	0.11	0.3	No Relaxation
18	Magnesium as Mg	Mg/L	14.19	14.85	12.39	17.36	19.93	14.78	26.06	22.85	30	100
19	Manganese as Mn	Mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.1	0.3
20	Nitrate as NO ₃	Mg/L	4.32	5.15	5.44	5.69	4.73	3.82	8.17	7.45	45	No Relaxation
21	Phenolic Compounds as C ₆ H ₅ OH	Mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	0.002
22	Selenium as Se	Mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	No Relaxation
23	Sulphate as SO ₄	Mg/L	17.00	19.85	20.63	20.82	19.69	15.72	22.63	20.18	200	400
24	Total Alkalinity as	Mg/L	123	136	145	166	140.22	128.40	149	134.58	200	600

0

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

128

54

34320/28/2024/RECEIBAL PAL WAL PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER- 3
DESCRIPTION OF ENVIRONMENT

	CaCO ₃			ì								
25	Total Hardness as	Mg/L	136	153.26	148	163.59	159.64	132.28	180.28	152.24	200	600
	CaCO ₃											
26	Zinc as Zn	Mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	5	15
27	Cadmium as Cd	Mg/L	< 0.003	< 0.003	< 0.003	<0.003	< 0.003	< 0.003	< 0.003	< 0.003	0.003	No Relaxation
28	Lead as Pb	Mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.1	No Relaxation
29	Mercury as Hg	Mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001	No Relaxation
30	Total Arsenic as	Mg/L	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.01	0.05
	As											
31	Total Chromium	Mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.05	No Relaxation
	as Cr											
32	Sulphide as S	Mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	No Relaxation
33	Nickel as Ni	Mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	No Relaxation

0

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

129

T: DRA T EIA EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

CHAPTER- 3
DESCRIPTION OF ENVIRONMENT

ENT NO : EESPL/JSPL/IND/EC/2022-23/119

Table 3.11(b): Ground Water Analysis

							Aggantable	Downiasible
S. No	Parameter	Units	GW5	GW6	GW7	GW8	Acceptable Limit	Permissible Limit
1	Color	Hazen	<1	<1	<1	<1	5	15
2	рН	-	7.22	7.60	6.92	6.98	6.5-8.5	No Relaxation
3	Turbidity	NTU	0.12	0.13	0.16	0.17	1	5
4	Total Dissolved Solids	Mg/L	488	421	589	546	500	2000
5	Electrical Conductivity	μS/cm	750	648	906	840	-	-
6	Aluminum as Al	Mg/L	< 0.01	< 0.01	< 0.01	< 0.01	0.03	0.2
7	Ammonia (as total ammonia-N)	Mg/L	<0.2	<0.2	<0.2	<0.2	0.5	No Relaxation
8	Anionic Detergents as MBAS	Mg/L	<0.1	<0.1	<0.1	<0.1	0.2	1.0
9	Barium as Ba	Mg/L	< 0.1	< 0.1	< 0.1	< 0.1	0.7	No Relaxation
10	Boron as B	Mg/L	< 0.1	< 0.1	<0.1	<0.1	0.5	1.0
11	Calcium as Ca	Mg/L	31.10	28.64	29.16	23.33	75	200
12	Chloramines	Mg/L	<1.0	<1.0	<1.0	<1.0	4.0	No Relaxation
13	Chloride as Cl	Mg/L	149.94	123.95	210.29	192.94	250	1000
14	Copper as Cu	Mg/L	< 0.01	< 0.01	< 0.01	< 0.01	0.05	1.5
15	Fluoride as F	Mg/L	0.33	0.27	0.77	0.84	1.0	1.5
16	Free Residual Chlorine	Mg/L	<0.1	<0.1	<0.1	<0.1	0.2	1.0
17	Iron as Fe	Mg/L	0.12	0.16	0.15	0.11	0.3	No Relaxation
18	Magnesium as Mg	Mg/L	19.93	14.78	26.06	22.85	30	100
19	Manganese as Mn	Mg/L	< 0.01	< 0.01	< 0.01	< 0.01	0.1	0.3
20	Nitrate as NO ₃	Mg/L	4.73	3.82	8.17	7.45	45	No Relaxation
21	Phenolic Compounds as C ₆ H ₅ OH	Mg/L	<0.001	<0.001	<0.001	<0.001	0.001	0.002
22	Selenium as Se	Mg/L	< 0.01	< 0.01	< 0.01	< 0.01	0.01	No Relaxation
23	Sulphate as SO ₄	Mg/L	19.69	15.72	22.63	20.18	200	400
24	Total Alkalinity as CaCO ₃	Mg/L	140.22	128.40	149	134.58	200	600
25	Total Hardness as CaCO ₃	Mg/L	159.64	132.28	180.28	152.24	200	600
26	Zinc as Zn	Mg/L	< 0.01	< 0.01	< 0.01	< 0.01	5	15
27	Cadmium as Cd	Mg/L	< 0.003	< 0.003	< 0.003	< 0.003	0.003	No Relaxation
28	Lead as Pb	Mg/L	< 0.01	< 0.01	< 0.01	< 0.01	0.1	No Relaxation
29	Mercury as Hg	Mg/L	< 0.001	< 0.001	< 0.001	< 0.001	0.001	No Relaxation
30	Total Arsenic as As	Mg/L	< 0.005	< 0.005	< 0.005	< 0.005	0.01	0.05
31	Total Chromium as Cr	Mg/L	<0.01	<0.01	<0.01	<0.01	0.05	No Relaxation
32	Sulphide as S	Mg/L	< 0.05	< 0.05	< 0.05	< 0.05	0.05	No Relaxation
33	Nickel as Ni	Mg/L	< 0.01	< 0.01	< 0.01	< 0.01	0.02	No Relaxation

Table 3.12: Surface Water Analysis

S. No.	Parameters	Parameters Unit Test Method		SW-1	SW-2	SW-3
1	рН	-	APHA (23rd Edition) 4500 H	8.05	7.16	7.55
2	Turbidity	NTU	APHA (23rd Edition) 2130	0.36	0.44	0.36
3	Total Hardness as CaCO ₃	mg/L	APHA (23rd Edition) 2340 C	280	262	228
4	Total Alkalinity as	mg/L	APHA (23rd Edition) 2320	210	192	263.2

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

	TOTAL OF THE DISTRICT TO THE STATE OF THE ST	
Γ: DRA	TEIA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
NT: JY	OTI STRIPS PRIVATE LIMITED	CHAPTER- 3
ENT NO	: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMEN T

	CaCO ₃					
5	Chlorides as Cl	mg/L	APHA (23rd Edition) 4500 Cl-B	227.53	218.98	187.07
6	Sulphate as SO ₄	mg/L	APHA (23rd Edition) 4500 E	64	52.47	48.36
7	Nitrate as NO ₃	mg/L	APHA (23rd Edition) 4500 NO ₃ -B	18.70	16.03	12.98
8	Fluoride as F	mg/L	APHA (23rd Edition) 4500 F D	0.51	0.43	0.76
9	BOD _{3Days at 27°C}	mg/L	IS 3025 (Part 44)	15	8.2	22.71
10	COD	mg/L	APHA (23rd Edition) 5220 B	60	39.28	120
11	Phenolic Compounds as C ₆ H ₅ OH	mg/L	APHA (23rd Edition) 5530C	<0.001	<0.001	<0.001
12	Lead as Pb	mg/L	APHA (23rd Edition) 3111B	< 0.01	< 0.01	< 0.01
13	Iron as Fe	mg/L	APHA (23rd Edition) 3111B	0.03	< 0.01	0.11
14	Arsenic as As	mg/L	APHA (23rd Edition) 3114B	< 0.005	<0.005	< 0.005
15	Cadmium as Cd	mg/L	APHA (23rd Edition) 3111B	< 0.003	< 0.003	< 0.003
16	Total Chromium as Cr	mg/L	APHA (23rd Edition) 3111B	< 0.01	< 0.01	< 0.01
17	Mercury as Hg	mg/L	APHA (23rd Edition) 3112B	< 0.001	< 0.001	< 0.001
18	Copper as Cu	mg/L	APHA (23rd Edition) 3111B	< 0.01	< 0.01	< 0.01
19	Zinc as Zn	mg/L	APHA (23rd Edition) 3111B	< 0.01	< 0.01	< 0.01
20	Selenium as Se	mg/L	APHA (23rd Edition) 3114B&C	< 0.01	< 0.01	< 0.01
21	Oil & grease	mg/L	APHA (23rd Edition) 5520 B	3.26	1.06	5.29
22	Colour	Hazen	APHA (23rd Edition) 2120B	<1.0	<1.0	<1.0
23	Total Dissolved Solids	mg/L	APHA (23rd Edition) 2540 C	928	832	853
24	Residual Free Chlorine	mg/L	APHA (23rd Edition) 4500 Cl B	<0.2	<0.2	<0.2
25	Boron as B	mg/L	APHA (23rd Edition) 4500B-B	< 0.10	< 0.10	< 0.10
26	Calcium as Ca	mg/L	APHA (23rd Edition) 3500 Ca B	54.20	49.80	50.29
27	Magnesium as Mg	mg/L	APHA (23rd Edition) 3500 Mg B	35.18	34.00	24.91
28	Dissolved Oxygen	mg/L	APHA (23rd Edition) 4500 DO C	5.2	5.5	4.7
29	Total Coliform	CFU/100ml	IS 15185	>1500	>1500	>1500
30	E. Coli	CFU/100ml	IS 15185	Absent	Absent	Absent

3.5.2 INTERPRETATION OF RESULT

3.5.2.1 Ground Water

- ➤ The analysis results of eight ground water samples showed the pH in range of 6.92 7.60 indicating alkaline nature of ground water.
- ➤ Color and turbidity of the samples ranged from <1 Hazens and <1 NTU respectively.
- ➤ The total hardness of the samples ranged from 132 mg/l -180 mg/l. The minimum value was observed in (GW6) and whereas the maximum value observed at (GW7).
- Calcium and magnesium concentrations ranged from 23 -38.88 mg/l and 19.93 -26.06 mg/l respectively.
- ➤ The dissolved solids of the samples ranged from 421mg/l -598 mg/l. The maximum value was observed at G-7 and whereas the minimum value observed at G-6.
- ➤ Range of chlorides and sulphate concentrations at all the locations 102.25 mg/l 210mg/l and 15.72 mg/l -22.63 mg/l respectively.

Γ: DRA	T EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
NT: JY	DTI STRIPS PRIVATE LIMITED	CHAPTER- 3
ENT NO	: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

- ➤ Fluoride concentration ranged from 0.25mg/l -0.84 mg/l.
- ➤ Nitrates are also found ranging in between 3.82mg/l -8.17mg/l.
- ➤ Iron concentrations in ground water varied from 0.11-0.16 mg/l.
- ➤ Zinc was observed <0.01 mg/l at all the locations.
- ➤ Aluminium concentration is observed <0.01 mg/l at all the locations which are within the limits stipulated.
- ➤ Mercury concentrations at all the locations observed is <0.001 mg/l Based on the above results, it is evident that all of the parameters in ground water fairly meet the standard limits of IS: 10500.

3.5.2.2 Surface Water

The Results of Surface water is pH-7.16 – 8.05; DO-4.7 to 5.5 mg/l and BOD- 8.2 to 22.71 mg/l & COD 39.28 to 120 mg/l.

The results obtained is compared with the standard IS:2296 Limits and found to be Class-C.

Table 3.13: IS: 2296 Surface Water Standards

Designated Best	Class of water	Criteria
Use		
Drinking Water	A	Total Coliforms Organism
Source without		MPN/100ml shall be 50 or less
conventional		> pH between 6.5 and 8.5
treatment but after		Dissolved Oxygen 6mg/l or more
disinfection		Biochemical Oxygen Demand 5 days
		20C 2mg/l or less
Outdoor bathing	В	Total Coliforms Organism
(Organized)		MPN/100ml shall be 500 or less pH
		between 6.5 and 8.5 Dissolved
		Oxygen 5mg/l or more
		Biochemical Oxygen Demand 5 days
		20C 3mg/l or less
Drinking water	С	Total Coliforms Organism
source after		MPN/100ml shall be 5000 or less
conventional		pH between 6 to 9 Dissolved Oxygen
treatment and		4mg/l or more
disinfection		Biochemical Oxygen Demand 5 days
		20C 3mg/l or less
Propagation of Wild	D	> pH between 6.5 to 8.5 Dissolved
life and Fisheries		Oxygen 4mg/l or more
		Free Ammonia (as N) 1.2 mg/l or
		less
Irrigation, Industrial	Е	> pH betwn 6.0 to 8.5
Cooling, Controlled		➤ Electrical Conductivity at 25C micro

าลช	TURNING IF BILLIAN INCLESS DAKE DATE VALAT	
Γ: DRA	TEIA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
NT: JY	DTI STRIPS PRIVATE LIMITED	CHAPTER- 3
ENT NO	: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMEN

Waste disposal		mhos/cm Max.2250
		Sodium absorption Ratio Max. 26
		➤ Boron Max. 2mg/l
	Below-E	Not Meeting A, B, C, D & E Criteria

3.6 AIR ENVIRONMENT

The prime objective of the baseline air monitoring was to evaluate the existing air quality of the area. This will also be useful for assessing the conformity to standards of the ambient air quality during the operation of the plant.

The baseline status of the air quality has been assessed though a scientifically designed ambient air quality monitoring network based on the following considerations:-

- Meteorological conditions on synoptic scale;
- > Topography of the study area;
- > Representatives of regional background air quality for obtaining baseline status; and
- > Representatives of likely impact areas.

3.6.1 MICRO-METEOROLOGICAL DATA

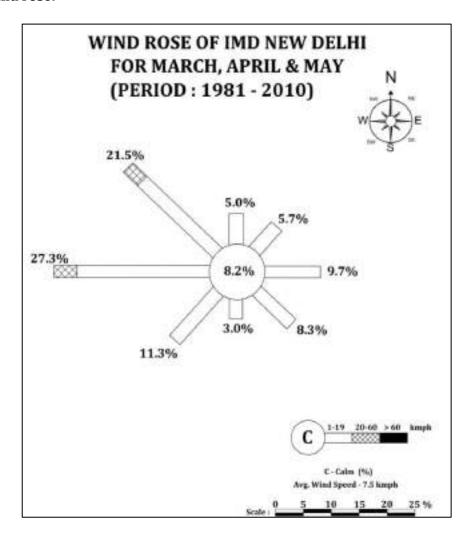
IMD DATA:

The secondary data pertaining to the nearest location New Delhi (Palam) was collected for the year 1981-2010. This data were utilized while selection of monitoring locations for generation of baseline data. It was also utilized for verification of primary data collected. The summary of the IMD collected data for the months of March, April and May is given below:

Table 3.14: Summary of Climatological data of New Delhi (Palam) for the year 1981-2010

Month	Air Temperature(0 Relative Humidity		Rainfall	Mean wind		
	C)		(%)		in mm	speed in
	Min.	Max.	Min.	Max.		kmph
March	9.3	36	34	66	13.2	6.9
April	15.1	42.5	23	45	9.1	7.5
May	20.4	45	26	44	37.7	8.1

Interpretation of secondary data:


The average annual rainfall was observed to be 674.5 mm. The temperatures and relative humidity for the months of March, April & May (summer season) were observed to be in the range of $9.3~^{\circ}\text{C}$ to $45~^{\circ}\text{C}$ and 23% to 66% respectively.

221	ramang // aman/ //Beftipiki BAI WAA	
Γ: DRA	TEIA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
NT: JY	OTI STRIPS PRIVATE LIMITED	CHAPTER- 3
ENT NO	: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMEN

The winds were in the range of 6.9 to 8.1 kmph with calm conditions of 8.2%. The predominant wind directions during summer season were observed to be blowing from West to East.

Wind rose:

Micro Meteorological Data Recorded at Project Site

Percentage frequencies of wind in 16 directions have been computed from the recorded data during the study period [1st March 2023 to 31th may 2023] for hourly intervals to plot wind rose. The figure represents the summary of the wind pattern for the study period.

SITE SPECIFIC WIND ROSE

The predominant wind direction during this study period is observed to be blowing between WSW, SW, SSW, E, SE directions. The average wind speed during this period is 4.35 m/s. Calm wind during this period 0.08% the recorded meteorological data of study period at project site is given below.

221		
Γ: DRA	TEIA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
NT: JY	DTI STRIPS PRIVATE LIMITED	CHAPTER- 3
ENT NO	: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

Table 3.15: Summary of micro-meteorological data

Month	Temper			Humidity %)	Rainf m	fall in m	Wind S mp	-
	Max	Min	Max	Min	Max	Min	Max	Min
MARCH- 2023	39.4	13.4	65.4	29.8	3.7	0.0	9.4	<1.0
APRIL- 2023	40.0	10.0	70.0	37.0	5.6	0.0	16.0	<1.0
MAY- 2023	42.7	16.6	94.0	14.0	3.1	0.0	21.0	<1.0

3.6.2 WIND ROSE DIAGRAM

Wind rose is the diagrammatic representation of wind speed in a specified direction with its arms representing sixteen directions. Each arm gives a clear frequency distribution of wind speed in a particular direction for a given period of time. The wind rose diagram for the study period was developed & presented below.

Table 3.16: Summary of the Wind Pattern

S. No.	Wind Direction	0.5-2.1 Speed m/s	>= 2.1 Speed m/s	Total		
1.	N	7	57	64		
2.	NNE	10	68	78		
3.	NE	19	107	126		
4.	ENE	23	89	112		
5.	E	20	106	126		
6.	ESE	18	87	105		
7.	SE	16	93	109		
8.	SSE	14	100	114		
9.	S	14	110	124		
10.	SSW	29	135	164		
11.	SW	16	125	141		
12.	WSW	21	120	205		
13.	W	19	145	164		
14.	WNW	18	184	111		
15.	NW	16	93	99		
16.	NNW	11	53	64		
Sub-Total	1906					
Calms	372					
Missing/Ir	Missing/Incomplete					
Total	5, .					

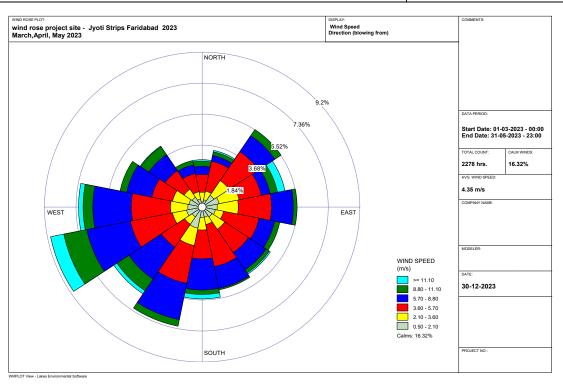


Figure 3.9: Wind Rose Diagram

The predominant wind direction during this study period is observed to be blowing between SW, WSW, W, WNW, and NW directions. The average wind speed during this period is 8.7 m/s. Calm wind during this period 0.32 %.

3.6.3 AMBIENT AIR QUALITY DATA

Ambient air quality monitoring stations were selected on the basis of surface influence, demographic influence and meteorological influence. The ambient air monitoring has been carried out with a frequency of two days in a week at 8 locations covering one complete season.

Table 3.17: Sampling Frequency

Parameters	Sampling Frequency	
PM_{10}	24 hourly sample twice a week	
PM _{2.5}	24 hourly sample twice a week	
Sulphur Dioxide (SO ₂)	8 hourly for 24 hrs sample twice a week	
Oxides of Nitrogen (NO _x)	8 hourly for 24 hrs sample twice a week	
Carbon Monoxide	8 hourly for 24 hrs sample twice a week	

Table 3.18: Instruments used for Sampling

Instrument	Make	Model No.
Respirable Dust Sampler	M/s. Envirotech Instruments Pvt. Ltd., New	APM 460
(RDS)	Delhi	APM 451
Fine Particulate Sampler	M/s. Envirotech Instruments Pvt. Ltd., New	APM 550
(FPS)	Delhi	
Combo for PM 10 & PM 2.5	M/s. Ecotech Instruments, New Delhi	AAS 271

T: DRA T EIA EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

ANT: JY DTI STRIPS PRIVATE LIMITED

CHAPTER- 3

ENT NG: EESPL/JSPL/IND/EC/2022-23/119

DESCRIPTION OF ENVIRONMENT

Table 3.19: Sampling and Analytical Techniques

Particular		Testing Method to be Followed
Ambient Air	Monitoring Characteristics	
A	PM ₁₀	IS 5182 (Part 23)
В	PM _{2.5}	IS 5182 (Part 24)
С	SO ₂ (Sulfur Dioxide)	IS 5182 (Part 2)
D	NO ₂ (Nitrogen Dioxide)	IS 5182 (Part 6)
Е	CO (Carbon Monoxide)	SCS/SOP/AAQ/13

Table 3.20: Ambient Air Quality Monitoring Results

S. No.	Locations	Polli	utant	Minimum	Maximum	Average	98 th Percentile	CPCB Standards
		PM ₁₀	μg/m³	73.40	84.90	78.76	84.20	100
		PM2.5	μg/m3	43.60	52.60	47.79	52.33	60
1	Project	SO ₂	μg/m3	3.13	6.12	4.49	5.88	80
	site	NO ₂	μg/m ³	7.15	12.14	9.10	11.85	80
		CO	μg/m ³	0.21	0.51	0.34	0.50	2000
		PM ₁₀	μg/m ³	65.40	82.40	72.38	80.08	100
		PM2.5	μg/m3	39.60	46.50	42.38	46.28	60
2	Devali	SO ₂	μg/m3	3.98	6.12	4.94	5.98	80
		NO ₂	μg/m ³	7.55	13.54	10.09	13.47	80
		CO	μg/m ³	0.25	0.61	0.42	0.57	2000
		PM ₁₀	μg/m ³	64.2	77.3	70.08	76.81	100
		PM2.5	μg/m3	39.4	46.9	42.35	46.2	60
3	Asawati	SO_2	μg/m3	3.98	5.81	4.85	5.81	80
		NO_2	μg/m ³	8.01	12.16	9.52	11.72	80
		СО	μg/m ³	0.24	0.62	0.39	0.6	2000
		PM 10	μg/m ³	64.2	76.8	70.13	75.77	100
	Pyala	PM2.5	μg/m3	38.5	46.1	41.93	45.94	60
4		SO ₂	μg/m3	3.36	6.86	5.16	6.74	80
		NO_2	μg/m³	7.24	14.58	11.54	14.47	80
		CO	μg/m³	0.25	0.65	0.51	0.65	2000
		PM 10	μg/m³	67.3	78.5	72.21	77.37	100
		PM2.5	μg/m3	39.5	47.3	42.56	47.08	60
5	Dundsa	SO_2	μg/m3	4.52	15.4	7.27	14.21	80
		NO_2	μg/m³	6.88	18.1	11.17	16.97	80
		CO	μg/m³	0.25	0.59	0.39	0.55	2000
		PM 10	μg/m³	66.4	73.5	70.35	73.45	100
		PM2.5	μg/m3	35.1	67.4	41.33	54.49	60
6	Gadpuri	SO_2	μg/m3	3.15	7.24	4.9	6.81	80
		NO_2	μg/m³	7.25	13.12	9.98	12.96	80
		CO	μg/m³	0.25	0.64	0.44	0.63	2000
		PM 10	μg/m³	66.5	74.1	70.09	73.78	100
		PM2.5	μg/m3	35.9	43.5	39.9	43.45	60
7	Pirthala	SO_2	μg/m3	5.36	10.68	7.59	10.64	80
		NO_2	μg/m³	8.24	14.78	11.2	14.67	80
		CO	μg/m³	0.28	0.59	0.4	0.59	2000
8	Baghaula	PM 10	μg/m³	64.1	76.8	71.93	76.8	100

6

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

221	CONTROL II MAN MAREFELDIAL DALAMAN	
: DRA	TEIA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
NT: JY	DTI STRIPS PRIVATE LIMITED	CHAPTER- 3
ENT NO	: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

PM2.5	μg/m3	36.5	47.2	41.86	46.93	60
SO_2	μg/m3	5.34	13.4	7.7	12.37	80
NO_2	μg/m³	8.2	16.45	11.86	15.98	80
CO	μg/m³	0.22	0.62	0.45	0.61	2000

3.6.4 INTERPRETATION OF RESULTS

The analysis results for the study period are presented in above monitoring tables. Various statistical parameters like 98th percentile, average, maximum and minimum values have been computed from the observed raw data for all the AAQ monitoring stations. These are compared with the standards prescribed by Central Pollution Control Board (CPCB) for rural and residential zone.

The observation based on the perusal of the results is summarized below: -

PM10: The maximum value for PM10 observed at Plant Site 84.90 μ g/m3 and minimum value for PM10 observed at **Baghaula** 64.1 μ g/m3. The 24 hours applicable limit for industrial, Residential Rural and Other Areas is 100 μ g/m3.

PM2.5: The maximum value for PM2.5 observed at **Gadpuri** 67.4 μ g/m3 and minimum value for PM2.5 observed at Village- **Gadpuri** 35.1 μ g/m3. The 24 hours applicable limit for industrial, Residential Rural and Other Areas is 60 μ g/m3.

SO2: The maximum value for SO2 observed at **Dundsa** 15.4 μ g/m3 and minimum value for SO2 observed at Village- Plant Site 3.13 μ g/m3. The 24 hours applicable limit for industrial, Residential Rural and Other Areas is 80 μ g/m3.

NO2: The maximum value for NO2 observed at **Dundsa** 18.1 μ g/m3 and minimum value for NO2 observed at Village- **Dundsa** 6.88 μ g/m3. The 24 hours applicable limit for industrial, Residential Rural and Other Areas is 80 μ g/m3.

CO: The maximum value for CO observed at **Payala** 0.65 μ g/m3 and minimum value for CO observed at **Plant Site** 0.21 μ g/m3. The 8 hours applicable limit for Industrial, Residential Rural and other areas is 2000 μ g/m3.

Results and Conclusions

The results of the monitored data indicate that the ambient air quality of **PM10**, **PM2.5**, **Sox**, **NOx** & **CO** are within the permissible limit by CPCB at all the locations.

Mitigation measures:

The mitigation measures prescribed by Air Commission are being adopted holistic to reduce the air pollution for which the mitigation measure are incorporated in Chapter-4 of EIA/EMP report.

	CUINZIS II MINUM II MEETTI BIKL DALIATA		1
Γ: DRA	TEIA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX		
NT: JY	DTI STRIPS PRIVATE LIMITED	CHAPTER- 3	1
ENT NO	: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMEN	T

3.7 NOISE ENVIRONMENT

The main objective of noise monitoring in the study area is to establish the baseline noise level and assess the impact of the total noise expected to be generated during the project operations around the project site.

Table 3.21: Noise (Sound) Measuring Instrument

Instrument	Make	Model No.	Detection Limit
Sound Level Measurement	HTC		Low: 30-80dB
Instrument Standard Accessories	(Data	SL-4033SD	High: 80-130dB
	Logger)		

Table 3.22: Testing Method followed

		Particular	Testing Method to be Followed
Ī	Λ	Noise Level in dB (A) for continuous	IS:9876 2001
	Α	24 hours at 1 hour interval	13.90/0 2001

3.7.1 AMBIENT NOISE LEVEL DATA

The statistical analysis is done for measured noise level at 8 locations. The parameters are analyzed for L_{eq} (day), L_{eq} (night) and L_{eq} (day-night). The statistical analysis results are given in below: -

Table 3.23: Noise Level Data

Time (March)	N-1	N-2	N-3	N-4	N-5	N-6	N-7	N-8			
Day time		RESULTS dB (A)									
6.00	48.4	50.0	50.4	50.4	50.0	50.0	50.0	48.4			
7.00	50.0	48.1	51.1	51.9	51.0	51.9	51.9	50.0			
8.00	53.4	51.9	48.1	50.1	50.9	53.4	53.4	52.0			
9.00	55.9	53.9	50.9	48.9	48.8	48.9	48.9	50.1			
10.00	54.4	50.1	48.1	50.4	50.4	50.4	50.4	48.4			
11.00	55.1	48.8	50.4	51.1	48.9	48.8	48.8	48.1			
12 Noon	52.4	50.0	48.9	48.8	50.4	52.1	52.1	50.9			
13.00	53.0	50.0	50.1	52.1	48.4	51.4	51.4	48.1			
14.00	55.4	52.1	48.9	50.4	50.4	50.1	50.1	50.9			
15.00	62.9	51.9	51.0	48.4	51.1	48.8	48.8	48.1			
16.00	54.8	50.0	50.8	50.1	48.4	50.4	50.4	51.9			
17.00	60.0	48.8	51.4	51.4	50.1	48.4	48.4	50.1			
18.00	58.8	51.1	50.1	48.4	48.4	50.1	50.1	50.0			
19.00	57.4	50.1	48.8	47.1	50.0	48.8	48.8	51.0			
20.00	55.4	51.4	47.1	48.1	48.4	47.4	47.4	48.8			
21.00	52.1	48.8	45.1	45.1	47.4	45.4	45.4	47.4			
Night time		RESU	JLTS dB (A	A)							
22.00	50.4	47.4	43.9	44.9	44.9	43.1	43.1	45.1			
23.00	48.1	44.4	42.4	43.1	42.0	42.4	42.4	43.9			

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

T: DRA T EIA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

LNT: JY DTI STRIPS PRIVATE LIMITED

ENT NC : EESPL/JSPL/IND/EC/2022-23/119

CHAPTER - 3

DESCRIPTION OF ENVIRONMENT

24.00	45.9	42.4	40.4	42.8	43.5	42.0	42.0	42.1
1.00	43.4	40.0	42.4	40.1	41.8	40.8	40.8	42.1
2.00	42.9	42.9	40.1	42.1	40.4	42.4	42.4	43.9
3.00	44.1	43.4	43.1	44.4	42.1	44.4	44.4	44.4
4.00	43.9	45.8	45.1	45.9	45.1	47.9	47.9	45.1
5.00	47.8	48.1	48.9	48.4	47.0	48.4	48.4	47.8
Leq Day	57.8	51.4	50.7	50.7	52.9	50.8	51.7	50.9
Leq Night	45.6	42.0	41.9	42.6	42.7	40.1	41.9	43.1
Leq Day & Night	59.9	53.1	51.8	52.8	54.0	51.6	52.0	51.8

Time (April)	N-1	N-2	N-3	N-4	N-5	N-6	N-7	N-8
Day time			RESULTS	G dB (A)				
6.00	48.1	52.0	52.1	50.4	50.4	52.1	52.4	51.9
7.00	51.0	50.1	50.9	52.1	52.9	50.4	50.0	53.4
8.00	52.1	51.9	48.8	50.0	53.0	51.9	48.8	51.9
9.00	50.1	48.8	50.4	52.9	50.9	48.8	51.1	50.0
10.00	53.0	50.9	52.1	50.0	51.1	50.0	52.0	51.9
11.00	54.4	52.4	51.4	48.9	50.1	51.1	52.4	52.1
12 Noon	60.1	50.7	48.1	51.4	48.9	50.8	48.4	50.4
13.00	62.4	53.0	50.1	53.8	54.4	54.1	50.9	53.9
14.00	59.1	54.4	52.9	55.0	52.1	51.4	51.1	54.4
15.00	61.1	51.8	51.0	51.9	50.9	53.1	52.4	52.4
16.00	62.0	52.4	55.1	50.1	51.1	50.0	53.1	50.4
17.00	60.8	53.0	52.1	52.9	52.9	52.7	51.9	52.1
18.00	58.1	50.4	51.0	53.1	50.4	50.4	52.9	51.9
19.00	59.4	51.1	50.4	50.4	48.1	48.4	50.1	50.4
20.00	60.1	48.8	48.1	50.0	45.1	45.9	48.8	48.1
21.00	54.4	45.1	45.7	47.1	45.9	47.8	47.4	45.1
Night time		RESU	ULTS dB (A	A)				
22.00	50.7	44.9	43.1	45.1	43.4	45.4	45.1	44.1
23.00	48.4	42.4	42.9	40.9	42.9	43.9	43.9	42.0
24.00	45.0	42.4	40.0	42.6	44.5	42.9	40.9	42.4
1.00	44.1	42.8	44.1	42.1	39.8	43.1	43.9	42.4
2.00	45.9	44.1	45.9	44.8	40.4	45.4	45.4	43.9
3.00	43.4	45.0	48.4	45.9	42.1	45.0	45.9	45.1
4.00	44.1	48.9	48.1	48.4	45.4	48.9	48.1	47.9
5.00	48.4	50.4	50.4	48.9	48.9	50.4	50.4	50.4
Leq Day	54.6	54.0	55.6	52.9	54.1	53.0	54.9	52.2
Leq Night	43.9	44.9	44.6	42.6	43.6	41.9	45.6	42.0
Leq Day & Night	56.0	55.6	57.0	54.0	55.9	54.8	56.0	53.7

Time (May)	N-1	N-2	N-3	N-4	N-5	N-6	N-7	N-8		
Day time		RESULTS dB (A)								
6.00	53.9	51.0	47.1	48.0	50.0	45.0	47.8	48.1		
7.00	51.4	53.1	45.9	50.4	48.9	48.9	50.4	48.9		
8.00	60.8	54.4	48.1	52.8	52.4	50.4	48.1	51.0		
9.00	57.0	55.8	50.4	51.4	50.1	48.1	51.0	50.8		

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

Γ: DRA	TEIA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
NT: JY	DTI STRIPS PRIVATE LIMITED	CHAPTER- 3
ENT NO	: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

10.00	61.1	53.1	52.5	53.1	51.5	50.0	51.1	52.0
11.00	54.4	51.0	51.1	50.4	50.0	51.1	52.8	51.1
12 Noon	51.4	52.4	53.8	52.1	53.4	50.4	53.0	50.9
13.00	52.0	53.0	52.1	50.4	51.9	51.0	52.4	51.5
14.00	53.9	53.9	53.9	51.9	53.0	52.1	53.0	52.2
15.00	58.1	50.4	54.4	54.1	50.1	51.8	50.4	50.0
16.00	59.8	52.9	52.1	53.9	51.4	53.1	52.8	48.8
17.00	61.1	53.1	50.4	51.0	50.6	50.4	51.1	52.4
18.00	60.0	51.0	51.8	52.9	51.7	51.0	50.9	50.0
19.00	59.4	52.8	52.4	50.4	50.9	50.9	52.1	50.9
20.00	57.8	53.1	50.1	48.8	51.0	48.9	50.9	48.1
21.00	50.9	50.4	47.8	45.1	48.1	47.4	48.8	47.4
Night time		RES	ULTS dB (A	A)				
22.00	48.4	48.8	45.1	44.9	45.6	45.1	47.5	45.8
23.00	45.1	47.7	43.4	42.5	44.8	44.9	45.4	43.4
24.00	44.0	43.1	42.0	40.1	42.9	42.4	43.9	42.0
1.00	43.0	43.1	40.1	42.1	43.9	38.9	39.1	40.4
2.00	42.9	45.9	42.9	43.4	42.1	42.1	40.4	42.1
3.00	44.1	47.8	43.1	44.1	44.9	42.8	42.9	43.9
4.00	47.9	48.4	42.5	45.9	45.1	43.4	44.1	44.8
5.00	48.0	52.9	44.4	47.8	48.4	45.1	45.9	47.9
Leq Day	57.2	53.7	52.4	51.7	51.0	50.7	49.6	52.0
Leq Night	42.9	43.5	42.9	43.5	43.8	41.9	41.5	44.5
Leq Day &								
Night	59.1	54.3	53.3	53.6	52.9	51.8	51.7	54.0

3.7.2 INTERPRETATION OF RESULT

a) Day Time Noise Levels (Leqday)

The daytime (Leqday) noise levels are observed in Pirthala to be in the range of 61.1 dB(A) which are within the prescribed limit of 75 dB(A) and in residential areas to be in the range of 45.9 - 61.1 dB(A) which are within the prescribed limit of 55 dB(A).

b) Night time Noise Levels (Leqnight)

The nighttime (Leqnight) noise levels are observed in Plant Site to be in the range of 39.1 dB(A) which are within the prescribed limit of 70 dB(A) and in residential areas to be in the range of 39.1 - 48.4 dB(A) which are within the prescribed limit of 45 dB(A).

Category of Zones		Leq in dB(A)
	Day	Night
Industrial	75	70
Commercial	65	55

-		•	
	TEIA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX		
NT: JY	DTI STRIPS PRIVATE LIMITED	CHAPTER- 3	
ENT NO	: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMEN	Г

Residential	55	45
Silence	50	40

- 1. Day time if from 6.00am to 10 pm
- 2. Night time if from 10.00 pm to 6 am
- 3. Silence zone is an area comprising not less than 100 meters around hospitals, educational institutions, courts, religious places or any other area which is declared as such by the competent authority.
- 4. Mixed categories of areas may be declared as one of the four above mentioned categories by the competent authority

3.8 **BIOLOGICAL ENVIRONMENT**

3.8.1 **OBJECTIVE**

The purpose of this Biological Study is to prepare a checklist of Flora & Fauna present in the study area (Core and Buffer Zone). The basic objective of the study is to effect on the flora and fauna in the vicinity of the project area. For this we have studied the plant community structure of both core and buffer zone using quadrate methods.

Desktop literature review was also conducted to identify the representative spectrum of threatened species, population and ecological communities listed by IUCN, WCMC, ZSI, BSI and Indian Wild Life Protection Act. 1972.

The objectives of the present study were as follows:-

- 1. To identify the floral and faunal diversity;
- 2. To identify the endangered species of flora and fauna, if any
- 3. To prepare conservation plan for Schedule- I, if any
 - 4. To mark eco-sensitive areas in the study area, if any.

We cannot recreate a species if it is extinct. So, biological/ecological impact assessment is an integral and important component of Environmental Impact Assessment (EIA). Baseline information/ data on the flora and fauna of the particular area are important form for inferring the impact of an existing cement project. The ultimate aim of an ecological assessment is to avoid or minimize the impacts of a proposed development. They are therefore related to the aim of Nature Conservation which, in broad terms, is to maintain and where possible increase, biodiversity.

The present work also envisaged to assess the likely impacts of project activities and streamline the recommendations to assist minimizing the impact on biodiversity.

3.8.2 PERIOD OF THE STUDY &DELINEATION OF THE STUDY AREA

The study area for the project is restricted within 10.0 km radius around the proposed project area based on approved ToR No SEIAA/HR/2023/426 dated 27.10.2023. Baseline study, for the assessment of the floral and faunal biodiversity of the terrestrial

68

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR APRIL'2024

	MANAGE IF JAN JAN JAN JAN BANGA AND AND AND AND AND AND AND AND AND AN	
Γ: DRA	TETA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
NT. IV	DTI STRIPS PRIVATE LIMITED	CHAPTER- 3
114 1 . , 1	FITSTRIEST RIVATE ENVITED	CILII TEK 3
ENT NO	: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

environment of the study area, within 10 km radius from the plant site has been conducted during 1st March to 31st May 2023. The project study area was delineated into two zones for biodiversity inventory. The proposed project site boundary was considered as Core Zone, while, the area encompassing 10 km radius from the periphery of the project boundary was designated as Buffer Zone.

3.8.3 SAMPLING METHODOLOGY

Table 3.24: Methods used for study of flora & fauna

Taxa	Sampling Methods
Plants	Inventerization and quadrate sampling
Butterflies	Visual encounter survey (search)
Amphibians	Visual encounter survey (search)
Reptiles	Point count, opportunistic observation
Birds	Tracks and signs, and visual encounter survey
Mammals	, , , , , , , , , , , , , , , , , , ,

3.8.3.1 Flora

Floral status was assessed in different habitat types and project site of the study area. Quantitative data was collected using standard quadrate method followed by Mueller-Dombois and Ellenberg 1967, Kershaw, 1973.

Floral enumeration was done following standard sampling techniques. Random quadrates were laid in order to quantify the vegetation of the study area. Quadrate size for trees was 10×10 m, for shrubs it was 5×5 m and for herbs it was 1×1 m. Plots of 1×1 m were laid within the tree quadrate at each corner to record grasses. In each of the quadrates, species and their number were recorded.

3.8.3.2 Fauna

Avifauna

Standard methods were followed to survey the avifauna. Opportunistic surveys were carried out with respect to avifaunal checklist. Identification by calls was also made for species which were not directly encountered or were hidden in the vegetation or canopy (Sridharan 1989, Bhupathy 1991, Bibby et al., 1992 and Hutto et al., 1986).

Herpetofauna

Sampling for these species involved capturing individuals by hand or observation through binoculars and aural surveys.

Mammals

Presence of mammals was documented by using both direct and indirect evidences. Opportunistic sightings were also included. Circular Plots were used to search indirect evidence i.e. animal burrows/ holes, scat, pellets, feeding signs, and tracks. Photographic

2 2 1	TUNDO I DINDA IIUETEIDIKI DALAAA	
Γ: DRĀI	TEIA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
NT: JY	DTI STRIPS PRIVATE LIMITED	CHAPTER- 3
ENT NO	: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

(colored pictorial guide) field guide were used for interviews with local residents (Burnham et al. 1980, Rodgers 1991, Sale and Berkmuller, 1988, Daniel, 1992)

The data collected in the field was analyzed for secondary parameters such as density, frequency and abundance following standard phyto-sociological methods. Shannon-Wiener diversity index (Shannon and Wiener, 1963) was calculated for all life forms as following:-

Table: Estimation of phyto-sociological parameters

1	Frequency (%) = (Nos. of quadrates of occurrence of the species X 100) / Total No. of quadrates				
	sampled				
2	Abundance = Total Nos. of individuals of the species / No. of quadrates of occurrence				
3	*Density = Total Nos. of individuals of the species / Total No. of quadrates sampled				
4	Relative Frequency= (Frequency of the given species X 100) / Sum of all frequencies				
5	Relative Density= (Density of the given species X 100) / Sum of all densities				
6	Relative Abundance= (Abundance of species X 100) / Sum of all abundances				
7	Important Value Index (I.V.I.)= Relative Density + Relative Frequency + Relative abundance				
Not	Note: *Density refers to the number of individuals per unit area of a site.				

Limitations of the methodology

- Complete flora and fauna surveys can require multiple surveys, at different times of year, and over a period of a number of years, to enable observation of all species present.
- Some flora species, such as annuals, are only available for collection at certain times of the year, and others are only identifiable at certain times (such as when they are flowering). Additionally, climatic and stochastic events (such as fire) may affect the presence of plant species. Species that have a very low abundance in the area are more difficult to locate, due to above factors. Therefore, while this flora survey was relatively exhaustive, and was conducted at a time of year when the majority of the flora species would be able to be identified, there is the possibility that some species with low abundance in the area have been overlooked.
- The fauna survey undertaken was a reconnaissance survey only and thus only sampled those species that can be easily seen, heard or have distinctive signs, such as tracks, scats, diggings etc.

3.8.3.3 Statistical Analysis

Shannon-Wiener diversity index (Shannon and Wiener, 1963) was calculated for all life forms following:-

Shannon- Wiener Information Function: $D = -\Sigma$ pi ln pi

Where: i = an index for the number of species sampled, pi = ni/N =percentage of species i in the entire sample (N) of individuals, and ln = natural log. Multiply the percentage (or proportion) of each species in the sample times the natural log of that same value, sum the products across all species, and then multiply by minus 1.

T: DRA TEIA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

INT: JY DTI STRIPS PRIVATE LIMITED

ENT NC : EESPL/JSPL/IND/EC/2022-23/119

CHAPTER- 3

DESCRIPTION OF ENVIRONMENT

Sampling locations were selected on the basis of topography, land use, vegetation pattern, etc, as per the objectives and guidelines of MoEF&CC for Environmental Impact Assessment. All observations were taken in and around sampling locations for quantitative representation of different species. The sampling location for Terrestrial ecological environment is given in *map*.

Figure 3.26: - Ecological Sampling Locations

r: dra t eia emp report of proposed cold rolling mill complex NT: JY DTI STRIPS PRIVATE LIMITED

CHAPTER-3 DESCRIPTION OF ENVIRONMENT

ENT NO : EESPL/JSPL/IND/EC/2022-23/119

Figure 3.27: proposed project site photographs

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

r: dra t eia emp report of proposed cold rolling mill complex NT: JY DTI STRIPS PRIVATE LIMITED

CHAPTER-3 DESCRIPTION OF ENVIRONMENT

ENT NO : EESPL/JSPL/IND/EC/2022-23/119

r: dra t eia emp report of proposed cold rolling mill complex NT: JY DTI STRIPS PRIVATE LIMITED

CHAPTER-3 DESCRIPTION OF ENVIRONMENT

ENT NO : EESPL/JSPL/IND/EC/2022-23/119

343	20/38//2024/RECTION PALVVAL	
T: DRA	FT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
ANT: J	OTI STRIPS PRIVATE LIMITED	CHAPTER- 3
IENT N	D.: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

3.8.4 STATUS OF FLORA AND FAUNA IN PROPOSED PROJECT SITE (Core Zone)

3.8.4.1. Flora of Proposed Project Site

S.No.	Scientific Name	Common Name	Family		
1	Azadirachta indica	Neem	Meliaceae		
2	Dalbergia sissoo	Shisham	Fabaceae		
3	Phoenix dactylifera	Date palm	Arecaceae		
4	Ficus virens	Pilkhan	Moraceae		
5	Vachellia nilotica	Kikar	Fabaceae		
6	Syzygium cumini	Jamun	Myrtaceae		
The ab	The above said tree species will not be felling during course of construction				

The above said tree species will not be felling during course of construction

3.8.4.2. Fauna of Proposed Project Site

Table 3.28: List of Birds reported from Core Zone

S. No.	Common Name	Species Name	IUCN Status	Schedule According to WPA,1972	Schedule According to WPA,2022
Chara	driidae				
1.	Red-wattled Lapwing	Vanellus indicus	LC	IV	II
Corvid	lae				
2.	House Crow	Corvus splendens	LC	V	-
3.	Black Drongo	Dicrurus macrocercus	LC	IV	II
Muscio	capidae				
4.	Indian Robin	Saxicoloides fulicata	LC	IV	II
Passer	Passeridae				
5.	House Sparrow	Passer domesticus	LC	IV	II
Pycnon	Pycnonotidae				
6.	Red-vented Bulbul	Pycnonotus cafer	LC	IV	II
Sylviid	Sylviidae				
7.	Jungle Babbler	Turdoides striatus	LC	IV	II

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

		•
3 3 3	20/38//2024/KECIBIN PALWAL	
T: DRA	FT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
ANT: J	OTI STRIPS PRIVATE LIMITED	CHAPTER- 3

Table 3.29: List of Mammals reported from Core Zone

DESCRIPTION OF ENVIRONMENT

S. No.	Common Name	Scientific Name	Status According to WPA,1972	Status According to WPA,2022	Status as per IUCN
1	Stripped squirrel	Funamnibulus	Sch. IV	-	LC
		pennanti			
2	House rat	Rattus rattus	Sch. V	-	LC

Table 3.30: List of Reptiles reported from Core Zone

S. No.	Common Name	Scientific Name	Status According to WPA,1972	Status According to WPA,2022	Status as per IUCN
1.	House Lizard	Hemidactylus	Sch. IV	-	LC
		flaviviridis			
2.	Common Garden	Calotesver sicolor	Sch. IV	-	LC
	Lizard				

Floral Diversity in Buffer Zone (10 km radius of cement plant)

Table 3.31: Flora found in Buffer Zone

S. No.	Botanical Name	Common Name	Family
Trees			
1.	Acacia leucophloea	Harmo	Fabaceae
2.	Acacia nilotica	Desibaval	Fabaceae
3.	Aegle marmelos	Beal	Rutaceae
4.	Albizia lebbeck	Siras	Fabaceae
5.	Albizia procera	Kala Siras	Fabaceae
6.	Azadirachta indica	Limdo	Meliaceae
7.	Bauhinia variegata	Kachnar	Fabaceae
8.	Cassia fistula	Garmalo	Caesalpiniaceae
9.	Cassia siamea	Kesia	Fabaceae
10.	Capparis decidua	Karir	Capparaceae
11.	Cordia dichotoma	Gundo	Boraginaceae
12.	Dalbergia sissoo	Shisham	Fabaceae
13.	Emblica officinalis	Amla	Euphorbiaceae

IENT N).: EESPL/JSPL/IND/EC/2022-23/119

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

343	20/38//2024/KECIBIN PALWAL	
T: DRA	FT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
ANT: J	OTI STRIPS PRIVATE LIMITED	CHAPTER- 3
IENT N	D.: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

14.	Ficus benghalensis	Vad	Moraceae
15.	Ficus racemosa	Umro	Moraceae
16.	Ficus religiosa	Piplo	Moraceae
17.	Jacaranda mimosifolia	Jacaranda	Bignoniaceae
18.	Kigelia pinnata	Kigelia	Bignoniaceae
19.	Mangifera indica	Aam	Anacardiaceae
20.	Melia azedarach	Bakayan	Meliaceae
21.	Moringa oleifera	Mithosaragavo	Moringaceae
22.	Phoenix sylvestris	Khajur	Arecaceae
23.	Pithecellobium dulce	Jungle jalebi	Fabaceae
24.	Polyalthia longifolia	Ashoka	Annonaceae
25.	Pongamia pinnata	Karanj, Kanji	Fabaceae
26.	Prosopis cineraria	Khijdo	Fabaceae
27.	Prosopis juliflora	Gando baval	Fabaceae
28.	Syzygium cumini	Jambu	Myrtaceae
29.	Tectona grandis	Sag	Verbenaceae
30.	Tamarindus indica	Imli	Fabaceae
31.	Terminalia arjuna	Arjunsad	Combretaceae
32.	Ziziphus mauritiana	Bor	Rhamnaceae
33.	Zizyphus xylopyra	Ghatbor	Rhamnaceae
34.	Adhatoda vasica	Adulsa	Acanthaceae
35.	Annona squamosa	Sitafal	Annonaceae
Shrub	s & Herbs		
36	Argemone mexicana	Pila Dhatura	Papaveraceae
37	Calotropis gigantea	Shivark , Akdo	Apocynaceae
38	Calotropis procera	Mudar	Asclepiadaceae
39	Ipomoea fistulosa	Beshram	Convolvulaceae
40	Lantana camara	Lantana	Verbenaceae
41	Cassia tora	Puwad, Panwar	Fabaceae
42	Aloe vera	Gwarpatha	Liliaceae

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

3 3 3	20/38//2024/KECIBIN PALWAL	
T: DRA	FT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
ANT: J	OTI STRIPS PRIVATE LIMITED	CHAPTER- 3
IENT N	D.: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

43	Chenopodium album	Goosfoot	Amaranthaceae							
44	Nyctanthes arbortristis	Tamat, Harsingar	Oleaceae							
45	Opuntia dillenii	Opuntia	Cactaceae							
46	Datura stramonium	Dhatura	Solanaceae							
47	Parthenium hysterophorus	Gajar Ghaas	Asteraceae							
48	Tephrosia purpurea	Sarpankha	Fabaceae							
49	Tribulus terrestris	Gokhru	Zygophyllaceae							
50	Crotalaria juncea	Indian Hemp	Fabaceae							
51	Euphorbia neriifolia	Thor	Euphorbiaceae							
52	Nerium oleander	Kaner- Red	Apocynaceae							
53	Cascabela thevetia	Kaner -Yellow	Apocynaceae							
54	Hibiscus rosa sinensis	Gudhal	Malvaceae							
Climb	Climbers									
55	Asparagus racemosus	Shatavari	Asparagaceae							
56	Cuscuta reflexa	Amarbel	Convolvulaceae							

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

34 120/38//2024//KECIBN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

CHAPTER- 3

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

DESCRIPTION OF ENVIRONMENT

	Biodiversity Index and IVI of Trees of Buffer zone																			
S.No.	Common Name	Scientific Name	TEQ 1	TEQ 2	TEQ 3	TEQ 4	TEQ 5	TEQ 6	TEQ 7	TEQ 8	TEQ 9	TEQ 10	Total	D	A	F	R.D %	R.A. %	R.F. %	IVI
1	Acacia leucophloea	Harmo	3	0	2	1	2	2	2	1	3	1	17	1.7	1.9	90	2.18	2.19	2.47	6.84
2	Acacia nilotica	Desi baval	5	3	4	5	4	3	5	7	4	5	45	4.5	4.5	100	5.78	5.21	2.75	13.74
3	Aegle marmelos	Beal	2	2	3	2	2	3	0	2	3	4	23	2.3	2.6	90	2.95	2.96	2.47	8.39
4	Albizia lebbeck	Siras	1	2	0	1	2	0	4	2	2	0	14	1.4	2.0	70	1.80	2.32	1.92	6.04
5	Albizia procera	Kala Siras	1	0	1	1	0	2	0	1	2	1	9	0.9	1.3	70	1.16	1.49	1.92	4.57
6	Azadirachta indica	Limdo	4	3	2	3	4	5	3	3	5	2	34	3.4	3.4	100	4.36	3.94	2.75	11.05
7	Bauhinia variegata	Kachnar	0	0	1	3	1	0	1	5	1	0	12	1.2	2.0	60	1.54	2.32	1.65	5.51
8	Cassia fistula	Garmalo	1	0	0	2	1	1	2	1	0	1	9	0.9	1.3	70	1.16	1.49	1.92	4.57
9	Cassia siamea	Kesia	2	2	3	1	2	3	4	2	3	3	25	2.5	2.5	100	3.21	2.90	2.75	8.85
10	Capparis decidua	Karir	3	4	3	3	4	5	4	3	6	2	37	3.7	3.7	100	4.75	4.29	2.75	11.78
11	Cordia dichotoma	Gundo	2	1	2	4	3	4	4	5	6	4	35	3.5	3.5	100	4.49	4.05	2.75	11.30
12	Dalbergia sissoo	Shisham	4	3	4	3	4	5	2	3	5	2	35	3.5	3.5	100	4.49	4.05	2.75	11.30
13	Emblica officinalis	Amla	0	1	1	0	2	2	3	0	2	1	12	1.2	1.7	70	1.54	1.99	1.92	5.45
14	Ficus benghalensis	Vad	3	2	3	1	1	4	0	4	2	2	22	2.2	2.4	90	2.82	2.83	2.47	8.13
15	Ficus racemosa	Umro	2	1	1	4	1	1	4	3	0	1	18	1.8	2.0	90	2.31	2.32	2.47	7.10
16	Ficus religiosa	Piplo	1	0	3	2	3	2	4	3	2	1	21	2.1	2.3	90	2.70	2.70	2.47	7.87
17	Jacaranda mimosifolia	Jacaranda	2	3	1	0	2	0	5	4	0	3	20	2.0	2.9	70	2.57	3.31	1.92	7.80
18	Kigelia pinnata	Kigelia	2	2	3	0	2	3	0	2	3	3	20	2.0	2.5	80	2.57	2.90	2.20	7.66
19	Mangifera indica	Aam	2	3	1	5	4	0	3	2	2	6	28	2.8	3.1	90	3.59	3.60	2.47	9.67
20	Melia azedarach	Bakayan	1	2	3	3	2	1	4	2	2	0	20	2.0	2.0	100	2.57	2.32	2.75	7.63
21	Moringa oleifera	Mithosaragavo	2	0	0	1	2	4	1	2	0	1	13	1.3	1.9	70	1.67	2.15	1.92	5.74
22	Phoenix sylvestris	Khajur	2	2	1	0	2	1	2	1	0	1	12	1.2	1.5	80	1.54	1.74	2.20	5.48

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

79

34 120/38//2024//RECIBIN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 3
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

23	Pithecellobium dulce	Jungle jalebi	0	1	3	1	2	0	0	2	2	3	14	1.4	1.8	80	1.80	2.03	2.20	6.02
24	Polyalthia longifolia	Ashoka	2	2	3	1	2	3	4	2	3	3	25	2.5	2.5	100	3.21	2.90	2.75	8.85
25	Pongamia pinnata	Karanj, Kanji	1	2	3	3	2	1	4	2	2	0	20	2.0	2.2	90	2.57	2.57	2.47	7.61
26	Prosopis cineraria	Khijdo	3	4	5	2	6	5	2	2	5	3	37	3.7	3.7	100	4.75	4.29	2.75	11.78
27	Prosopis juliflora	Gando baval	5	6	5	4	2	4	3	4	5	4	42	4.2	4.2	100	5.39	4.87	2.75	13.00
28	Syzygium cumini	Jambu	1	2	2	3	1	2	5	4	3	2	25	2.5	2.5	100	3.21	2.90	2.75	8.85
29	Tamarindus indica	Imli	2	2	0	1	2	3	4	2	3	3	22	2.2	2.4	90	2.82	2.83	2.47	8.13
30	Terminalia arjuna	Arjunsad	3	0	6	1	1	0	1	3	3	4	22	2.2	2.8	80	2.82	3.19	2.20	8.21
31	Ziziphus mauritiana	Bor	2	4	3	4	3	2	4	5	2	4	33	3.3	3.3	100	4.24	3.82	2.75	10.81
32	Zizyphus xylopyra	Ghatbor	4	4	2	0	3	1	2	1	3	2	22	2.2	2.4	90	2.82	2.83	2.47	8.13
33	Adhatoda vasica	Adulsa	2	2	3	1	2	3	4	2	3	3	25	2.5	2.5	100	3.21	2.90	2.75	8.85
34	Annona squamosa	Sitaphal	1	2	0	0	1	2	3	0	0	2	11	1.1	1.6	70	1.41	1.82	1.92	5.16
	Total			67	77	66	77	77	93	87	87	77	779	77.9	86.3	2980	100	100	100	281.87

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

2 2 7	INCONTRACTOR OF THE SECOND CONTRACTOR OF THE S	
CT: DE	AFT EIA TEMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
CANT:	YOTI STRIPS PRIVATE LIMITED	CHAPTER- 3
MENT	O.: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

Result

The IVI is calculated for the trees of the study area *Acacia nilotica* (13.74), *Prosopis juliflora* (13.0), *Capparis decidua& Prosopis cineraria* (11.78), *Azadirachta indica* (11.5) are the major tree having the maximum IVI in the study area. The Biodiversity Index (Shannon Index) is come out to be 3.44 from PAST4.03 software and is at good level. There are no rare, endangered, threatened and endemic floral species found in the study area.

B. Faunal Diversity of Buffer Zone

Table 3.32: List of Fauna in buffer zone

S. No.	Common Name	Scientific Name	Status According to WPA,1972	Status According to WPA,2022	Status as per IUCN
Mam	mals				
1	House rat	Rattus rattus	Schedule IV		LC
2	Indian Hare	Lepus nigricollis	Schedule IV	Schedule II	LC
3	Five Stripped squirrel	Funamnibulus pennanti	Schedule IV	-	LC
4	Nilgai	Boselaphus tragocamelus	Schedule II	LC	
5	common Langur	Semnopithecus entellus	Schedule II	LC	
6	Indian field mouse	Mus booduga	Schedule V	-	LC
7	Common Mongoose	Herpestes edwardsi	Schedule IV	Appendix III	LC
Ampl	hibians				
1	Indian pond frog	Phrynoderma hexadactylum	Schedule V	Schedule II	LC
2	Common Indian Toad	Duttaphrynus melanostictus	Not Listed	Not Listed	LC
3	Indian Bull Frog	Hoplobatrachus tigerinus	Schedule IV	Schedule II	LC
4	Common Frog	Rana tigrina	Schedule IV	Schedule II	LC
Repti	iles				
1	House gecko	Hemidactylus flavivridis	Common		LC
2	Common garden	Calotes versicolor	Lot Listed	-	LC
	lizard				
3	Brahminy skink	Mabuya carinata	Common	-	LC
4	Indian Rat Snake	Ptyas mucosus	Schedule-IV	Appendix II	LC
Avi fa	nuna		'		
1	Common Babbler	Argya caudata	Schedule IV	Schedule II	LC
2	Jungle Babbler	Argya striata	Schedule IV	Schedule II	LC

e No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 10789)
cct: bi Aft ela/emp kepoki of proposed cold rolling mill complex

CCT: DF AFT EIA 7EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

CANT: YOTI STRIPS PRIVATE LIMITED

MENT | O.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER- 3

DESCRIPTION OF ENVIRONMENT

3	Blue-tailed bee-eater	Merops philippinus	Schedule IV	Schedule II	LC
4	Small Green Bee-	Merops orientalis	Schedule IV	Schedule II	LC
	eater				
5	Red-Vented Bulbul	Pycnonotus cafer	Schedule IV	Schedule II	LC
6	House Crow	Corvus splendens	Schedule IV	-	LC
7	Cattle Egret	Bubulcus ibis	Schedule IV	Schedule II	LC
8	Egret little	Egretta garzetta	Schedule IV	Schedule II	LC
9	Indian Pond Heron	Ardeola grayii	Schedule IV	Schedule II	LC
10	Ноорое	<i>Upupa epops</i>	Schedule IV	Schedule II	LC
11	Red naped Ibis	Pseudibis papillosa	Schedule IV	Schedule II	LC
12	Black headed ibis	Threskiornis	Schedule IV	Schedule II	LC
		melanocephalus			
13	Common Iora	Aegithina tiphia	Schedule IV	Schedule II	LC
14	Asian Koel	Eudynamys scolopaceus	Schedule IV	Schedule II	LC
15	Red-wattled Lapwing	Vanellus indicus	Schedule IV	Schedule II	LC
16	Yellow-wattled	Vanelius malabaricus Schedule IV		Schedule II	LC
	Lapwing				
17	Common Myna	Acridotheres tristis	Schedule IV	Schedule II	LC
18	Rose-ringed Parakeet	Psittacula krameri	Schedule IV	Schedule II	LC
19	Grey francolin	Francolinus pondicerianus	Schedule IV	Schedule II	LC
20	Peafowl	Pavo cristatus	Schedule I	Schedule I	LC
21	Blue rock Pigeon	Columba livia	Schedule IV	Schedule II	LC
22	Common Quail	Coturnix coturnix	Schedule IV	Schedule II	LC
23	Indian Robin	Copsychus fulicatus	Schedule IV	Schedule II	LC
24	House Sparrow	Passer domesticus	Schedule IV	Schedule II	LC
25	Eurasian Collared-	Streptopelia decaocto	Schedule IV	Schedule II	LC
	Dove				
26	White-throated	Halcyon smymensis	Schedule IV	Schedule II	LC
	Kingfisher				
27	Black Drongo	Dicrurus macrocercus	Schedule IV	Schedule II	LC
28	Kingfisher	Alcedo atthis	Schedule IV	Schedule II	LC
29	Common Indian	Caprimulgus asiaticus	Schedule IV	Schedule II	LC

	AFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
CANT:	YOTI STRIPS PRIVATE LIMITED	CHAPTER- 3
MENT 1	O.: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

	Nightjar				
30	Baya weavers	Ploceus philippinus	Schedule-IV	Schedule II	LC
31	Rock Bush Quail	Perdicula argoondah	Schedule-IV	Schedule II	LC

Nearest Tourist Places	None within the study area.											
Defense Installations	None within the study area.											
Archaeological Sites	None within the study area.											
Eco-sensitive Zones	No National Park, Wildlife Sanctuary, Biosphere Reserve Tiger/ Elephant Reserve, Wildlife Corridor etc. is situated within 10Km radius of the Project site.											
Reserved/ Protected Forest	None within 10 km from project site											

3.10 SOCIO-ECONOMIC ENVIRONMENT

3.10.1 OBJECTIVES

The broad objectives of the socio-economic impact assessment are:

- Describing/Assessing baseline environmental and socio-economic conditions of the people living in the study area.
- ➤ To assess the impact on socio-economic environment due to the project concerned.
- To evaluate the community development measures proposed to be taken up by the Project Proponent, if any.
- > To suggest community development measures that needs to be taken for the study area with stakeholder engagement.

3.10.2 METHODOLOGY

S. No.	Collection of Data	With Effect From							
Second	lary Sources								
I	Census of India, 2011	Latest Update available from 2012 & Extrapolated up to 2024							
II	Minimum Wages Act , 1948	Latest Update available dated April 1, 2016 to September 30, 2016							
III	RFCTLARR Act 2013	Not applicable							
IV	www.archaeologyharyana.	The State Monuments list of Haryana Latest update as on 5 th							
	nic.in	September, 2023.							
Primar	ry Sources	Method / Technique							
Field ol	bservations	Transect walk							
Extensi	ive site specific survey	Non-Probability Random Sampling using Questionnaire Method							
		Target sample of people interviewed							
Mannei	r and the order of Questions	Open Questions							

2 2 1	MANAG # AMADA: #EFFERAL DALAMAL	
CT: DF	AFT EIA 7EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
CANT:	YOTI STRIPS PRIVATE LIMITED	CHAPTER- 3
MENT I	O.: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

Survey period	1 Sub-round / per monitoring season
Type	Rural-Urban Mix frame Survey

3.10.3 DEMOGRAPHIC STRUCTURE OF THE STUDY AREA

3.10.3.1Population in Core Zone

No population in the core zone.

3.10.3.2 Population in Buffer Zone

The study area comprises of 66 villages in the (10.0 Km) of the study area. The total population of the study area is 4,80,539 accommodating 83,592 in households with an average household's size of approx. 6 members per family.

310.3.3Gender Distribution

The males in the study area constitute 53.25 % and females constitute 46.75 %. The gender ratio is 877 in the study area, lower as compared to the district Palwal 879 as per the Census of India, 2011 & extrapolated up to 2024.

3.9.3.4 Literacy Profile

The average literacy rate of the study area is 65.33% lower than the 75.55% of district Palwal as per Census of India, 2011. The male literacy is 73.53% with respect to male population and the female literacy is 55.99% with respect to female population. There is a high literacy gap of 17.54 % between the two genders.

3.9.3.5 Occupation Profile

Occupational structure of the workforce indicates the economic activity. The occupational patterns include cultivators, agricultural labour, and household industry workers. The employment rate in the 10.0 Km periphery for main workers, marginal workers and non-workers are as follows:

The Main workers constitute 22.05%; the male worker population is (88.33%) more than seven times of the female worker (11.66%) with respect to Total Main workers.

The Marginal workers constitute 6.19% with the male workers of 8.24% and female workers of 3.86% with respect to Total Male & Female Population.

	OPOSED COLD ROLLING MILL COMPLEX		
O.: EESPL/JSPL/IND/EC/202	2-23/119		DESCRIPTION OF ENVIRONMENT
OTI STRIPS PRIVATE LIMIT D.: EESPL/JSPL/IND/EC/202 The I	ED		CHAPTER- 3 DESCRIPTION OF ENVIRONMENT 5.16%) and women (90.63%)
	ENIVAV ENIVIDA CEDUICEC DUT LTD. JAIDU		
	ENKAY ENVIRO SERVICES PVT. LTD., JAIPUI		
20.00	APRIL'2024	85 169	

33 320/38 / 20/24 / REGIBAL PAL WAL
PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX
APPLICANT: JYOTI STRIPS PRIVATE LIMITED
CHAPTER- 3
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119
DESCRIPTION OF ENVIRONMENT

Table-3.30: Demographic Profile of the study area

		Househ		Popu	lation		Literacy	•	Main Worker			Marginal Worker			Non-worker		
S. No.	Villages	old	Total	Male	Femal e	Total	Male	Femal e	Total	Male	Fem ale	Tota l	Mal e	Female	Total	Male	Fema le
			1	ı	ı			- 2 KM				1				ı	
1	Asoati	1045	5945	3180	2765	3747	2339	1408	1311	1227	84	201	180	21	4433	1773	2660
2	Devli	448	2958	1575	1383	1979	1210	769	755	569	186	209	169	40	1994	837	1157
3	Jataula	243	1423	753	670	841	528	313	226	219	7	80	78	2	1117	456	661
4	Pirthla	1227	7009	3795	3214	4507	2853	1654	1705	1573	132	223	184	39	5081	2038	3043
5	Tatarpur	185	1018	575	443	698	438	260	219	215	4	27	27	0	772	333	439
								2 -4 KM									
6	Badraula	508	2970	1551	1419	2060	1191	869	722	672	50	66	38	28	2182	841	1341
7	Dundsa	255	1543	829	714	1028	657	371	324	294	30	57	46	11	1162	489	673
8	Gadhpuri	313	1639	880	759	987	636	351	147	140	7	282	247	35	1210	493	717
9	Pahladpur	112	662	339	323	396	239	157	15	15	0	169	150	19	478	174	304
10	Pyala	Data Not Available															
							4	-6 KM									
11	Amru	289	1711	906	805	1148	697	451	308	293	15	112	86	26	1291	527	764
12	Bhurja	225	1244	659	585	719	449	270	208	195	13	160	135	25	876	329	547
13	Chhaprola	407	2411	1265	1146	1447	874	573	422	381	41	158	149	9	1831	735	1096
14	Dadula								a Not Ava	ailable							
15	Digh	770	4291	2317	1974	2650	1623	1027	649	599	50	635	482	153	3007	1236	1771
16	Harphali	304	1762	940	822	1107	686	421	313	273	40	219	149	70	1230	518	712
17	Mandkol	472	2808	1479	1329	1951	1128	823	760	631	129	159	28	131	1889	820	1069
18	Nagla Jogian	357	1956	1049	907	1220	767	453	341	323	18	135	119	16	1480	607	873
19	Nangla Bhiku	187	1126	599	527	736	453	283	271	235	36	14	8	6	841	356	485
20	Patli Kalan	40	252	144	108	172	115	57	73	69	4	58	0	58	121	75	46
21	Sagarpur	513	2918	1554	1364	1982	1222	760	636	608	28	65	57	8	2217	889	1328
22	Sahapur Khurd	147	838	452	386	540	351	189	193	185	8	21	15	6	624	252	372
23	Sikabdarpu r								a Not Ava								
24	Sikri	1035	5320	2816	2504	3481	2089	1392	1343	1220	123	114	75	39	3863	1521	2342
							(6 -8 KM									

0

33 320/38//2024/RECEI BN PALWA PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER- 3
DESCRIPTION OF ENVIRONMENT

		Househ		Popu	lation		Literacy	,	Ma	in Work	er	Mai	rginal V	Worker	No	n-work	er
S. No.	Villages	old	Total	Male	Femal e	Total	Male	Femal e	Total	Male	Fem ale	Tota l	Mal e	Female	Total	Male	Fema le
25	Aghwanpu																
25	r	351	1964	1039	925	1206	743	463	470	427	43	84	56	28	1410	556	854
26	Alapur	374	2206	1170	1036	1426	879	547	359	332	27	175	155	20	1672	683	989
27	Badraon	600	3171	1672	1499	1634	1056	578	556	523	33	217	202	15	2398	947	1451
28	Bhanakpur	531	3080	1663	1417	1948	1255	693	811	740	71	80	29	51	2189	894	1295
29	Dhatir	1388	8447	4513	3934	5561	3427	2134	2054	1860	194	341	169	172	6052	2484	3568
30	Fatehpur		1015														
30	Biloch	1790	6	5446	4710	6689	3988	2701	2522	2256	266	417	271	146	7217	2919	4298
31	Ferozepur	710	4122	2241	1881	2540	1596	944	828	721	107	244	219	25	3050	1301	1749
32	Harphola	176	945	505	440	646	388	258	233	225	8	23	22	1	689	258	431
33	Jajru	468	2677	1424	1253	1866	1118	748	612	554	58	99	77	22	1966	793	1173
34	Janauli	1200	6752	3718	3034	4275	2817	1458	1513	1438	75	156	127	29	5083	2153	2930
35	Kakripur	184	1060	566	494	719	439	280	274	256	18	3	1	2	783	309	474
36	Khandhauli		•			•		Dat	a Not Ava	ailable	•			•	•		•
37	Ladhauli	387	2225	1199	1026	1502	921	581	515	490	25	114	44	70	1596	665	931
38	Mahola	279	1625	872	753	1024	654	370	360	332	28	78	66	12	1187	474	713
39	Malerna	359	2035	1085	950	1413	846	567	462	432	30	67	44	23	1506	609	897
40	Manduri	281	1932	1044	888	1155	743	412	308	276	32	165	157	8	1459	611	848
41	Patli	318	1982	1054	928	1233	753	480	406	391	15	404	105	299	1172	558	614
41	Khurd																
42	Sahupura	194	1090	578	512	667	436	231	402	272	130	13	9	4	675	297	378
43	Sehrala	322	1936	1027	909	1291	796	495	849	502	347	2	1	1	1085	524	561
44	Shahpur																
	Kalan		1	1		r			a Not Ava			,		T		1	
45	Sunper	400	2353	1225	1128	1585	956	629	558	518	40	43	37	6	1752	670	1082
	1		ı	T	1	ı	8	-10 KM		ı	1			T		1	,
46	Alawalpur	1726	1009 3	5385	4708	6432	4011	2421	2435	2175	260	771	271	500	6887	2939	3948
47	Allika	699	4106	2205	1901	2688	1690	998	897	876	21	193	178	15	3016	1151	1865
48	Aterna	282	1791	936	855	749	518	231	490	338	152	39	20	19	1262	578	684
49	Chandpur	446	2766	1462	1304	1623	1023	600	582	553	29	132	106	26	2052	803	1249
50	Dehlaka	101	650	362	288	419	284	135	220	206	14	0	0	0	430	156	274
51	Dungarpur	55	377	201	176	268	163	105	86	85	1	13	10	3	278	106	172

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

165

33 320/38/2024/RECEI BIN PALWAL PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER- 3
DESCRIPTION OF ENVIRONMENT

		Househ		Popu	lation		Literacy	,	Ma	in Work	er	Mai	rginal V	Worker	No	n-work	er
S. No.	Villages	old	Total	Male	Femal e	Total	Male	Femal e	Total	Male	Fem ale	Tota l	Mal e	Female	Total	Male	Fema le
52	Firozpur																
32	Kalan	346	2253	1217	1036	1524	921	603	419	401	18	146	102	44	1688	714	974
53	Ghagot	417	2707	1487	1220	1083	757	326	158	145	13	721	454	267	1828	888	940
54	Gugera	297	1653	877	776	1039	660	379	322	286	36	250	160	90	1081	431	650
55	Jawan	946	5493	2867	2626	3551	2169	1382	1066	1014	52	319	185	134	4108	1668	2440
56	Kakrali	156	948	522	426	590	378	212	172	159	13	8	2	6	768	361	407
57	Kalwaka	550	3284	1750	1534	1501	965	536	449	410	39	582	338	244	2253	1002	1251
58	Karna	391	2441	1284	1157	1594	1000	594	299	281	18	307	261	46	1835	742	1093
59	Khajurka	301	1922	1044	878	1225	799	426	283	266	17	406	226	180	1233	552	681
			2365	1255	1109	1578	9233	6547	5286	4623	662	144	105		16920	6878	1004
60	Palwal	41461	44	90	54	11	6	5	5	7	8	70	71	3899	9	2	27
61	Palwali	313	1807	997	810	1169	734	435	376	317	59	56	47	9	1375	633	742
62	Panehra																
62	Kalan	599	3382	1774	1608	2245	1371	874	752	629	123	112	91	21	2518	1054	1464
	Panehra																
63	Khurd	598	3346	1787	1559	2199	1334	865	777	543	234	276	224	52	2293	1020	1273
64	Patli																
64	Khurd	318	1982	1054	928	1233	753	480	406	391	15	404	105	299	1172	558	614
65	Sikrona	241	1390	748	642	909	555	354	210	197	13	100	92	8	1080	459	621
66	Teharki	399	2268	1224	1044	1453	914	539	509	492	17	49	47	2	1710	685	1025
			4007	2134	1873	2618	1569	1049	8840	7809	103	248	175		28754	117	169
1	Total	69718	83	17	66	48	38	10	0	1	09	39	98	7241	4	728	816
Total	Population		400=	255	20.46	0400	4004	40==	40=0	00.60	400	20=	044		24456	444	200
_	olated up to	00500	4805	2558	2246	3139	1881	1257	1059	9363	123	297	211	0600	34476	141	203
	2024	83592	39	87	52	56	69	87	92	1	60	82	00	8682	5	156	609

*Source: Census of India, 2011 & Extrapolated up to 2024.

0

PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 3
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

3.10.4 SOCIAL INFRASTRUCTURE

The proposed project is situated at Kila No. 4 To 24, Prithla - Tatarpur Road, Village Tatarpur, Palwal, Haryana. Local works is employed by the industry in proposed project. Further, indirect means of earnings already created in the area of contractual jobs, vehicle driving, shops, construction etc. Therefore, this project is/will brought a positive impact on the adjoining society.

Basic Amenities in the study area

At the project site first aid centre will be set up. Industry is providing drinking water and other sanitary facilities to the workers. Canteen, washrooms, Guest houses are established for the workers.

Table 3.31: Socio-economic snapshot of nearest habitation 5.0 km

Particular	Distance (Km)	Direction
	(From Project Boundary)	
Hospitals		
Nobel Charitable Hospital - GT Road, Prithla	1.16 Km	W
ESI Dispansary Prithla	1.67 Km	WNW
Shri Hari Hospital, Tatarpur	1.67 Km	WNW
Schools		
Govt Primary School Tatarpur	0.48 Km	ESE
Govt. Primary School Jatola	0.58 Km	NNE
BDM Public School, Tatarpur	0.66 Km	Е
GPS Prithla	1.27 Km	W
Govt.Girl High School Prithla	1.40 Km	W
Chotu Ram Public School Prithla	1.60 Km	WNW
Govt Girls Sr. Sec. School, Prithla	1.70 Km	WNW

Field Survey

PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 3
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

Transportation was available	Bus Govt. Roadways / Private - Tractors, Scooters, Motor	
in all the aspects	Cycles, (Public transport available).	
	Bus Stop 0.43 km SE, Tatarpur Bus Stop.	
Roads were observed to be	Main roads <i>Pucca</i> , Painted & Cemented connects to NH - 2	
	Internal roads are also cemented roads.	
Electricity Supply has been	Regular with periodic power cuts.	
Nearest dwellings :	Habitation is Tatarpur 0.43 km towards SE direction	
Main Food	Chapatti, Sabji, Dal	
Festivals	Holi, Diwali, Gangore, Rakshabandhan.	
Caste/ Religion	The principal communities are the Jaat, Chauhans, Gujjar,	
	<u>Brahmins</u> , Muslims , Jains etc.	

Source: field survey and observations.

3.10.5 Socio-economic conditions of the study region (Primary data)

A detailed primary survey was undertaken to assess the socio-economic conditions in the study region. The method of recall was employed by using a questionnaire. Depending on the geographical location of the village with respect to the proposal project site and its activities, 08 villages have been identified by random sampling ding on the geographical location of the village with respect to the proposal project site and its activities, 08 villages have been identified by random sampling. A sample size of 15 was proportionately distributed across identified villages by taking into consideration the households of the villages. The random sampling method was followed to identify the target population to be surveyed. Household size, house status, educational level, water and sanitation facilities, employment opportunities, health facilities, awareness of the project and environmental issues associated with it, etc. were addressed in the survey. The villages surveyed and the survey results are summarized below.:

- Asoati
- Devli
- Jataula
- Pirthla
- Tatarpur
- Badraula
- Dundsa

0

PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 3
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

• Gadhpuri

Household size

The household size is predominantly in the range of 4–8 in most of the sampled villages. The average household size works out to be five members per family. However, households smaller than six are marginal.

Educational level

Predominantly, households have pursued primary and secondary education. Very few dominate higher education. Every village has primary school and Palwal town has higher education,

House status

A large number of houses are built with RCC roof construction. However, Pirthla has a relatively better housing facility.

Water and sanitation facilities

PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 3
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

Head pumps and bore wells are the primary sources of drinking water in the sampled villages. The water is used without any treatment. Sanitation facilities are missing in some of the villages. However, Pirthla, Tatarpur, and Jataula villages have good sanitation facilities. The mosquito menace is prevalent owing to poor sanitary conditions.

Cropping pattern

The major *crops* of the *area* are maize and jawar in the kharif season and wheat and mustard in the rabi season. Most farmers can only grow one crop per year during the Kharif season, which is weather dependent. The farmers are using local varieties of seeds during sowing. Also grown are vegetable crops like brinjal, onion, green chillies, potato, cauliflower, carrots, green peas, etc.

Earning members

The percentage of the earning members in the sampled households in the range of 1-2 is more than 55%. Unemployment is prevalent in the study region.

Source of income

Industrial is the main source of income in all the villages. About 70% of the sampled villages are dependent on industrial, commercial, or petty shops. 30% of the households sampled work in Agriculture. There is very little work in the service sector. Cattle farms are also extensively seen in some of the villages.

Income level

The income levels of the occupants were observed to be in the range of Rs. 10,000 to Rs. 15,000 per month. The average income levels of the farmers are comparatively low at Rs. 8,000 per month. The income status of agricultural and other laborers is very poor, with an average of Rs. 5,000 per month and even less. The pattern of income indicates industrial sectors spend more money and are both economically and socially better placed than farmers and laborers.

Health Facilities

Most of the villages have medical facilities at PHC. However, the other villages have the same facility at a distance of about 3–5 km. The village's area is very near to Pirthla town,

PROJECT: DRAFT EIA EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 3
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	DESCRIPTION OF ENVIRONMENT

which has all medical amenities. Most of the sampled villages are dependent on PHC, Palwal, In critical and emergency case, the villagers are sent to Palwal, for better medical facilities.

Awareness of the project: -

All the respondents are aware of the proposed project of Jyoti Strips Private Limited and its location.

3.10.6 SUMMARY

- ➤ The socio-economic expectations of the villagers in the surrounding area have minimalistic needs as the sources of employment and earnings are not significant. The plant activity will provide year-round employment to locals and contribute to the area's economic status.
- > Attached Toilets in the housing structures found in most of the villages in the study area.
- ➤ Higher Education facilities for Girls are available.
- ➤ The villagers believe that, for economic growth and sustainable development, it is important to protect the environment and harmonies business activities with it. Villagers see a symbiotic relationship between the environment and business development.
- > Several questions were raised regarding the adequacy of the safety precautions taken by the plant activity operations. The incumbents replied that they were indifferent towards the plant's activity. The majority of the incumbents accepted that plant activity has never harmed them.

NO. H	SPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT	CELL-HSPCB (Computer	NO.
3 3 3 2007	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX		T
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPAC	т
		AND MITIGATION MEASURES	

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

1078

CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES

34 320/38/70/24/#ESTERN 24 WA
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER- 4
ANTICIPATED ENVIRONMENTAL IMPACT
AND MITIGATION MEASURES

CHAPTER-4

INDEX

4.1 GENERAL	95
4.1.1 EVALUATION OF IMPACTS	96
4.2 IMPACTS DURING CONSTRUCTION PHASE	98
4.2.7 SITE PREPARATION / ERECTION/ FABRICATION/ CONSTRUCTION	STAGE
IMPACT	98
4.2.1.1 IMPACT ON LAND USE	98
4.2.1.2 IMPACT ON SOIL	98
4.2.1.3 IMPACT ON WATER QUALITY	99
4.2.1.5 IMPACT ON AIR QUALITY	100
4.2.1.5 IMPACT ON NOISE LEVELS	101
4.2.1.6 IMPACT ON TERRESTRIAL ECOLOGY	101
4.2.7 DEMOGRAPHY AND SOCIO-ECONOMY	102
4.3 IMPACT DURING OPERATIONAL PHASE	102
4.3.1 AIR ENVIRONMENT	102
4.3.1.1 Impact on Air Quality	104
4.4 NOISE ENVIRONMENT	
4.4.1 IMPACT ON NOISE	112
4.4.2 Noise Quality Impact Predictions	112
4.5 IMPACT & PREDICTION DUE TO TRAFFIC STUDY IN OPERATION PHASE	114
4.6 LAND ENVIRONMENT	115
4.6.1 Source	115
4.6.2 Impact Prediction & Mitigation Measures	115
4.6.3 Solid and Hazardous Waste	
4.7 Water Environment	116
4.7.1Source	11
4.7.2 Impact Prediction & MitigatiONeasures	116
4.7.3 WASTE WATER TREATMENT	117
4.7.6 Impact on Drainage	121
4.8 BIOLOGICAL ENVIRONMENT	121
4.8.1 Impact on Biological Environment	121
4.9 SOCIO ECONOMIC IMPACT MATRIX	125

34 JZO/38/2024/RESTERN AND WATER PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER- 4
ANTICIPATED ENVIRONMENTAL IMPACT
AND MITIGATION MEASURES

4.9.1	Impact on Community Demographics125
4.9.2	Impact on Employment
4.9.3	Impact on Economic Diversity and Vitality128
4.9.4	Impact through Industrial Activity
4.9.5	Health & Related Impacts
4.9.6	Socio Economic Parameter Importance Impact Unit Profile
4.9.7	Inference of Socio Economic Parameter Importance Impact Unit profile132
4.9.8	Socio - Economic Impact
4.10	EVALUATION FOR ALTERNATIVE SCENARIOS133
4.10.1	EIA WITHOUT EMP133
4.11	IMPACT ON OCCUPATIONAL HEALTH & SAFETY IN OPERATION PHASE136

33 120/38 PROJECT THAT REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER- 4

ANTICIPATED ENVIRONMENTAL IMPACT

AND MITIGATION MEASURES

CHAPTER-4

ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES

4.1 GENERAL

This chapter deals with identification and appraisal of various impacts due to the proposed Cold Rolling Mill Complex with Galvanizing and colour coating line of Jyoti Strips Private Limited. Prediction of impacts is the most important component in the Environmental Impact Assessment studies. Several scientific techniques and methodologies are available to predict impacts of developmental activities on physical, ecological and socio-economic environments. Such predictions are superimposed over the baseline (pre-project) status of environmental quality to derive the ultimate (post-project) scenario of environmental conditions. The prediction of impacts helps to minimize the adverse impacts on environmental quality during pre and post project execution. Generally, the environmental impacts can be categorized as either primary or secondary. Primary impacts are those, which are indirectly induced and typically include the associated investment and changed patterns of social and economic activities by the proposed actions.

The proposed project activities may cause both direct and indirect environmental impacts on various environmental attributes during pre-operational, operational and post-operational phase. The project is likely to create impact on the environment in two distinct phases: -

- During the construction phase which may be regarded as temporary or short terms;
- During the operation phase which would have long -term effects.

Identification of possible impacts specific to an activity is an important task since this helps in focusing attention upon relevant environmental parameters and relating them with the activities involved. The following parameters are of significance in the Environmental Impact Assessment and are being discussed in detail.

- 1. Land Environment.
- 2. Water Environment.
- 3. Air Environment.
- 4. Noise Environment.

8,	PROPER TO REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CIVA DEED 4
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES

- 5. Solid Waste.
- 6. Biological Environment.
- 7. Socio-Economic.

4.2 IMPACTS DURING CONSTRUCTION PHASE

4.2.1. SITE PREPARATION/ ERECTION / FABRICATION / CONSTRUCTION STAGE IMPACT

4.2.1.1 IMPACT ON LAND USE

During the construction phase of the proposed project, some temporary impacts on environment are likely to occur due to:-

S. No.	Aspect	Impact	Mitigation Measures
1.	Material Extraction and	The excavation of soil	>
	Transportation	and their transportation	> The excavated soil will be used for
		to the construction site	leveling and plantation.
		can have implications	> The temporary kacha road will be
		for land use.	developed for internal transportation
			of excavated soil in dumpers and will
			be maintained.
			> Transportation routes will be
			optimized to minimize environmental
			impact.
2.	Erosion and Soil	Soil erosion and	➤ Erosion control measures such as silt
	Compaction	compaction.	fences and erosion-control blankets
		This may have	will be implemented.
		implications for	➤ Disturbed areas will be Re-vegetate
		agriculture or natural	promptly to stabilize soil.
		ecosystems in the area	
3.	Dust and Noise Pollution	Construction activities	> Dust control measures such as water
		can generate dust and	spraying, dust screens, and dust
		noise, impacting the	suppressants will be proposed.
		surrounding	> Noise barriers and insulation where
		environment and	necessary.
		potentially affecting	> Use of quieter construction
		nearby residential and	equipment.
		commercial areas	

0

8,	PROJECT DRAPTEIN PLANT REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES

With taking effective mitigation measures and proper implementation there will not be any significant impact due to construction phase. Apart from localized constructional impacts at the proposed project site, no significant adverse impact on the land in the surrounding area is anticipated.

4.2.1.2 IMPACT ON SOIL

Topsoil will be scrapped prior to initiation of earthwork and will be used for plantation purpose.

No vegetation is found on the proposed area except some shrubs. Hence, no vegetation removal is envisaged. Except for local constructional impacts at the proposed site, no significant adverse impact on the soil in the project site as well as in the surrounding area is envisaged.

S. No.	Aspect	Impact	Mitigation Measures
1.	Site Development	Soil Degradation due to	Project area is flat in nature. Hence soil
		unscientifically storage	loss is negligible. Top Soil will be scrapped
		of the soil	and store separately for use in plantation.
2.	Construction of building	Unwanted debris and	The debris and left construction material
	and foundation work	construction material	will be disposed off as per Construction
			and demolition waste rules' 2016 and
			levelling of the site.
3.	DG set operation for use	Oil Spillage and mixed	It will ensure no spillage of oil on land or
	of construction	with soil and degrade	soil while transferring the oil. Liner or
	equipment	the soil quality	sheet will spread to avoid contamination of
			soil.
			If any reason, soil get contaminated, it will
			be sent to TSDF site for proper disposal.
4.	Vegetation removal	Loss of habitat	No vegetation is found on the proposed
			area except some perennial shrubs.
5.	Unplanned and	Nuisance created at	Solid & Hazardous waste generated will be
	unscientifically disposed	project site and	disposed off as per norms.
	off Solid & Hazardous	hazardous for human	
	waste generated	health and Environment	
		such as on air, water.	
6.	Unscientific disposal of	Untreated sewage water	No sewage water will be discharge on soil
	sewage waste water	discharge on land during	as during construction phase as modular

	· · · · · · · · · · · · · · · · · · ·
PROJECT DRAPTEIN ALPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CIVA POTED A
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES

		construction phase	Toilets will be used.	
With tak	With taking effective mitigation measures and proper implementation there will not be any significant impact			
due to construction phase. Apart from localized constructional impacts at the proposed project site, no				
significant adverse impact on the soil in the surrounding area is anticipated.				

4.2.1.3 IMPACT ON WATER QUALITY

Impact on water quality during construction phase are given below:

S. No.	Aspects	Impact	Mitigation Measure
1.	Discharge of domestic	Contamination of Ground and	It will ensure not to discharge
	waste water (Bathing,	Surface water	domestic waste water and sewage
	washing, and sewage		waste water on ground or surface
	waste water") from the		body. Sock pit followed by septic
	construction site by		tank will be set-up for disposal of
	labours stationed at the		sanitary sewage generated by the
	site		work force.
2.	Surface runoff from	Contamination of water	Surface run off during rainy season
	construction site and	bodies if not properly storm	will be collected in to rain water
	labor sheds from project	water drainage is planned.	harvesting structure inside the
	site		project premises as per drainage
			under storm water management.
			Paved surfaces will minimize the
			storm water runoff volume.
			Following measure for the storm
			water management will be adopted.
			1. The run-off from the proposed
			site to enter the drain/nallah
			only through designated points.
			2. The storm water channels based
			on the contour of the land will be
			constructed for channelizing the
			run-off from the site and from
			the upstream side outside the
			project site.
			3. The storm water channels before

	_ -
PROJECT DRAPTEIN ALPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CIVA PETER A
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES

			disposal from the site will be
			passed through de-siltation traps
			attached with oil separator.
3.	Oil/ fuel and waste spills;	Ground and surface water	The contaminated soil will be
	improper debris disposal	contamination	scraped and will send for treatment
			and disposal to TSDF site.
4.	Ground water	Decline of water table	Ground water will be abstracted for
	withdrawal	through Ground water	the construction phase after
		abstraction	obtaining permission from CGWA.
			The rain water harvesting pits will
			be constructed.
4.	Ground water	Decline of water table through Ground water	and disposal to TSDF site. Ground water will be abstracted fo the construction phase afte obtaining permission from CGWA. The rain water harvesting pits will

The construction equipment will be washed properly only at designated washing area will be monitored. The identified impacts on water during the construction phase will be managed by implementation of proper and effective Environmental Management Plan to minimize the temporary effects by proper conservation and sanitation practices.

The impacts will be temporary and limited to the construction phase only. These measures will ensure that the run-off from the site after development will not have significant impact or chances of flooding or water logging in the stream, within the site or in the downstream areas.

4.2.1.5 IMPACT ON AIR QUALITY

S.	Aspects	Impact	Mitigation Measure
No.			
1.	Site development	Dust generation	To mitigate these impacts, regular sprinkling of water will be done at the construction site. However, the impact of such activities would be temporary and restricted to the construction phase and will be confined to the project boundary and is expected to be negligible outside the project boundaries.
2.	Vehicular movement	Concentration of NOx and CO may also be slightly increased due to increased vehicular traffic movement	The approach roads will be paved and vehicles will be kept in good order to minimize automobile exhaust. Proper up-keep and maintenance of vehicles, sprinkling of water on roads, providing sufficient vegetation and PUC certified vehicles etc., are some of the measures

学院の作べれられた。 ELA グロルド 代告PORT OF PROPOSED COLD ROLLING MILL COMPLEX	CVI A DITTED A
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES

	that would greatly reduce the negative impacts
	during the construction phase.

4.2.1.5 IMPACT ON NOISE LEVELS

S. No.	Aspects	Impact	Mitigation Measure
1.	Vehicular traffic,	Noise level may	The construction equipment may have
	Construction equipment like	increase, hearing	high noise levels, which can affect the
	dozers, scrapers, concrete	problem, loss of	personnel operating the machinery as
	mixers, cranes, generators,	concentration due to	operation of this equipment will
	pumps, compressors, rock	more exposure in noisy	generate noise ranging between 70-85
	drills, pneumatic tools, saws,	area.	dB (A).
	vibrators etc		The major work will be carried out
			during the daytime. Use of proper
			personal protective equipment will
			mitigate any significant impact of the
			noise generated by such equipment.

4.2.1.6 IMPACT ON TERRESTRIAL ECOLOGY

S. NO.	Aspects	Impact	Mitigation Measure
1.	Proposed Project	Loss of vegetation,	There is no ecological sensitive area
		habitat loss	within 10 km of area and the proposed
			project. Impact on flora and fauna during
			the construction phase is not significant.
			Beneficial impacts due to the plantation
			development is envisaged. Therefore, the
			impact on terrestrial ecology will be
			insignificant.
			No adverse impacts on the ecology/
			biological environment due to the
			construction of proposed project is
			envisaged
2.	Migration of workers	Population changes in	During construction phase nearby local
		the surrounding area	people will be employed hence no
			marginal movement is envisaged.
3.	Vehicular movement	Increased traffic on the	The local transport will be used by

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

8,	PROPOSED COLD ROLLING MILL COMPLEX	CVA PERD A	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES	
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES	

regional road network workers. Hence no impact envisaged.

4.2.7 DEMOGRAPHY AND SOCIO-ECONOMY

S. NO.	Aspects	Impact	Mitigation Measure
1.	Construction	Positive impact on	Around 350 people will be hired from
		employment	nearby areas as per the suitability
		generation	Skilled/Un skilled workers for the
			proposed expansion apart from indirect
			employment opportunities.
			Consequently, this will lead to additional
			economic upliftment of the area.
			Supply of raw materials & auxiliary
			facilities as indirect employment will
			generate. It would marginally improve
			the economic status of the people. The
			increased traffic will be only day time
			and will be intermittent. Hence no impact
			due to traffic increased is envisaged.

4.3 IMPACT DURING OPERATIONAL PHASE

4.3.1 AIR ENVIRONMENT

Prediction of air pollution impact is the most important component in the Environmental Impact Assessment studies. Several scientific techniques and methodologies are available to predict impacts of developmental activities on physical, ecological and socio-economic environments. Such predictions are superimposed over the baseline (pre project) status of environmental quality to derive the ultimate (post project) scenario of environmental conditions. The prediction of impact helps to identify the Environmental Management Plan required to be executed during and after commissioning the proposed project to minimize the adverse impacts on environmental quality. The details of the emission and management during operation phase are given below:-

34 20/38//2024//RECIBIN PALPROJECT: DRAFT EIA

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CVA DEPTH 4
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND PHILIDATION MEASURES

Aspect	Mitigation Measure			
 A. Air Emission From equipment i.e. Boiler (LNG Fired) having capacity of 10 TPH is attached to 30 m. stack height. Flue gases during pickling are routed into a Twin type fume scrubber through 30.0 m stack height. The proposed green area inside the plant premises is 36077.10 sq. mtr (28.35%) with 9019 No. 10 MeV (28.35%) 		rough 30.0 m stack height. r (28.35%) with 9019 No.s of plants @ 2500		
2.Pickling plant	trees/ha. The deficit plantation of about 4.65% will be done in container plantation within the project site to achieve total 33% plantation as per norms.			
B. DG Sets-10 kVA	DG Set having capacity	of 2Nos.1000 KVA is attached to 30m stack height (DO	G sets Natural Gas)	
C. Vehicular Emission	raw material and finish	xhausts include SOx, NOx, CO from combustion of fos ned goods. 3000 Nos. (1500 for Raw Materials + 1500 . Transportation details for existing project is given b	for Finished Goods) of Vehicles is being/will	
			Total (No's)/month	
		, ,	500 (Diesel)	
	1	Trucks/ Trailer (20 MT & 40MT) for finished goods	500 (Diesel & CNG)	
	Management:			
	Source Management			
		PUC certified vehicles is being /will be used	l;	
		➤ Vehicles used for transporting raw mater	ials are driven by High Speed Diesel and	
		vehicles used for transporting finished good	ds are driven by CNG >50% of vehicles.	
		Speed limit of 10Km/hr. is/will be maintain	ned in the plant premises.	
		> The proposed green area inside the plant	premises is 36077.10 sq. mtr (28.35%)	
	Transportation	with 9019 No.s of plants @ 2500 trees/ha.	The deficit plantation of about 4.65% will	
		be done in container plantation within the	project site to achieve total 33% plantati	
		on as per norms.		
		➤ Good House Keeping is/ will be maintained	l.	
		Dry fogger is proposed.		
Fugitive Emissions from	Material Handling	terial Handling st particles are main pollutants handling of Fines, loading and unloading point, transfer points and storage area.		
materials handling including	Dust particles are main			

EN AP

34 120/38//2024//RECIBIN PALMOJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER- 4
ANTICIPATED ENVIRONMENTAL IMPACT
AND MITIGATION MEASURES

storage or transport (other	Transportation
raw materials)	Dust generation is envisaged as all the internal roads inside the plant premises.
	Management
	> Transfer, loading, unloading of the raw material will be done in a closed circuit to reduce fugitive emission.
	Water sprinkling will be done in dust prone area.
	Proper housekeeping will be done. Sweeping of roads will be done.
	All paved roads will be developed inside the plant premises.
	Periodically, water sprinkling on paved road will moisten the surface to prevent the fugitive dust.
	> Speed limit will be restricted up to 10 km/hr.

0

0/3	8/2024/KBGIBN PALWAL		-
	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX		
	APPLICANT: IYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4	
	AT LICANT. JIOTI STRII STRIVATE LIMITED	ANTICIPATED ENVIRONMENTAL IMPACT	
		AND MITIGATION MEASURES	
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES	

4.3.1.1 Impact on Air Quality

The impact on air quality is assessed based on emissions of the process stacks & DG sets in the proposed activity. PM10, PM2.5, NOx, CO and Acid Mist will be the important pollutants emitting from the point and line sources.

Prediction of impacts on air environment has been carried out employing mathematical model based on a steady state Gaussian plume dispersion model designed for multiple point sources for short term. In the present case, **Aermod View** dispersion model for different stability state Gaussian plume dispersion, designed for multiple point sources for short term and developed by United States Environmental Protection Agency [USEPA] has been used for simulations from point and line sources.

Model Input Data

Point Source:

For the modeling purpose, all pollutants as described above are considered. The details of stack emissions envisaged from the project are given in **Table-4.2**.

TABLE-4.2: STACK EMISSION DETAILS (Proposed)

S. No.	Parameters	Units	Stack-I (BOILER 10TPH) (Fuel-LNG)	Stack II (PICKLING)	Stack - III (DG SET 1000KVA) (fuel-NG)	Stack - IV (DG SET 1000KVA) (fuel-NG)
1	Stack Height	m	30	30	30	30
2	Top diameter of flue	m <u>.</u>	0.85	0.6	0.3	0.3
3	Flue gas velocity	m/s	10	8	10	10
4	Exit Flue gas temperature	K	433	323	453	453
5	Flue gas flow rate	m³/s	5.67	2.26	0.707	0.707
6	Emission rate at stack	exit				
Α	PM ₁₀ emission rate	g/s	0.15	0.04	0.024	0.024
В	PM _{2.5} emission rate	g/s	0.1	0.03	0.02	0.02
С	NOx	g/s	0.78		0.14	0.14
D	CO	g/s	0.39		0.07	0.07
Е	Acid Mist	g/s		0.0315		
7	APCM attached		N/A	FUME SCRUBBER	N/A	N/A

Line Source

Emission Source	Emission Factor	Emission rate
Line emissions	PM ₁₀ – 0.055 kg/VKmT	$PM_{10} - 2.3 \times 10^{-4} g/s/m$
	PM _{2.5} – 0.022 kg/VKmT	$PM_{2.5} - 9.3 \times 10^{-5} \text{ g/s/m}$

7.	NG #PICOM #BEFEIRINI DAI WA	
٠	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	, , , , , , , , , , , , , , , , , , , ,	CITA DIED A
	APPLICANT: IYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4
	2.0	ANTICIPATED ENVIRONMENTAL IMPACT
		AND MITIGATION MEASURES
	DOCUMENT NO.: EESPL/ISPL/IND/EC/2022-23/119	AND MITTUATION MEASURES
	DOGOMENT NO.: LEST L/ JST L/ IND/ LG/ LVLL-LS/ 117	1

NOx – 3.5 g/Km-hr	NOx - 1.46 x 10 ⁻⁵ g/s/m
CO – 1.5 g/Km-hr	$CO - 6.3 \times 10^{-6} \text{ g/s/m}$

Presentation of Results

In the present case, model simulations have been carried out for the study period. The Ground level concentrations are computed for 24-hr average for all parameters except CO (8hrly). Maximum Ground level concentrations of PM_{10} , $PM_{2.5}$, NO_2 , Acid mist and CO for study period were $0.813~\mu g/m^3$, $0.588~\mu g/m^3$, $2.408~\mu g/m^3$, $0.265~\mu g/m^3$ and $2.808~\mu g/m^3$ respectively. The obtained GLC's are well within the stipulated CPCB standards. The incremental ground level concentrations and its occurrence for various pollutants for the given meteorological conditions are given in **Table-4.3(a)**.

TABLE-4.3 (a): Predicted 24-Hourly Short Term Maximum Incremental Concentrations

Pollutant	Maximum Incremental	Distance
	Concentration (µg/m³)	(m)
PM ₁₀	0.813	Within project
PM _{2.5}	0.588	boundary
NO ₂	2.408	_
HCL Mist	0.265	
CO (8 hrly)	2.808	

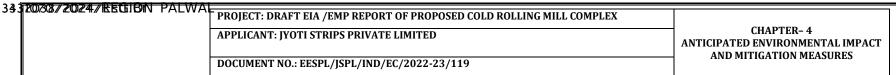
Resultant Concentrations after Implementation of the Project

The maximum incremental GLCs due to the proposed project for PM_{10} , $PM_{2.5}$, NO_x , CO are superimposed on 98 percentile baseline concentrations recorded during the study period. The cumulative concentrations (baseline+incremental) after implementation of the project are tabulated below in **Table-4.3** (b). The isopleths showing predicted ground level concentration for various parameters during study period is given in **Figure- 4.1(i) to 4.1(v)**.

Table-4.3 (b):

Details of incremental concentration of pollutants on sensitive locations like habitations

Location	Ground Level Concentrations of PM ₁₀ in μg/m ³				
	Predicted	Background	Total Expected	CPCB Standard	
		(98 percentile)			
Project Site	0.813	84.2	85	100	
Devali	0.27	80.1	80.4	100	
Asawati	0.2	76.8	77	100	
Pyala	0.06	75.8	75.9	100	
Dundsa	0.14	77.4	77.5	100	


		· · · · · · · · · · · · · · · · · · ·
) <i>(</i> :	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTED 4
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES

Gadpuri	0.05	73.5	73.6	100	
Pirthala	0.14	73.8	73.9	100	
Baghaula	< 0.1	76.8	76.8	100	
Location	Gr	ound Level Concer	trations of PM _{2.5} in	n μg/m³	
	Predicted	Background	Total Expected	CPCB Standard	
		(98 percentile)			
Project Area	0.59	52.3	52.9	60	
Devali	0.15	46.3	46.5	60	
Asawati	0.1	46.2	46.3	60	
Pyala	< 0.1	45.9	45.9	60	
Dundsa	0.1	47.1	47.2	60	
Gadpuri	< 0.1	54.5	54.5	60	
Pirthala	0.1	43.5	43.6	60	
Baghaula	< 0.1	46.9	46.9	60	
Location	Gı	ound Level Conce	ntrations of NO ₂ in	μg/m³	
	Predicted	Background	Total Expected	CPCB Standard	
		(98 percentile)			
Project Area	2.41	11.9	14.3	80	
Devali	0.84	13.5	14.3	80	
Asawati	0.6	11.7	12.3	80	
Pyala	0.29	14.5	14.8	80	
Dundsa	0.54	17	17.5	80	
Gadpuri	0.23	13	13.2	80	
Pirthala	0.53	14.7	15.2	80	
Baghaula	0.17	16	16.2	80	
Location	G	round Level Conce	entrations of CO in μg/m³		
	Predicted	Background	Total Expected	CPCB Standard	
		(98 percentile)			
Project Area	2.81	500	503	2000	
Devali	0.8	570	571	2000	
Asawati	0.42	600	600	2000	
Pyala	0.2	510	510	2000	
Dundsa	0.7	550	551	2000	
Gadpuri	0.24	630	630	2000	
Pirthala	0.5	590	591	2000	
Baghaula	0.2	610	610	2000	

^{&#}x27;*' indicates the projection of the values and doesn't indicate the expected as already the project is operational and the present proposal is applied for regularization without change in its configuration or its allied activities.

It is seen from the above table, the resultant GLC's obtained at various locations are well within the CPCB standards (dated 18th November, 2009). Thus, there is no or minimal impact on air environment.

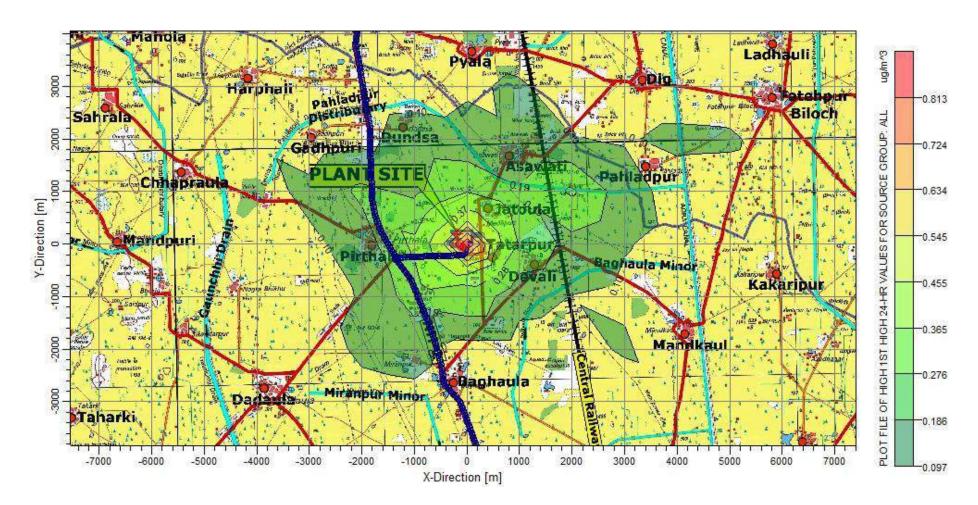
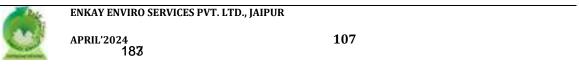



Fig 4.1(i): Isopleths showing maximum incremental ground level concentrations of PM₁₀

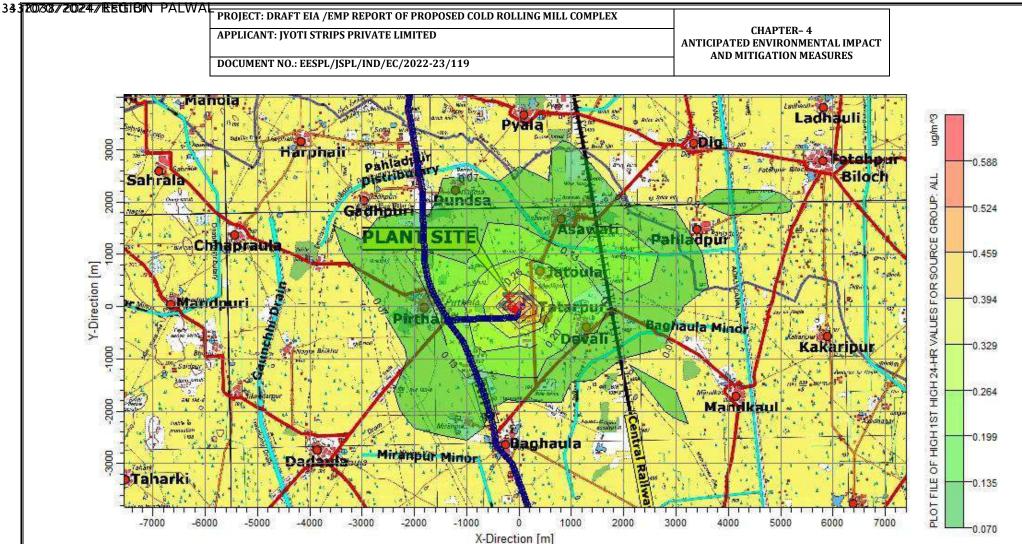


FIG. 4.1(ii): Isopleths Showing Maximum Incremental Ground Level Concentrations of PM 2.5

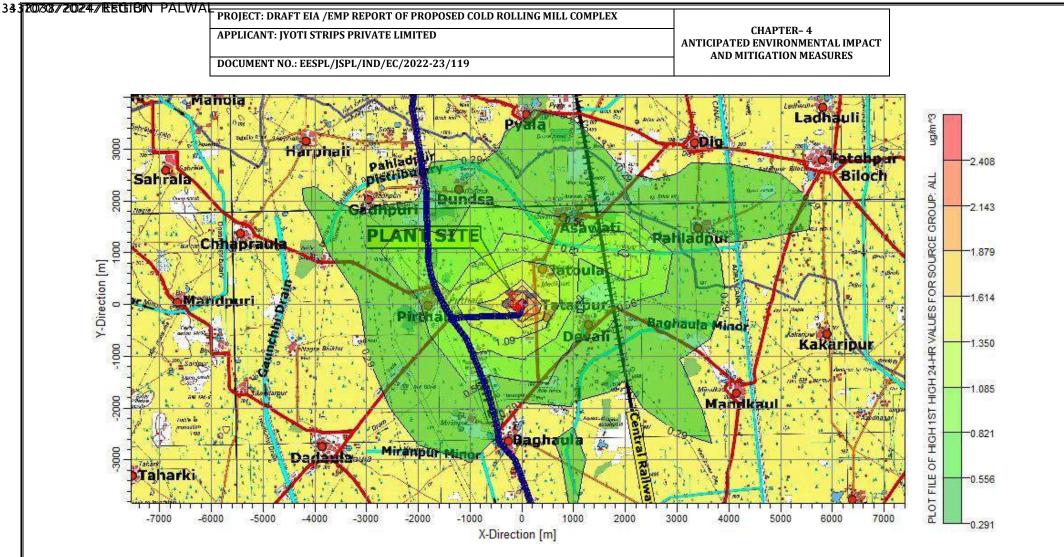


FIG. 4.1(iii): Isopleths Showing Maximum Incremental Ground Level Concentrations of NO₂

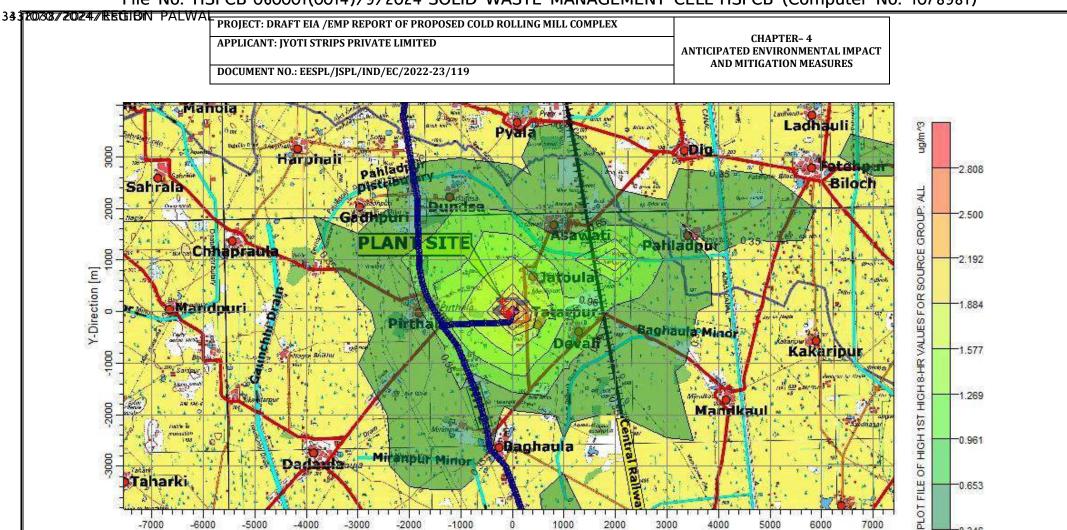


FIG. 4.1 (v):Isopleths Showing Maximum Incremental Ground Level Concentrations of CO (8 hourly)

X-Direction [m]

-0.346

0/3	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CVA DEND 4	_
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES	
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES	

4.4 NOISE ENVIRONMENT

4.4.1 IMPACT ON NOISE

Aspect	Impact	Mitigation Measure
Noise generating	Prolonged exposure to high levels	➤ Use of silencers for fans.
equipment are	of industrial noise can lead to	➤ Acoustic enclosure for DG
Blowers,	various health issues, including	set.
Compressors, F.D	hearing loss, sleep disturbances,	➤ Adopt Personal Protective
fan operation of DG	stress, anxiety, and increased risk	Equipments (Ear Plugs/
set for emergency	of cardiovascular diseases.	Muffs) in high noise zone.
power supply and	> It can also interfere with	> The propagation of noise
vehicular movement	communication and	way will be prevented by
etc.	concentration.	creating barrier in form of
	> It can adversely affect wildlife by	the proposed greenarea all
	disrupting their natural	around the project area
	behaviors, communication	boundary.
	patterns, and migration routes	Proper lubrication,
		modernization of
		equipment will be done to
		reduce the noise.
		> The plantation
		development will help in
		reducing noise levels in the
		campus as a result of
		attenuation of noise
		generated due to plant
		operations and
		transportation.

4.4.2 Noise Quality Impact Predictions

To understand the combined effect of these noise levels on the nearby community, Custic 3.2 (Lakes Environmental – USEPA approved) scientific model has been used to estimate the noise levels at different distances from different sources. All the major noise generating sources from the plant is considered in this model. The noise level at various locations due to different sources is calculated based on the following formula:

111

0

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

Generated from eOffice by SARUP SINGH, Clerk 3 (SWM), CLERK, HSPCB on 12/08/2024 02:488 PM

0)2	3/2024/REGIBN PALWAL	
	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
		CIVA DEED 4
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4
		ANTICIPATED ENVIRONMENTAL IMPACT
		AND MITIGATION MEASURES
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES

$$Lp2 = Lp1 - 20 \log (r2 / r1) - Ae1, 2$$

where, Lp1 and Lp2 are sound levels at points located at distance r1 / r2 from the source and Ae1,2 is the excess attenuation due to environmental conditions.

The predicted noise levels based on the above analysis in the nearby villages, considering that there is no attenuation on account of barriers (without EMP) and with EMP will be as follows:

LOCATION	EXIS	TING	MAXIMUM PREDICTED		RESULTANT Without EMP		RESULTANT With EMP	
	Leq _(day)	Leq _(night)		Leq _(day)	Leq _(night)	Leq _(day)	Leq _(night)	
Project Site	57.8	45.6	58	60.9	58.2	58.8	52.9	
Devali	51.4	42	40.5	57.7	44.3	51.4	42.7	
Asawati	50.7	41.9	38	50.9	43.3	50.7	42.3	
Pyala	50.7	42.6	31.9	50.7	42.9	50.7	42.6	
Dundsa	52.9	42.7	36	52.9	43.5	52.9	42.9	
Gadpuri	50.8	40.1	32.9	50.8	40.8	50.8	40.3	
Pirthala	51.7	41.9	39.9	51.9	44	51.7	42.5	
Baghaula	50.9	43.1	34.4	51	43.6	50.9	43.1	

Note: All values are in $d_{B(A)}$; '*' indicates the resultant values which is same as existing values as the proposal is only meant for regularization without change in configuration and its allied activities.

From the above, it is clearly seen that there will be no significant impact on the surrounding community due to noise from the proposed activity considering EMP measures in place.

Further due to design / maintenance of machines, enclosures of process plant, provision of PPE's, greenarea development, etc., the impact on noise levels will be minimal. The isolines showing the incremental noise levels due to the proposed activity are given in below figure..

34 320/38/2024/REGILEN DA WA PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER- 4
ANTICIPATED ENVIRONMENTAL IMPACT
AND MITIGATION MEASURES

Figure 4.2: Isolines showing Incremental noise levels due to the proposed activity

4.5 IMPACT & PREDICTION DUE TO TRAFFIC STUDY IN OPERATION PHASE Traffic Scenario and LOS before establishment of project

Phase	Road	V (Volume in PCU/Day)	C (Capacity in PCU/DAY)	Existing V/C Ratio	LOS
Before Establishment of the project	NH-2	2043	5400	0.37	В

Modified Traffic Scenarios and LOS due to proposed Project

Road	Increased PCU's- National	V (before plant	С	Modified V/CRatio	LOS
	Highway	establishment+ after plant			
		operation)			
NH-2	100	2043 + 100	5400	0.39	В
		= 2143			

)/3	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	GWADEED A
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES

V/C Ratio	LOS	Performance
0.0-0.2	A	Excellent
0.2-0.4	В	Very Good
0.4-0.6	С	Good/Average/Fair
0.6-0.8	D	Poor
0.8-1.0	Е	Very Poor

The LOS value from the proposed project almost same as earlier value "Very Good" for National highway-2. So the additional load on the carrying capacity of the concern roads is not likely to have any significant adverse effect.

4.6 LAND ENVIRONMENT

4.6.1 Source

- Change in Land Use/ Land Cover;
- > Change in topography.

4.6.2 Impact Prediction & Mitigation Measures

S.	Aspect	Impact	Management
No.			
1.	Change of	No impact on land use	The project site is already
	Land Use/		converted for industrial use.
	Land Cover		Hence, no impact on Land use
			pattern is envisaged.
i.	Impact on	No impact on hydrology is	> Rain water harvesting will be
	Hydrology	envisaged as no additional water	carried out in order to improve
		will be withdraw from the plant	ground water table of the area.
		premises.	➤ Six RWH structures will be
			capable of recharging rainwater
			volume @ 32.4 m³/hr. having
			dimension of 4 m length x 3 m
			width x 2 m depth with 8" dia.
			➤ Storm water drains will be
			developed and connected to
			settling tanks which will be
			further connected to rain water
			harvesting pits.
			> Fresh water requirement will be

79 / 2012 / FEST RIA PA 1// A	
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	CVV A DETERMINE
APPLICANT: IYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4
THE ELECTION OF THE PROPERTY O	ANTICIPATED ENVIRONMENTAL IMPACT
	AND MITIGATION MEASURES
DOCUMENT NO.: EESPL/ISPL/IND/EC/2022-23/119	AND MITIGATION MEASURES
DOCOMENT NO.: ELSI E/JSI E/ ND/EC/ 2022 25/117	

		minimized.
		➤ With suitable mitigation
		measures, impact will be
		negligible on hydrogeology.
Change in	The proposed project will not cause	The highest and lowest elevation of
Topography.	any change in the topography at the	the project site is 416 MSL and 415
	project site.	MSL it shows almost flat terrain of
		the proposed project site.
		Topography. any change in the topography at the

4.6.3 Solid and Hazardous Waste

Table 4.4: Details of waste Generation

Aspect		Impact			Mitigation Measure
Generation of hazardous	waste;	Improper handling and storage,			➤ The generated
		or leaks an	d spills could	Hazardous waste will	
		in impacting	g Soil quality,	water	be stored in designated
		quality, air	quality and w	orkers	storage area with the
		health.			display board.
					> The generated
					Hazardous and Other
					Wastes (Management
					and Trans boundary
					Movement) Rules, 2016
					is being/will be sent to
					the CPCB authorized
					recycler.
Hazardous Waste Qu	antity in T	PA			Treatment/
Type of Waste	Schedule		Proposed	Total	disposal
Chemical Sludge from waste water	1	35.3	16000	16000	Send to registered recyclers
treatment (TPA)					recyclers
Used Oil or Spent Oil	1	5.1	200	200	Send to registered recyclers
Iron oxide	1	5.2	4000	4000	Send to registered recyclers
Disposal of municipa	l solid	Water contamination,			No solid waste will be
-	 MSW's) onto land/on Solid waste generation Create foul odor and Nuisance in surrounding 				disposed on land or

0

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	avanama 4
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES

soil quality.		area thereby adv impacting the receptor			ly outside the plant premises. The solid waste generated will be sent to Municipal Council, Palwal.
Particulars	Waste Quanti				Treatment/ disposal
	Type of Waste			Total	
Sludge TPA	STP Sludge			0.5	Used as manure for plantation
Municipal Solid Waste (@0.125 Kg/ day	Biodegradable	0.25	5	0.25	Sent to Nearest Municipal site
Scrap from	Scrap	181	.81	181.81	Sold to Local market

4.7 Water Environment

4.7.1 Source

Process

- Industrial Waste Water;
- Domestic Waste Water.

4.7.2 Impact Prediction & Mitigation Measures

No significant impact envisaged.	is No prominent stream or seasonal nallah is passing through the project
envisaged.	nallah is passing through the project
	1
	area. Pahladpur Distributary is at a
	distance of 1.15 Km towards NNE from
	the project site, it is not a non-
	perennial river.
	No water will be discharge to the water
	body. Hence no impact is envisaged.
Ground w	vater No solid waste will be disposed on land
contamination, foul sn	mell, or outside the plant premises. The solid
air nuisance .	waste generated will be sent to
Soil contamination	: Municipal Council, Palwal.
Acidification of soil, loss	ss of > No water will be discharged on
nutrients/fertility,	land and water bodies as ZLD will
formulation of gases	be maintained. No water will be
	contamination, foul stair nuisance. Soil contamination Acidification of soil, los nutrients/fertility,

· · · · · · · · · · · · · · · · · · ·	<u> </u>
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES

				discharged outside from the plant premises. Rain water harvesting structure will be installed within the plant.
S. No.	Liquid Effluents	Quantity	Unit	Mode of Treatment/ Disposal
1	Domestic Sewage	75	KLD	Domestic waste water 75KLD will be treated in STP (Capacity-100KLD) and 37.5 KLD of Treated water will be reused in plantation. And 30 KLD will be recycled for flushing purposes.
2	Trade Effluent	318.75	KLD	Stage-1: The effluent generation from industrial process (127.5 KLD) will be treated in ETP-1 (160KL capacity) of low COD and low TDS Stage-2: spent and coolant waste water of 48.75KL will be treated in ETP-2 (65KL Capacity) of high COD and high TDS Treated water from ETP 1 and ETP 2 will be sent to WRP-RO followed by MEE (ZLD plant) The overall treated water of 270KLD is reused after treatment in COC to Cooling Tower.
				No waste water will be disposed of on ground outside the plant premises.

4.7.3 WASTE WATER TREATMENT

A. Domestic Waste Water Management

Domestic sewage 75 KLD which will treated in STP (capacity-100 KLD). Treated water will be used in plantation purpose and recycled water will be used for flushing purposes.

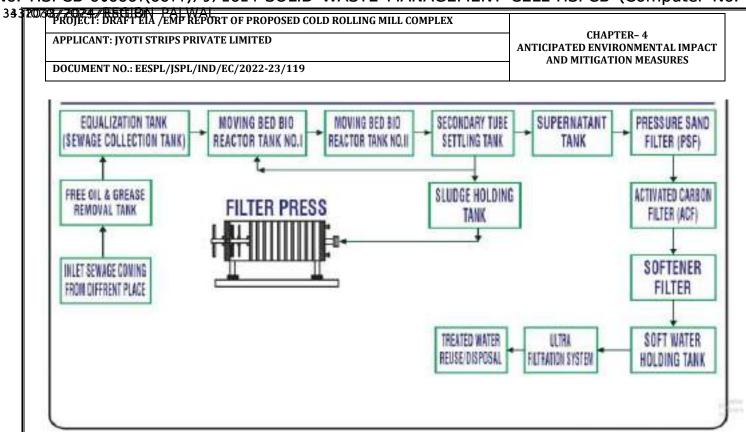


Figure 4.3 Flow Diagram of Sewage Treatment Plant

A. Characteristics of Treated Effluent

The characteristics of treated waste water are given below: -

Table 4.5: Characteristics of Treated Waste Water.

Characteristics	Treated	G.S.R. 1265(E) Concentration not exceed
рН	6.0 to 8.0	6.5-9.0
Appearance	Clear	-
Suspended Solids (Mg/l)	<100	<100
BOD (3 days at 27°C)	<30	30
Fecal Coliform		<1000
(FC)(MPN/100ml)		

Technology Based On: - Sequence Batch Reactor (SBR) Technology

Process Description:

For the purpose of Sewage water treatment, the various Influents from the generation units shall be collected at one central location and STP will be installed for treating this sewage with the following equipment.

- 1.Inlet Sewage Tank
- 2.0il and Grease Removal Chamber
- 3. Equalization Tank
- 4. Moving Bed Bio Reactor -1

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

118

- 5. Moving Bed Bio Reactor 2
- 6. Tube Settling Tank
- 7. Supernatant water Tank
- 8. Pressure Sand Filter
- 9. Activated Carbon Filter
- 10. Softener
- 11. Ultra Filer
- 12. Treated Water Tank
- 13. Sludge Holding Tank
- 14. Filter Press

Process and Technology

- > The incoming sewage will be Pumped to equalization Tank from the underground Inlet Sewage collection Tank.
- From Equalization Tank the sewage will be overflown to two numbers Moving Bed Bio Reactors in series where continuous aeration is done for germination of Sewage reducing Bacteria. Bacteria separate out the sewage into clear water and sludge.
- ➤ Over flow of MBBR will be sent to Tube settler where sludge will be collected as underflow in sludging holding tank and supernatant water will be overflown to supernatant water tank. Part of the underflow sludge of tube settler will be circulated to first MBBR to increase concentration of bacteria.
- From supernatant water tank the primary treated water will be pumped to PSF and ACF for filtration and deodorization. And then will be sent to Softener.
- > Softened water is pumped to UF unit which will further reduce the Odor and BOD up to acceptable norms of PCB.
- > Finally treated water can be used for gardening and make up water for the Fire Hydrant storage Tank.
- > Sludge from the sludge holding tank will be pumped into the Filter Press for obtaining Dry sludge. And this dry sludge will be utilized for the gardening in plant premises.

4.7.4 Industrial Waste Water Management

The effluent generation from industrial process is 127.5 KLD will be treated in ETP-1 (160KL capacity) of low COD and low TDS. spent and coolant waste water of 48.75KL will be treated in ETP-2 (65KL Capacity) of high COD and high TDS.

0)/3	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	PROJECT: DRAFT EIA / EMIT REFORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTED 4
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES

Treated water from ETP 1 and ETP 2 will be sent to WRP-RO followed by MEE (ZLD plant).

The overall treated water of 270KLD is reused after treatment in COC to Cooling Tower.

No waste water will be disposed of on ground outside the plant premises.

4.7.5 Rain water Harvesting Scheme

Storm Water Management

In the present area, most of rainwater goes as runoff & a small portion of total rainfall (6%) meets the underground water as per hydraulic parameters. Therefore, a wise solution to enhance water availability is to collect most of the water drops falling from the sky. In designing any Rainwater harvesting structure, capturing rainfall and runoff for local use is the key concept. Hard surface such as roof pavements that decrease groundwater percolation constitute good catchment and generate high runoff which has to be diverted in to the storage tank and used by the plant or into the harvesting pit to recharge the ground water. In view of above, rainwater-harvesting structures at this point can serve the purpose of arresting roof top rainwater and runoff generated through roads in the area. The design is based on average annual rainfall, peak rainfall intensity.

DESIGN OF RAINWATER HARVESTING:

For good design of rainwater harvesting, following points are to be kept under consideration:

- a) Ideal location with good ground slope.
- b) The location which can store maximum rainwater through storage tank.
- c) Ground water pollution does not take place.

Average runoff coefficient taken for the area is as under: (As per CGWA guideline):

- Average runoff coefficient for rooftop = 85%
- Average runoff coefficient for Road, Cemented area & Paved area = 65%
- Average runoff coefficient for Lawn & Green belt area= 15%
- Average runoff coefficient for Open Area village = 20%

CALCULATION OF PEAK DISCHARGE:

S.No.	Particulars	Area (sq. m.) [A]	Run off Coefficient [C]	Average Rainfall [I2] (m/annum)	Annual Discharge Q2=C * I2 * A
1	Roof Top of building/Shed/	55219.97	0.85	0.542	25439.84

07.	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES

	Total (sqm)	127294.69			41054.87
3	Green Belt	36077.1	0.15	0.542	2933.07
2	Road/Paved area	35,997.62	0.65	0.542	12681.96

DESIGN OF RAINWATER HARVESTING TANK

The recharge pond with have percolation pits based on the design for 15 mm/hour peak rainfall intensity (Ref. Indian Institute of tropical metrology Pune). Considering 15 minutes of peak rainfall, runoff volume in a single storm should be:

- For Rooftop: $55219.97 \text{ m}^2 \times 0.542 \times 0.015 \text{ m}/4 = 112.23 \text{ m}^3$
- For Road/Paved area: $35,997.62 \text{ m}^2 \times 0.542 \times 0.015 \text{ m}/4 = 73.16 \text{ m}^3$
- Total runoff generated from roof top and road paved area: 185.39 m³
- by taking the peak intensity rainfall of 15 mm

As per recharge considered as 60% of yield @ 54 m³/hr, the recharge capacity of one RWH structure will be @ 32.4 m³/hr. **Six** RWH structures will be capable of recharging rainwater volume @ 32.4 m³/hr. having dimension of 4 m length x 3 m width x 2 m depth with 8" dia. injection well of 30 m depth with slotted pipe below water level having gravel packing and compressor development.

The schematic diagram of proposed RWH structure is given below:

34 120 67 20 74 REFERENCE DATE OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER- 4

ANTICIPATED ENVIRONMENTAL IMPACT

AND MITIGATION MEASURES

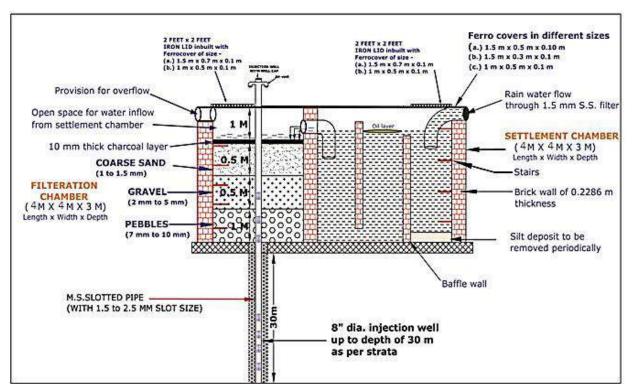


Figure 4.4: Design of Open Type of Rain Water Harvesting Structure

4.7.6 Impact on Drainage

Topographically, the proposed unit area is almost flat. The natural drainage of the project site is east direction to west direction and will be unaltered and remain same. No impact on surface water drainage is envisaged.

4.8 BIOLOGICAL ENVIRONMENT

The potential impact of fugitive emissions (dust) may impact on terrestrial flora, as settled dust on plant surfaces can hinder the efficiency of photosynthesis by obstructing light absorption. Additionally, dust accumulation may smother leaf surfaces, blocking stomata and leading to reduced transpiration, which can further affect plant health and productivity.

Mitigation measures

- To control dust emissions, dust suppression techniques like watering down roads and stockpiles, covering materials, and using vegetation barriers. These efforts aim to minimize dust dispersion and deposition on plant surfaces, thereby safeguarding the health and productivity of terrestrial flora.
- Regular maintenance and servicing of construction equipment will be conducted to ensure they operate as quietly as possible. This can include lubricating moving parts, repairing or replacing worn components, and tuning engines for optimal performance.

)/.	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	av a promp
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES

- Where feasible, noise barriers will be installed around construction sites to minimize the spread of noise beyond the immediate area. These barriers can be constructed using natural materials like earth berms or vegetation.
- Total 12 nos of trees are present in the proposed plant site and during the course of construction no trees will be uprooted therefore; the impact on terrestrial ecology would be minimum.

4.8.1 Impact on Biological Environment

Aspect	Anticipated Impact	Mitigation
Site clearing and leveling	1. Loss of top soil	The top soil will be preserved
1. Cutting of bushes in the core	2. Compaction of soil and	and used for plantation.
zone	decreasing of pore and	
2. Stripping Excavation	particle size	
3. Levelling of the surface	Dust generation leading to	• To counter the said
4.Movement of heavy earth	1. Deposition on leaves and	situation, proper
moving vehicles and equipment's	hampering photosynthesis	landscaping and tree
	2. Respiratory issues to the	plantation shall be done
	workers	from beginning of
		construction activities.
		The industry will develop a
		plantation on the
		surrounding periphery.
	Loss of existing vegetation	There is no forest land in
		the project site.
		• The project proponent
		shall follow the process of
		environmental
		preservation by plantation
		at the site and its
		surroundings right from
		the commencement of
		construction phase
		Therefore, significant
		ecological impact is not

PROJECT: DRAFT EIA /EMP REPORT OF PROPO APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT			
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23	AND MITIGATION MEASURES			
		envisaged during		
		construction phase of the		
		proposed project.		
	The land-use of the area is	The incremental emission		
	changed for industrial	level of air pollutants due		
	purpose.	to this project is not likely		
		to induce any significant		
		changes in the ecology		
		because the pollution		
		dispersion will remain		
		confined within the limits		
		of the plant		
		There will not be any		
		cutting of the Trees at the		
		site. The industry will		
		develop a plantation on the		
		surrounding periphery of		
		the proposed project.		
Working of construction	Impact of noise on the faunal	The plantation will be		
machinery, heavy vehicles,	species (particularly on	developed in exclusion		
dumpers, and trucks	avifauna and small	zone in construction		
	mammals)- Loss of local	phase which will act as		
	faunal species	barrier to noise and dust		
	raunar opecies	generated during		
		construction.		
		The regular maintenance		
		_		
		and up keeping of		
		construction machinery,		
		heavy vehicles, dumpers,		
		and trucks will be helpful		
	ODER LEVOY-	in reducing noise.		
	OPERATION PHASE			
Aspect	Anticipated Impact	Mitigation		
Dust and gaseous Emission from the	Fugitive emissions may cause:	Air Pollution Control Equipment		
stack ENKAY ENVIRO SERVIC	Obstruct photosynthesis and	(APCE) like Bag Filter at various		

0

	· · · · · · · · · · · · · · · · · · ·
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES

5000MENT No.: EESI L/JSI L/IND/EC/2022-25/		
	growth of plants	material handling &transfer points
	growth of plants	•
		will be installed to keep the
		emissions within the permissible
		limits.
Fugitive dust generation by material	Dust may cause migration of	Regular use of water sprinkler on the
handling, loading unloading	animals and birds	haul road to control fugitive
		emissions in the surrounding
		environment.
		Construction of paved roads for
		transportation to minimize fugitive
		emissions
Generation of Domestic waste	Improper domestic waste	Domestic waste will be treated in
	disposal may lead to un-hygienic	STP and treated water will be
	situation and water born	utilized for plantation.
	diseases- that may affect the	-
	workers and the fauna of the	
	surrounding	
Working of machinery and	Loss of local faunal species	The proposed plantationwill act as
equipment's during the operational		bio-filters and future reduce the
phase.		level of pollutant concentration and
Noise on the faunal species		also will improve the overall
(particularly on avifauna and small		ambient air quality (air and noise)
mammals) -		in and around the project
•		environment.
		• It is proposed to include
		Azadirachta indica, Cassia fistula,
		Ficus religiosa, in the plantation
		program as they serve as sinks for
		emissions.
		• The regular maintenance
		machinery and heavy vehicles will
		be helpful in reducing noise.
Vehicular movement	Fugitive dust emission and	
, canoniar movement	spillage of fuel/oil	
	spinage of fuer/ off	The paving of roads and movement
		area.
		Clean the road on regular basis.
	Road accidents and mortality of	Orientation training will be
	wildlife.	imparted to the plant employees to

PROJECT: DRAFT EIA /EMP REPORT OF PROPOS APPLICANT: JYOTI STRIPS PRIVATE LIMITED DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23,	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
	develop a sense of sympathy
	towards fauna. Instructing the
	drivers of transport vehicles to
	allow the fauna to cross the road by
	slowing down the speed of the
	vehicle.

Plantation

The main objective of the plantation is to provide a barrier between the source of pollution and the surrounding areas. The green area helps to capture the fugitive emission and to attenuate the noise generated. By planting trees, we can achieve the dual purpose of bio-aesthetics as well as mitigation of pollution. Proper planning and plantation scheme depends upon the magnitude and type of pollution, selection of pollution tolerant and dust capturing plants.

Selection of Plant Species

Selection of plant species shall be done carefully considering the project activity; pollutants to be generated; local climatological conditions; ecological structure etc. The following characteristics are to be considered while selecting plant species for green area development/ afforestation:

- Fast growing and quick canopy development.
- > They should have strong branches, thick and durable canopy which can withstand storm.
- > They should have dense foliage for better trapping of pollutants.
- ➤ The species should be Indigenous.
- > Selection according to the mitigation measure proposed (like- dust and noise attenuation, SOx and NOx control)
- ➤ Able to maintain the ecological and hydrological balance of the region.
- ➤ Leaves with hairy, resinous, scaly, and coarse surfaces could capture more particles than smooth leaf.
- Plant species have long life span.

Protection, care and monitoring of plantation:

> Tree guards will be provided for the protection of plantation, from grazing, etc. for at least 3 years. (outside the plant)

0/3	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX		
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT	
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES	

- ➤ In order to protect the plants from sun burn and heat stress during summer, jute bags and agro net will be used.
- ➤ After Care: timely and sufficient after care is required such as soil mannuring, weeding, proper watering etc.
- Proper fencing will be done to protect the plants from animals.
- ➤ Proper monitoring of the plantation will be made.

4.9 SOCIO ECONOMIC IMPACT MATRIX

4.9.1Impact on Community Demographics

S.	Existing	Predict (adverse/ favorable)	Mitigation measures. In numbers.
No. variables/		impacts (reasons for variations of	
		representative data).	
economic Issues.			AN
1	Habitation in the	Zero (0) Loss of habitation. No	All measures are being taken to ensure
	Core Zone: -	displacent due to the project.	the safety with a team of security guards
	There is no	The villagers in area have a high	posted at the various entry & exit gates.
	habitation in the	ecological integrity and support	Also to restrict & maintain safety, a
	Core Zone.	human life by giving direct or	dedicated road for public approaching
		indirect benefits and services. The	the NH-2 ensures safer movement.
		region is rich with high social	
		capital and interpersonal ways of	
		meeting and interacting with each	
		other are harmonious.	
2	Habitation in the	The wind direction is	Periodic maintenance and emission
	Buffer Zone:- There	predominantly between west to	check of vehicles shall be ensured.
	are habitations in	east directions. Nearest habitation	Adequate measures of air quality &
	the Buffer Zone	is Tatarpur ~ 0.45 Km, ESE not in	noise management etc. are adopted
	and the nearest	the predominant wind direction	and various other instruments like
habitations include		However the magnitude of emission	water sprinklers etc. are being done
• Tatarpur ~ 0.45		impact will be localized to the Plant	twice a day, every day.
	Km, ESE	site.	• So also industrial emission are
	• Prithla ~ 1.407		mitigated through PCM and the
	km W		plantation & landscaping inside &
			around the project premises are done.

		<u> </u>
7	NO II MADA II ULETTI LIAN DALIAIAL	
r	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES

3	Immigration/	The labour migration in J.S.L needs
	Emigration of	to be checked through creating
	workers. Large	employment opportunities in the
	number of	district Palwal.
	population	project aims to control emigration
	commutes to R.I.A	of 300* workers at least.
	Hamirgarh in	
	search of work.	
	Labour migration	
	(mainly Males)	
	from smaller	
	villagers to urban/	
	developing areas in	
	search of work is a	
	general problem.	

The probable non - emigrating population, due to the proposed project, contribute in the regional growth.

Particular	Proposed	Total
Permanent	300	300
Skilled	650	650
Semi-	350	350
skilled		
Unskilled	700	700
Total	2000	2000

*Probability analysis of non - emigrating population

Hypothesis based on field study:- Migration chances are more among male workers as compared to women workers. Migrartion among the women workers is dependent on the job shifts of their male counterparts.

- Emigration of the literate population:- With a likely occurrence of 6 in every 10 literate men migrate in search of work, from the study area.
- Emigration of the illiterate population:- With a likely occurrence of 5 in every 10 illiterate men migrate in search of Skilled/Semi Skilled work, from the study area.

The proposed project providing opportunities to a total sum of 2000 workers. Hence in an experiment, to calculate the likely occurrence of Illiterate people not leaving the study area in search of work due to the opportunities provided by the proposed project = **1000** Local people (300 local people as staff and 700local people as workers).

4.9.2 Impact on Employment

S.	Existing variables/	Predict (adverse/ favorable)	Mitigation measures.
No.	situations of Socio-	impacts (reasons for variations &	
	economic Issues.	bias of representative data).	
4	Direct, (Local), long term,	Approx. 200 Residents of the local	• Semi-skilled (local) will be
	Employment generation.	region and tehsil will be put on roll	trained to work in Steel

<u></u>	•
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	GVA DENDO
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES

of for the proposed activity. Therefore, a Magnitude impact is Plants as per their moderate. minimum of approx. Rs. 1842.06 lacs qualification and A direct positive impact due of additional direct money incomes certifications. could be generated by the local -better jobs & • A proper direction given to commercial activity. The people in the region through the the villagers would help operation of the project. proposed project generates route the savings for employment for around growth. 2000 people. Priority for employment is given to local persons. 5 **Indirect Employment** Additional Indirect employment/ A total of approx. 150 people permanent addition income: will find indirect through industrial activities Value chain involving warehousing & employment/ income opportunities in the region and logistics analysis of value chain will lead to Logistics: Approx. 50 trucks per day both through logistics, up to commercial sales for end contributing additional employment retail thus creating the use. This would create to 3 locals by each Truck, (A trucker, employment opportunity for Indigenous technologies for navigator and helper) per truck. the truck drivers and their helpers. And also through Developmental sustainable development. and social The transportation of the sustainable activities undertaken by performing social raw material & Finished Engineering Innovations responsibilities at the grass Rounak goods will be carried out by Private Limited at the district level root level by the Project. using approx. 540 trucks / will indirectly involve employment of

Employment	No.	*Minimum earnings #(Rs.)
Opportunity		
Unskilled	700	Rs. 5,84,43,000 (Calculated at the minimum wage rate for Skilled/day,
		Haryana last revised and applicable w.e.f. July,2022)253/Day
Semi skilled	350	Rs. 30,72,3000 (Calculated at the minimum wage rate for Skilled/day,
		Haryana last revised and applicable w.e.f. July,2022)266/Day
Skilled	650	Rs. 6,30,63,000 (Calculated at the minimum wage rate for Skilled/day,
		Haryana last revised and applicable w.e.f. July,2022)294 Rs/Day
Highly skilled	300	3,19,77,000 (Calculated at the minimum wage rate for Skilled/day,
		Haryana last revised and applicable w.e.f. July,2022)323Rs/day

day.

locals.

7	S/7074/RETIEN PAIWA	1
	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
		CHAPTED 4
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4
		ANTICIPATED ENVIRONMENTAL IMPACT
		AND MITIGATION MEASURES
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

Total	Total 200 1842.06 Lakhs/- (Only Consider Operation Phase Employ	
	0	Figure)

4.9.3Impact on Economic Diversity and Vitality

Existing variables/ situations	Predict (adverse/ favorable)	Mitigation measures.
of Socio-economic Issues.	,	
	of representative data).	
The socio-economic	The project will contribute in	The project will contribute
expectations of the villagers in	regional economic growth through	in regional economic
the surrounding have	proposed industrial activity.	growth through proposed
minimalistic needs as the	Building social utility permanent	industrial activity
sources of employment and	structures, in the study area will	
earning are not significant.	contribute in regional up gradation.	
Gross State Domestic Product	The project will continue	The manufacturing activity
Steel manufacturing activity is a	contributing, though in a small	work would instill a sense of
major revenue generating	measure, in bridging the gap	growth and opportunity.
sector of the region, to state	between the supply and the	Optimum supply of
and central Government. The	demand of sponge iron in the	domestic production
proposed and associated	region and the state of Haryana.	required for building up of
activities in the Plant bearing	Minor gains in GSDP*.	national infrastructure.
areas bring about gains in gross		
state domestic product.		
	The socio-economic expectations of the villagers in the surrounding have minimalistic needs as the sources of employment and earning are not significant. Gross State Domestic Product Steel manufacturing activity is a major revenue generating sector of the region, to state and central Government. The proposed and associated activities in the Plant bearing areas bring about gains in gross	impacts (reasons for variations of representative data). The socio-economic expectations of the villagers in the surrounding have minimalistic needs as the sources of employment and earning are not significant. Gross State Domestic Product Steel manufacturing activity is a major revenue generating sector of the region, to state and central Government. The proposed and associated activities in the Plant bearing areas bring about gains in gross impacts (reasons for variations of representative data). The project will contribute in regional economic growth through proposed industrial activity. Building social utility permanent structures, in the study area will contribute in regional up gradation. The project will continue structures, in the study area will contribute in regional up gradation.

4.9.4 Impact through Industrial Activity

S. No	Variables/ situations of Socio- economic Issues.	Predict (adverse/ favorable) impacts (reasons for variations & bias of representative data).	Mitigation measures. In numbers.
1.	Overexploitation of	Labour Safety & welfare, Workers promotion	Labour employed will be constantly
	any natural resource,	and benefits are as per norms and the work	under health surveillance and
	land or labor?	environment in which the labour works are up	remuneration with all concerned
		to the industrial standards of Plant guidelines.	benefits and other policies will be as
			applicable to the Plant worker.
2.	Noticeable Good will	Permanent structures and facilities with local	The project is fulfilling its corporate
	of the proponent	people involvement are done by the PP on a	social responsibilities as per its
	and Permanent	daily basis and are to be continued. Revisable	applicability w.r.t. to Section 135 of
	Social	benefits for desirable positive impacts in the	The Companies Act, 2013 and the
	Infrastructures.	region and on the people are covered under the	activities area as per the Notification

0)/:	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	avi print
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES

		following thrust areas on the need based	dated 27 th February, 2014 in the
		assessment.	Section 467 of the said act. Jyoti Strip
		Water & Sanitation (WASH)	Limited is investing in exemplary
		School/ Education;	social responsibilities and doing the
		Social & Cultural Harmony among various	good work with public faith. has
		communities;	been in cooperation with the local
		Infrastructure work;	govt. for various Corporate Social
		Environment	responsibilities as given in Chapter-
		Employment Opportunities	6
3.	Commercial activity	The manufacturing activity will foster trade &	More opportunities for placement of
	The socio-economic	commerce employment (round the year) to	local youth will be identified by the
	expectations of the	local people and contribute in the economic	CSR division of the Plant to provide
	villagers in the	status of the area leading to more hopefulness	income generation opportunities in
	surrounding have	and security.	the region.
	minimalistic needs as	Leads to economic and psychological growth in	
	the sources of	the region.	
	employment and		
	earning are not		
	significant.		

4.9.5 Health & Related Impacts

S. No.	Variables/ situations of Socio-economic Issues.	Predict (adverse/ favorable) impacts (reasons for variations & bias of representative data).	Mitigation measures.
1.	Loss/ gain of health & fitness	No loss to human health is assessed	Medical camp will be organized for
	in short term (>1) or long term	in the short run (>1), long run (<1).	the Plant workers periodically.
	(<1).	Adequate measures of Human safety	
		will be taken as per the Factories Act,	
		Guidelines.	
2.	Human Rights	No violation of Human Rights. The	The proposed project is/will
	It is clearly stated in as per the	proposed project is/will follow	promote neither selective, nor
	Human Rights, that the	universal respect for, and observance	relative, but universal respect
	obligation of states is to	and protection of, human rights and	through contribution in various
	promote universal respect for,	fundamental freedoms for all.	festivities, equal observance and
	and observance of, culture &		protection among employees and
	religion.		societies at large in all activities.
3	Loss/gain of culture and	No loss of culture and religion is	
	religion	assessed.	

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	CHADTED 4
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4
	ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES

4	Loss/ gain of political	No loss of political institutions is	
	institutions	assessed.	
5	Loss/gain of view by study	No loss of view to the passerby	Adequate landscaping and green belt
	area inhabitants.	around the area.	development is and will be
			maintained in and outside the plant
			premises.
6	Loss/gain of psychological	Use of knowledge in commercial	The Steel Plant and other plant
	impact	activities, bring hope in students at	activities instills a sense of
		the learning stage for higher studies.	employability and opportunity in
			local youth.

4.9.6 Socio Economic Parameter Importance Impact Unit Profile

SPIU Matrix

Socio Economic	Param	Degr	ee of Importanc	e	Magnitude of Impact					
Components	eter	High	(3) Medium (2)	Low (1)	High (<u>+</u> 3)	Medium (<u>+</u>	2) Low (<u>+</u> 1)			
No loss of habitation as it is	30	3	· ·	:	+3	:	:			
proposed project										
Nearest Habitation not in the	25	:	2	:	·	:	-1			
Buffer Zone with respect to										
Wind flow direction										
Direct & Indirect	25	3	:	:	:	+2	:			
Employment opportunities										
Other Local Commercial	10	3	:	:	:	:	+1			
Opportunities										
Local, Regional Growth and	10	3	:	:	:	:	+1			
Development										
No impact Archeological or	10	:	2	:	:	:	+1			
protected monuments in										
10.0 km										
Contribute to meet the rising	5	:	:	1	:	:	+1			
Steel demand at regional										
level.										
No Loss/ gain of culture and	10	3	:	:	+3	:	:			
religion.										
No Mixing up of Religious &										
Cultures										
Project not inviting										

0)/:	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CVIADEDD 4	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES	
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES	

Immigration of ethnic groups							
No Loss of self esteem of	5	:	:	1	-	-	+1
locals							
Project not delineating	10	3	:	:	:	+2	:
Emigration of ethnic groups							
Project in Oneness with	5	:	2	:	:	+2	:
society/ No Isolation/ No							
Solitude of people/ Favors							
Social Interactions amongst							
human settlement							
CSR/CER done	10	:	2	:	:	+2	:
Brand Equity with Locals							
Noticeable Good Will							
Commitment towards							
Proposed CER							
Total	155			+	⊦670		

<u>SIU:</u> +670 <u>PIU</u>: 1395

SPIU: +48.02

TABLE-4.7: showing SPIU and its effects on Social Environment

SPIU	Impacts/Effects	SPIU Score	Impacts/Effects			
Score						
	Positive		Negative			
0 to 25	Slightly Positive or Slightly Beneficial	0 to -25	Slightly Negative			
+25 to 50	Moderately positive or Moderately Beneficial	-26 to -50	Moderately Negative			
+50 to 75	Highly Positive or Highly Beneficial	-50 to -75	Highly Negative			
+75 to	Extremely positive or Extremely Beneficial	-75 to -100	Extremely Negative			
100						

4.9.7 Inference of Socio Economic Parameter Importance Impact Unit profile

As there is zero (0) socio-economic threat and no negative impact assessed the proposed project is not harmful. As per the analysis of SIU profile, the regularization of proposed project leads to a Moderately Beneficial Impact with an average **48.02** SE PIIU. The project expansion has a social importance, for the society and local commerce, and will have average positive impact on the socio- economic aspects.

SIU	Inference

١2	N / TANNA A / ILLEFT I DAN DAN A / A / A / A /	
"-	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	ave perpe
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES

+25 to +50	Moderately Beneficial Impact (MB)/ Moderate positive Impact (MP)
	These are actions that create or have a potential to create benefits in the
	community due to its long-term effect. Generally the beneficial impacts are
	of permanent nature with significant quantities.

4.9.8 Socio - Economic Impact

- ➤ The project is investing in social responsibilities and doing the good work with public faith.
- ➤ Approx 62 local workers is/will get employment opportunties alongwith periodical training to generate local skills due to the proposed project.
- ➤ New patterns of indirect employment/ income through value chain involving warehousing, logistics, and CER.
- ➤ Permanent structures for employment creation with local people involvement through establishment of income generating activities.

The major thrust areas	are Activities as per the Notification
Medical & Health	➤ Eradicating hunger, poverty and malnutrition, promoting
School/ Education	preventive health care and sanitation and making available
Livelihood Promotion	safe drinking water.
> Infrastructure work	> Promoting education, including special education and
Drinking Water	employment enhancing vocation skills, especially among
Environment	children, women, elderly, and the differently - abled and
Social	livelihood.
	Rural development projects.
	➤ Ensuring environmental sustainability, ecological balance,
	protection of flora and fauna, animal welfare, agro-forestry,
	conservation of natural resources and maintaining quality
	of soil, air and water.

4.10 EVALUATION FOR ALTERNATIVE SCENARIOS

4.10.1 EIA WITHOUT EMP

Table 4.8: Anticipated Environmental Impacts due to Operation Phase (without EMP)

Project activities likely to affect environmental components

	· · · · · · · · · · · · · · · · · · ·
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	GVA PERDA A
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES

Environmental components likely to be affected		Transportation of Raw Material /Finished Goods	Raw material use & Handling	Emission from processes	Emission from Machinery	Emission from DG Sets	Energy demand	Industrial Effluent from processes	Solid wastes from processes	Water extraction for processes	Greenbelt Development	Employment generation	Total impact
Air quality	M	-3	-2	-2	-1	-2	-2	-1	-1	-1	2	-1	-31
	I	3	2	3	2	2	3	1	1	1	2	1	
Noise and Vibration	M	-1	-1	-1	-1	-1	-1				2	-1	-3
vibration	I	1	1	1	1	1	1				2	1	
Traffic	M	-2									2	-1	1
	I	1									2	1	
Surface water	M	-1							-1			-1	-3
	I	1							1			1	
Ground water	M						-2			-3			-13
	I						2			3			
Soil quality /	M	-1	-1		-1				-1	-1	1		-5
erosion	I	1	1		1				1	1	1		
Land use	M	-1	-1		-1				-1	-1			-6
pattern	I	1	1		1				1	1			
Terrestrial and	M	-1					-1		-1	-1	1	-1	-4
Aquatic Habitat	I	1					1		1	1	1	1	
Flora and	M	-1	-1	-1	-1		-2	-1	-1		2	-1	-9
Fauna	I	2	1	2	1		2	1	1		2	1	
Aesthetics	M	-2	-1	-2	-1		-2	-1	-1	-2	2		-17
	I	2	1	2	1		2	1	2	2	2		
Occupation	M	-1	-1	-2	-2	-1	-2	-1	-1		2	-1	-14
Health and Safety	I	2	1	2	2	1	2	1	1		2	1	
Resettlement &	M												0
Rehabilitation	I												
Socio-	M	-2	-1	-1	-1		-1	1	1		2	2	-1

0

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

_		
) /3	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	avanama 4
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES

economic Environment	I	2	2	2	2		2	1	2		2	2	
Economy, trade	M	2	2				2	1	1	1		2	23
and commerce	I	3	2				2	1	1	1		3	
Total action impa	ct	-22	-8	-19	-13	-6	-	-2	-6	-16	30	3	-81
							2						
							2						

This scenario was based upon the assumption that the proposed development would go ahead without any environmental management options being implemented. The total project impact for the scenario, as can be seen in above, was found to be -81 on a scale of (+/-) 2464. The score on a scale of (+/-) 100 for this scenario was found to be -3.29, which is on the minimally adverse side. This shows that if the project goes ahead without an EMP, the adverse impact on the existing environment would be several times that of the impact without the project. Thus, the EMP described in chapter 6 will have to be implemented to minimise the potential negative impact due to the proposed activity.

4.10.2 EIA WITH EMP

Table 4.9: Anticipated Environmental Impacts due to Operation Phase (with EMP)

Environmental components likely to be				Project activities likely to affect environmental components								
affected		Transportation of Raw Material /Finished Goods	Raw material use & Handling	Emission from processes	Emission from Machinery	Energy demand	Industrial Effluent from processes	Solid wastes from processes	Water extraction for processes	Employment generation	Green Area Development	Total impact
Air quality	M	-1	-1	-1	-1	-1	-1		-1	-1	2	-3
	I	1	1	1	2	1	1		1	1	3	
Noise and Vibration	M	-1	-1	-1	-1	-1				-1	2	0
	I	1	1	1	1	1				1	3	
Traffic	M	-1								-1	2	4
	I	1								1	4	
Surface water	M	-1						-1		-1		-3

	· · · · · · · · · · · · · · · · · · ·
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND MITIGATION MEASURES

	I	1						1		1		
Ground water	M					-2			-3			-13
	I					2			3			1
Soil quality /	M	-1			-1			-1	-1		1	-2
erosion	I	1			1			1	1		2	
Land use	M	-1			-1			-1	-1			-4
pattern	I	1			1			1	1			
Terrestrial and	M	-1				-1		-1	-1	-1	1	-2
Aquatic Habitat	I	1				1		1	1	1	3	
Flora and	M	-1	-1	-1	-1	-2	-1	-1		-1	2	-5
Fauna	I	1	1	1	1	2	1	1		1	3	
Aesthetics	M	-2	-1	-2	-1	-2	-1	-1	-2		2	-13
	I	1	1	2	1	2	1	2	2		3	
Occupation Health and	M	-1	-1	-2	-2	-2	-1	-1		-1	2	-12
Safety	I	2	1	2	2	2	1	1		1	3	
Socio-	M	2	1	-1	-1	-1	1	1		2	2	12
economic Environment	I	2	2	2	2	1	1	2		2	2	
Economy, trade	M	3	2			2	1	1	1	3		29
and commerce	I	3	2			2	1	1	1	3		
Total action impa	ict	1	1	-13	-13	-16	-2	-5	-16	6	4 7	-12

If the environmental management strategies discussed in Chapter 6 is fully implemented, the adverse impact of the project would be reduced, and there will be an overall improvement in physical, chemical, biological and socio-economic environment of the region. This is reflected in the total project impact score of -12 on scale of (+/-) 2080, as shown in the Table with EIA, for this scenario. The score on a scale of (+/-) 100 for this scenario was found to be -0.57, which is on the minimally adverse. Therefore, the proposed activity will be beneficial for the environment of the area, provided the EMP is in place.

Conclusions

With EMP, is/ will strictly adopted and implemented, the adverse impacts will be reduced and the overall environmental quality of the area would improve.

_		
7	NO ITANDA IIU ETTIDA I DALIAA	
۲.,	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	avenum .
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 4 ANTICIPATED ENVIRONMENTAL IMPACT AND MITIGATION MEASURES
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	AND PHILIDATION MEASURES

4.11 IMPACT ON OCCUPATIONAL HEALTH & SAFETY IN OPERATION PHASE

In operational phase, the all possible measures will be taken for the occupational health and safety. The PPE's, Medical checkups will be periodically in operational phase. Hence no impact is envisaged.

NDW WEETTI DAI DAI NAA	
PROJECT: DRAFT EIA JEMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 5
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	ANALYSIS OFALTERNATIVES
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

CHAPTER-5 ANALYSIS OF ALTERNATIVES

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 5
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	ANALYSIS OFALTERNATIVES
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

CHAPTER - 5

INDEX

5.1 INTRODUCTION	141
5.2 PROJECT SCENARIO	141
5.3 ALTERNATIVE SITE	141
5.4 TECHNICAL & SOCIAL CONCERN	141
5.5 ALTERNATE TECHNOLOGY	142
5.6 CONCLUSION	142

34 320/38 // 2024 // RESCIBAL PAL WAL
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX
APPLICANT: JYOTI STRIPS PRIVATE LIMITED
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER- 5
ANALYSIS OFALTERNATIVES

CHAPTER-5

ANALYSIS OF ALTERNATIVES (TECHNOLOGY AND SITE)

5.1 INTRODUCTION

This chapter illustrates an alternative analysis, including site and technology, considered for the proposed project.

5.2 PROJECT SCENARIO

No other Project site was examined/considered as the project site is already converted for industrial use.

5.3 ALTERNATIVE SITE

No other Project site was examined/considered as the project site is already converted for industrial use which lies is located at # Kila No. 4 to 24, Prithla - Tatarpur Road, Village Tatarpur, Palwal, Haryana. The site is suitable for proposed project based on following technical considerations:

- No Rehabilitation and Resettlement
- Flat terrain and soil strength
- > Better connectivity via road, and railway line.
- Un-Interrupted power & water supply
- Availability of infrastructure
- ➤ Availability of manpower (Local people)
- ➤ No notified ecologically sensitive areas in vicinity of around 10 km radius.
- No major archaeological / Historical site is located around 10 km radius.
- ➤ No notified ecologically sensitive areas in vicinity of around 10 km radius.
- No major archaeological / Historical site is located around 10 km radius.

The proposed plant site has facilitate with infrastructure, road access to the site for ease of logistics and transportation to project site and fuel etc.

5.4 TECHNICAL & SOCIAL CONCERN

The only concern technically due to the proposed operation particulate emission from the operation i.e., from Boiler and pickling plant, this is also largely controlled by air pollution control system in the form of Twin type fume scrubber which is proposed to be installed to

141

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 34/120/2024/RECTIBN PALWAL

_					
	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 5			
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	ANALYSIS OFALTERNATIVES			
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119				

control the dust/ Particulate matter) and does not pose any concern to the pollution on ambient air environment. On the social front there aren't any negative concern, and if at all the existing will only have positive impact on the social fabric of the people or the region.

5.5 ALTERNATE TECHNOLOGY

No alternate technology is considered. The technology already adopted for cold rolling mill complex and it is one of the latest; best economically, environmentally friendly and proven technology.

5.6 CONCLUSION

The operation of the proposed project adopts system to have least impact on the environment, and thus have an overall positive impact on the society and the region.

No.	HSPCB-060001(0014)/9/2024-SOLID) WASTE MANAGEM	ENT CELL-H	ISPCB (Computei	No.	1078
343	2038/ 2024/REGIBIN PALWAL					7

APPLICANT: JYOTI STRIPS PRIVATE LIMITED ENVIRONMENTAL	CHAPTER- 6	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	8,
	ENVIRONMENTAL	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	
DOCUMENT NO EESPL/JSPL/IND/EC/2022-23/119 MONITORING PROGRA	MONITORING PROGRAMME	DOCUMENT NO EESPL/JSPL/IND/EC/2022-23/119	

CHAPTER- 6 ENVIRONMENTAL MONITORING PROGRAMME

33 320/38 PALWA PALWA PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX CHAPTER- 6

APPLICANT: JYOTI STRIPS PRIVATE LIMITED ENVIRONMENTAL MONITORING PROGRAMME

CHAPTER - 6

INDEX

6.1	INTRODUCTION	145
6.2	ENVIRONMENTAL MONITORING	145
6.2.1	OBJECTIVES OF MONITORING	145
6.2.2	MONITORING AND REPORTING PROCEDURE	146
6.2.2.1	Air Pollution and Meteorological Aspects	146
6.2.2.2	Wastewater Quality	146
6.2.2.3	Noise Levels	147
6.2.2.4	Monitoring Equipment and Consumables	147
6.3	ENVIRONMENTAL MONITORING DURING CONSTRUCTION PHASE	147
6.4	MONITORING SCHEDULE DURING OPERATIONAL PHASE	149
6.5	COST PROVISION FOR ENVIRONMENTAL MEASURES	152
6.6	INFRASTRUCTURE FOR ENVIRONMENTAL MONITORING	153
6.7	INSTITUTIONAL ARRANGEMENTS FOR ENVIRONMENT PROTECTION	AND
	CONCEDUATION	15/

33 120/38/2024/REGIBN PALWAL
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX CHAPTER- 6 APPLICANT: JYOTI STRIPS PRIVATE LIMITED ENVIRONMENTAL DOCUMENT NO.- EESPL/JSPL/IND/EC/2022-23/119 MONITORING PROGRAMME

CHAPTER - 6

ENVIRONMENTAL MONITORING PROGRAMME

6.1 **INTRODUCTION**

The Environmental Monitoring Programme is an integral part of Environmental Management System aimed to validate the environmental impacts, predictions and the effectiveness of mitigation measures.

Environmental Monitoring Program is execute to verify the accuracy of the environmental assessment for the Project and will be implemented during the construction and operational phase.

Depending on the nature of a project, during the construction and operation phase, environmental impacts will cause a change in the environment that is caused directly or indirectly by the activities associated with the proposed project.

In order to fully understand any potential changes in the environment, it is necessary to characterize the environmental conditions prior to any Project associated activities.

The purpose of monitoring is to compare the predicted and actual impacts, based on the scale of the impact and their prediction. The results of monitoring will be used to manage the environment, to assess the impacts so that preventive action will be taken.

6.2 **ENVIRONMENTAL MONITORING**

The Environmental Monitoring is important in terms of evaluating the performance of Pollution Control Equipments will be installed in the plant. The sampling and analysis of the environmental parameters will be carried out as per the guidelines of Central Pollution Control Board (CPCB). The frequency of sampling and location of sampling will be as per the directives of CPCB. Regular monitoring programme of the environmental parameters is essential to take into account the changes in the environment.

6.2.1 **OBJECTIVES OF MONITORING**

The objectives of monitoring are to: -

- > To determine impact and prediction of the natural environment in order to select sampling station and frequencies;
- > To determine the feasibility cost of a monitoring programme;
- Generation of baseline data to assess the potential impacts;
- > To assess the effectiveness of Pollution Control Measures.
- (a) Verifying the accuracy of the environmental assessment of a project, and

3	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 6	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	ENVIRONMENTAL	
	DOCUMENT NO EESPL/JSPL/IND/EC/2022-23/119	MONITORING PROGRAMME	

(b) Determining the effectiveness of any measures taken to mitigate the adverse environmental effects of the project".

The attributes, which require regular monitoring, is as given below: -

- 1. Air quality:
- 2. Water and wastewater quality;
- 3. Noise levels;
- 4. Soil quality;
- 5. Plantation.

6.2.2 MONITORING AND REPORTING PROCEDURE

Regular monitoring is for crucial environmental parameters are of immense importance to assess the status of environment during operational phase. With the knowledge of baseline conditions, the monitoring program will serve as an indicator for any deterioration in environmental conditions due to operational phase and suitable mitigation steps will be taken in time to safeguard the environment. Environment Monitoring is as important as that of control of pollution since the efficiency of control measures will be determined by monitoring. The following routine monitoring program will be implemented under the post project monitoring. The proposed monitoring program is given below: -

6.2.2.1 Air Pollution and Meteorological Aspects

Both ambient air quality and stack emissions will be monitored. The ambient air quality will be monitored once in three months in the work zone, at the DG set location and surroundings through a reputed environmental laboratory recognized by CPCB/ NABL/ MoEF&CC. Similarly, the stack monitoring will be carried out once in three months and the results will be submitted to the Regional Office of IRO (MoEF&CC), once in a six month.

6.2.2.2 Wastewater Quality

The industrial and domestic waste water generated from the project will be monitored once in a three month for physico-chemical characteristics and same will be recycle in the process maintain the ZLD (Zero Liquid Discharge) from the plant site.

6	#2002##BEFEIRINI DAI WA		=
20/	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 6	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	ENVIRONMENTAL	
	DOCUMENT NO EESPL/JSPL/IND/EC/2022-23/119	MONITORING PROGRAMME	

6.2.2.3 Noise Levels

Noise levels near at work zone and the DG sets will be monitored once in three months. The results of noise monitoring will help to implement the proper and adequate measure at plant for the effectiveness of noise reduction measures.

6.2.2.4 Monitoring Equipment and Consumables

A well-equipped laboratory with consumable items will be established for monitoring of environmental parameters. Alternatively, monitoring will be outsourced to a recognized laboratory.

6.3 ENVIRONMENTAL MONITORING DURING CONSTRUCTION PHASE

The Environmental Monitoring Cell of the construction team will be coordinating all the monitoring programs during the construction phase of the proposed project. The proposed monitoring schedule during the construction phase of the project is as given below:-

Table No. 6.1: Environmental Monitoring Schedule during Construction Phase

S. No.	Potential	Action to be Followed	Parameters for	Frequency of
	Impact	Impact		Monitoring
1	Air	All equipments are operated within	Random checks of	Periodic
	Emissions	specified design parameters.	equipment logs/	
			manuals.	
		Vehicle trips to be minimized to the	Vehicle logs	Periodic during
		extent possible		site clearance &
				construction
				activities
		Any dry, dusty materials stored in	Absence of	Periodic during
		sealed containers or prevented from	stockpiles or open	construction
		blowing.	containers of dusty	activities
			materials.	
Am		Ambient air quality within the	The premises of the	As per CPCB
prer		premises of the proposed unit to be	proposed unit to be	requirement or on
monitored.		monitored.	monitored. PM_{10} ,	monthly basis
			PM _{2.5} , SO ₂ , NOx, CO,	whichever is
			VOC and HC.	earlier

33 PO/33 PALWAL
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX
APPLICANT: JYOTI STRIPS PRIVATE LIMITED
DOCUMENT NO.- EESPL/JSPL/IND/EC/2022-23/119
CHAPTER- 6
ENVIRONMENTAL
MONITORING PROGRAMME

2	Noise	List of all noise generating machinery	Equipment logs,	Regular during
		onsite along with age to be prepared.	noise reading	construction
		Equipment to be maintained in good		activities
		working order		
		Night working is to be avoided.	Working hour	Daily records
			records	
		Generation of vehicular noise	Maintenance of	
			records of vehicles	
		Implement good working practices	Site working	Periodic during
		(equipment selection and siting) to	practices records,	construction
		minimize noise and also reduce its	noise reading	activities
		impacts on human health (ear muffs,		
		safe distances, and enclosures).		
		No machinery running when not		Periodic during
		required.	0/,	construction
				activities
		Acoustic mufflers/ enclosures to be	Mufflers/ enclosures	Prior to use of
		provided in large engines	will be in place.	equipment.
		Noise to be monitored in ambient air	Spot Noise recording	As per CPCB
		within the plant premises.		requirement or on
				quarterly basis
				whichever is
				earlier
		All equipments operated within	Random checks of	Periodic during
		specified design parameters.	equipment logs/	construction
			manuals	activities
		Vehicle trips to be minimized to the	Vehicle logs	Periodic during
		extent possible		construction
				activities
3	Wastewater	No untreated discharge	Domestic waste	Periodic during
	Discharge		water to be	construction
			Discharge though	activities
			soak pit followed by	
			septic tank	

3,	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 6	_
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	ENVIRONMENTAL	
	DOCUMENT NO EESPL/JSPL/IND/EC/2022-23/119	MONITORING PROGRAMME	

4	Soil Erosion	Minimize area extent of construction	Construction site	Periodic during	
		site by staying within the defined	boundaries not	construction	
		boundaries	extended / breached	activities	
			as per planned		
			document		
5	Waste	Implement waste management plan	Integrate with waste	Periodic check	
	Management	that identifies and characterizes every	management plan	during	
		waste arising associated with		construction	
		proposed construction activities and		activities	
		which identifies the procedures for			
		collection, handling & disposal of each			
		waste arising.			
6	Non-routine	Plan to be drawn up, considering	Mock drills and	Periodic during	
	events and	likely emergencies and steps required	records of the same	construction	
	accidental	to prevent/limit consequences.		activities	
	releases				
7	Health	Employee and migrant labour health	All relevant	Regular check up	
		check ups	parameters		
			including HIV		
8	Flora and	Vegetation development as per Forest	No. of plants, species	During site	
	fauna	guidelines		clearance phase	

6.4 MONITORING SCHEDULE DURING OPERATIONAL PHASE

During operational stage, particulates will be main source of pollutant from both point sources and fugitive emissions. Along with the above the Boiler, Pickling plant and D.G. sets are also a potential source of emission. Following attributes which merit regular monitoring based on the environmental setting and nature of project activities are listed below:

- Source emissions and ambient air quality;
- Groundwater Levels and ground water quality;
- Water and wastewater quality (water quality, effluent & sewage quality etc);
- Soil quality;
- Noise levels (equipment and machinery noise levels, occupational exposures and ambient noise levels);
- Ecological preservation and afforestation.

The following routine monitoring programme as detailed in as under will be implemented at site. Besides to this monitoring, the compliances to all environmental

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CITA DEED C
FROIECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 6
,	*******
APPLICANT: IYOTI STRIPS PRIVATE LIMITED	ENVIRONMENTAL
APPLICANT: JIUIT STRIPS PRIVATE LIMITED	ENVIRONMENTAL
,	
DOCHMENT NO. FECDI /ICDI /IND /FC /2022 22 /440	
DOCUMENT NO EESPL/JSPL/IND/EC/2022-23/119	MONITORING PROGRAMME

clearance conditions and regular permits from SPCB/MOEF&CC will be monitored and reported periodically.

Table No. 6.2: Environmental Monitoring During Operational Phase

S. No.	Potential	Action to be Followed	Parameters for	Frequency of	Location
	Impact		Monitoring	Monitoring	
1	Air Emissions	Ambient Air Quality	PM, SO ₂ , NOx & CO	Once in	At least four
		Monitoring		Quater	locations
		1 location at project site			
		Exhaust from Vehicles	Vehicle logs to be		
		> Use of fuel-efficient	maintained		
		vehicles			
		Maintenance of vehicles			
		> Use of only PUC			
		certified vehicles.			
		Stack monitoring	PM, SO ₂ , NO _x & CO	Once in	Point sources
				Quater	
2	Noise	Noise generated from	Spot Noise Level	Once in a	Near Main
		various plant operations,	recording; L_{eq}	Quater	gate,
		vehicular to be optimized	(night), L_{eq} (day), L_{eq}		Near Process
		and monitored	(dn)		area, DG etc.
		Generation of vehicular	Maintain records of	Periodic	
		noise	vehicles	during	
				operation	
				phase	
3	Wastewater	No untreated discharge to	No discharge hoses	Periodic	
	Discharge	be made to surface water,	in vicinity of	during	
		groundwater or soil.	watercourses.	operation	
				phase	
		Take care in disposal of	Discharge norms for	Discharge	ETP discharge
		wastewater generated such	effluents will be	norms for	water
		that soil and groundwater	maintained	effluents will	
		resources are protected		be maintained	
		Compliance of treated	pH, TSS, TDS, BOD,	Periodic	One location
		wastewater usage/	COD, Oil & grease	during	(Treated
		discharge to standards		operation	Wastewater)
				phase	
4	Drainage	Ensure drainage system	Visual inspection of	Periodic	
	and	and specific design	drainage and	during	

150

#2002###EFFEIRIN: DAI \A/AI	
PROJECT: DRAFT EIA 7EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 6
ADDI ICANT: IVOTI STDIDS DDIVATE I IMITED	ENVIRONMENTAL
ATTEICANT. JIOTI STRIFT STRIVATE EMITTED	LIVIRONNENTAL
DOCUMENT NO - FESDI /ISDI /IND/FC/2022-23/119	MONITODING DROCDAMME
DOGGNER I NO. BEST E/JOT E/IND/EG/EGE ES/117	MONITORING PROGRAMME
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX APPLICANT: JYOTI STRIPS PRIVATE LIMITED DOCUMENT NO EESPL/JSPL/IND/EC/2022-23/119	CHAPTER- 6 ENVIRONMENTAL MONITORING PROGRAMME

S. No.	Potential	Action to be Followed	Parameters for	Frequency of	Location
	Impact		Monitoring	Monitoring	
	effluent	measures are working	records thereof	operation	
	Management	effectively.		phase	
		Design to incorporate			
		existing drainage pattern			
		and avoid disturbing the			
		same.			
5	Water Quality	Monitoring used water	Comprehensive	Quality -twice	Four locations
	and Water	quality & groundwater	monitoring as per IS	a year	surrounding
	Levels	quality and levels	: 10500	Level-	project site
			Groundwater level	Quaterly	
			bgl		
6	Energy Usage	Energy usage for air-	Energy audit report	Annual audits	
		conditioning and other		and periodic	
		activities to be minimized		checks during	
		Conduct annual energy		operational	
		audit for the buildings		phase	
7	Emergency	Fire protection and safety	Mock drill records,	Periodic	
	preparedness,	measures to take care of	on site emergency	during	
	such as fire	fire and explosion hazards,	plan, evacuation	operation	
	fighting	to be assessed and steps	plan	phase	
		taken for their prevention.			
8	Maintenance of	Vegetation, Plantation /	No. of plants,	Periodic	
	flora and fauna	green cover development	species	during	
				operation	
				phase	
9	Solid and	Implement waste	Records of solid	Periodic	
	Hazardous	management plan that	waste generation,	during	
	Waste	identifies and characterizes	treatment and	operation	
	Management	every waste arising	disposal	phase	
		associated with proposed			
		activities and which			
		identifies the procedures			
		for collection, handling &			
		disposal of each waste			
		arising.			
10	Health	Employees and migrant	All relevant	Regular check	All workers

3 // 202 PRO	PA/RECEIDAL PALWAL JECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 6
APP	LICANT: JYOTI STRIPS PRIVATE LIMITED	ENVIRONMENTAL
DOC	CUMENT NO EESPL/JSPL/IND/EC/2022-23/119	MONITORING PROGRAMME

S. No.	Potential	Action to be Followed	Parameters for	Frequency of	Location
	Impact		Monitoring	Monitoring	
		labour health check ups	parameters	ups	
			> Routine Blood		
			Examination.		
			Microscopic;		
			Biochemistry.		
			> Routine Urine		
			Examination.		
			> Lung function		
			test.		
			> Sputum		
			examination		
			Audiometery		
			> X-ray		
			➤ ECG		
11	Flora and fauna	Vegetation development as	No. of plants,	During site	Project Site
		per Forest guidelines	species	operational	and nearby
				phase	areas.

6.5 COST PROVISION FOR ENVIRONMENTAL MEASURES

For environment protection, management, pollution control, treatment and monitoring systems, appropriate budgetary provision would be made and provision for recurring expenditure for environment management of the project would be made. The details of budget allocation during functional phase are given in Table no. 6.3.

Table No. 6.3: Cost Provision for Environmental Measures

S. No.	Description of Item	Proposed capital cost (Lacs)	Proposed Recurring cost (Lacs)	Total proposed Capital Cost (Lacs)	Total proposed Recurring Cost (Lacs)	Remarks
1	Air Emission mitigation measure adopted for point source, area source and line source	1500	500	1500	500	Twin type fume scrubber, Water sprinkling
2	Water discharge mitigation measures to maintain ZLD with effectiveness	200	20	200	20	MEE with MBR technology will be proposed
3	Rain water Harvesting	200	20	200	20	
4	Plantation Development	100	10	100	10	

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

		· · · · · · · · · · · · · · · · · · ·
3,	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 6
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	ENVIRONMENTAL
	DOCUMENT NO EESPL/JSPL/IND/EC/2022-23/119	MONITORING PROGRAMME

5	Fire fighting	1500	150	1500	150	Firefighting
						equipments as
						per NBC code
						are installed
						and FIRE NOC
						will be
						obtained.
6	Corporate	500	50	500	50	Reduction of
	Environmental					carbon and
	Responsibility					emission
	*Any activity desired in					trading will be
	the Final EIA /EMP					projected
	report will be added.					* '
	Total	4000	770	4000	770	

6.6 INFRASTRUCTURE FOR ENVIRONMENTAL MONITORING

Following equipment and consumable items are already available at the project site to implement the monitoring program as given in as under: -

Table No. 6.4: Proposed Equipment for Environmental Monitoring

Name of Equipment	Purpose
Fine Dust Sampler/ Respirable Dust Sampler	AAQ monitoring
Automatic weather monitor	Meteorological data collection at site
Sound level meter	Noise levels
UV - Spectro photometer	Chemical analysis
pH meter	pH analysis
Pipette box	Chemical analysis
Titration set up	Chemical analysis
Relevant Chemicals	Chemical analysis
Stack monitoring kit	Stack Monitoring
CO and HC monitor	AAQ monitoring
Online VOC analyser	AAQ Monitoring

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 6
,,	
APPLICANT: IYOTI STRIPS PRIVATE LIMITED	ENVIRONMENTAL
- ,	
DOCUMENT NO EESPL/JSPL/IND/EC/2022-23/119	MONITORING PROGRAMME

6.7 INSTITUTIONAL ARRANGEMENTS FOR ENVIRONMENT PROTECTION AND CONSERVATION

It is necessary to have a permanent organizational set up charged with the task of ensuring its effective implementation of mitigation measures and to conduct environmental monitoring. The major duties and responsibilities of Environmental Management Cell shall be as given below:

- > To implement the environmental management plan,
- To assure regulatory compliance with all relevant rules and regulations,
- > To ensure regular operation and maintenance of pollution control devices,
- To minimize environmental impacts of operations as by strict adherence to the EMP,
- ➤ To initiate environmental monitoring as per approved schedule.
- Review and interpretation of monitored results and corrective measures in case monitored results are above the specified limit.
- ➤ Maintain documentation of good environmental practices and applicable environmental laws as ready reference.
- Maintain environmental related records.
- ➤ Coordination with regulatory agencies, external consultants, monitoring laboratories. Environment Management Cell is headed by a Proprietor and constitutes of Manager EHS, Dy. Manager, chemists and helpers. The Organizational Structure of Environment Management cell is presented in Figure 6.0

33 320/38//2024/RECGIBN PALWAL
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX
APPLICANT: JYOTI STRIPS PRIVATE LIMITED
DOCUMENT NO.- EESPL/JSPL/IND/EC/2022-23/119
MONITORING PROGRAMME

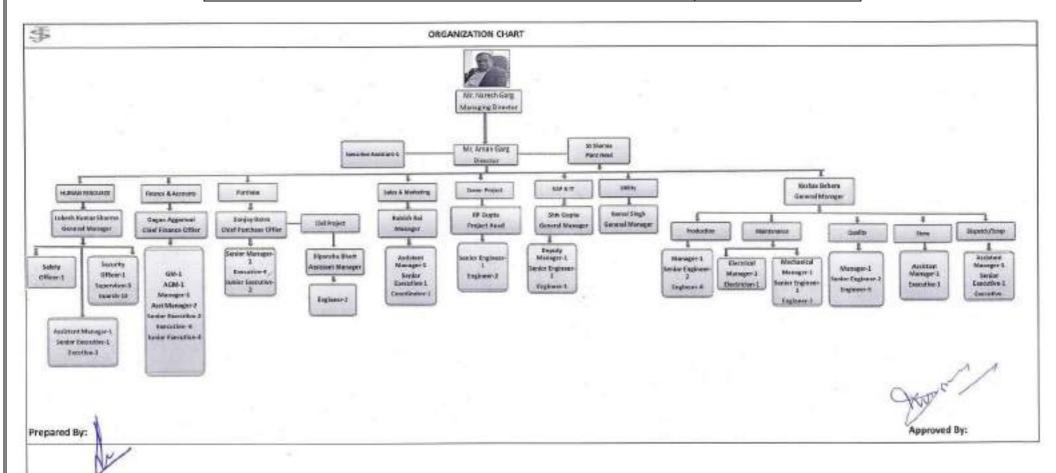


Figure 6.0: Environmental Management Cel

ď	NOW WEETE BIRL DAT WATA	
u	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 7
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	ADDITIONAL STUDIES

CHAPTER-7 ADDITIONAL STUDIES

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

33 TOO 38 / ZO 24 / RETS ISN PAL WATER PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

CHAPTER- 7

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

ADDITIONAL STUDIES

CHAPTER-7

INDEX

7.1	PUBLIC CONSULTATION	159
7.2	RISK ASSESSMENT	159
7.2.1	Introduction	159
7.3	HAZARD/RISK IDENTIFICATION	159
7.3	TYPE OF ACCIDENTS	160
7.4	RISK ASSESSMENT	162
	Risk Prevention Techniques	
7.5.1	Safety and Health Measures	163
	DISASTER MANAGEMENT PLAN	
7.6.1	On- Site Emergency Plan	166
7.6.2	OFF-SITE EMERGENCY PLAN	175

34 320/38 / 2024 / RECEIBN PALWA PROPERT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

CHAPTER- 7

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

ADDITIONAL STUDIES

CHAPTER- 7 ADDITIONAL STUDIES

7.1 PUBLIC CONSULTATION

This is a draft EIA/EMP report submitted for Public Hearing which will be conducted as per EIA Notification 14th September' 2006 and its subsequent amendments.

7.2 RISK ASSESSMENT

7.2.1 Introduction

Risk assessment study includes study of nature of hazards due to the proposed Cold rolling mill complex including operations involved in process. The study includes:

- Preliminary identification of hazardous area of the unit.
- ➤ Identification of accident sequences and consequences
- Visualization and Analysis of Maximum Credible Accidental scenarios.
- > Estimation of damage criteria.
- Study of characteristics of risk levels through study of nature of exposure, pathways and consequences of maximum credible accidental scenarios and presentation of results in terms of risk contours.

Hazard identification provides information on onsite hazardous substances, their nature, quantities and details of storage. Preliminary hazard Identification is used to identify typical and often relatively apparent risk sources and damage events in a system. As each hazard is identified, the potential causes, effects, and severity of accidents and possible corrective and / or preventive measures are also listed.

7.3 HAZARD/RISK IDENTIFICATION

Hazardous Materials to be

handled

Process hazards due to loss of containment during handling of materials or processes resulting in fire, explosion, etc

Mechanical hazards due to "mechanical" operations such as welding, maintenance, falling objects etc. - basically those NOT connected to hazardous materials.

Electrical hazards: electrocution, high voltage levels, short circuit, etc. Out of these, the material and process hazards are the one with a much wider damage potential as compared to the mechanical and electrical hazards, which are by and large limited to very

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 7
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	ADDITIONAL STUDIES

small local pockets.

7.3 TYPE OF ACCIDENTS

A. Erection / Commissioning

During erection stage, most of the accidents occur due to;

- Human errors (unsafe acts and unsafe conditions)
- Improper laying of cables
- Improper Housekeeping (keeping combustible material near welding / gas cutting operations)
- Material handling
- Handling of tools
- Working at heights/elevated levels
- Material handling with equipments like crane, hydraulic pay loaders, JCB, Proclain
- Earth moving and filling
- Unsafe electrical practices

B. Process Operations

The excessive pressure may lead to serious injuries at the site.

- Malfunctioning of equipment
- Power failures
- Failure to take corrective steps in time.
- Failure of utilities
- System failure
- Ageing of erection equipments
- Improper communication

C. Storage and Transfer Operations

- Accidents due to mechanical failure and external impacts.
- Static electricity
- Thunder and lightning
- On the job

7.3.1 Accidents

• In the cold rolling industry, large amounts of material are processed, transported and conveyed by massive equipment that dwarfs that of most industries. Steel works typically have sophisticated safety and health programmes to address hazards in an

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

"PKOJECT: DRAFT EIA JEMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 7
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	ADDITIONAL STUDIES

and maintenance practices, safe job procedures, worker training and use of personal protective equipment (PPE's) is usually required to control hazards.

- Burns may occur at many points in the process: at the front of the tunnel kiln
- Mechanical transport is essential in cold rolling mill but exposes workers to potential struck-by and caught- between hazards. Overhead travelling cranes are found in almost all areas of steel works. Most large works also rely heavily on the use of fixedrail equipment and large industrial tractors for transporting materials.
- operation of the crane and rigging of loads to prevent dropped loads; good communication and use of standard hand signals between crane drivers and slingers to prevent injuries from unexpected crane movement; inspection and maintenance programs for crane parts, lifting tackle, slings and hooks to prevent dropped loads; and safe means of access to cranes to avoid falls and accidents on crane transverse ways.
- Maintaining proper clearance for passage of large industrial tractors and other
 equipment and preventing unexpected start-up and movement are necessary to
 eliminate struck-by, struck-against and caught-between hazards to equipment
 operators, pedestrians and other vehicle operators. Programmes are also necessary
 for inspection and maintenance of equipment safety appliances and passageways.
- Good housekeeping is a cornerstone of safety in steel works. Floors and
 passageways can quickly become obstructed with material and implements that
 pose a tripping hazard. Large quantities of greases, oils and lubricants will be used
 and if spilled can easily become a slipping hazard on walking or working surfaces.
- Sharp engines or burns on steel products or metal bands pose laceration and puncture hazards to workers involved in finishing, shipping and scrap-handling operations. Cut-resistant gloves and wrist guards will be often used to eliminate injuries.
- Foreign-body eye hazards will be prevalent in most areas, especially in raw material handling and steel finishing, where grinding, welding and burning will be conducted.
- Programmed maintenance is particularly important for accident prevention. Its
 purpose is to ensure the efficiency of the equipment and maintain fully operative
 guards, because failure may cause accidents. Adhering to safe operating practices
 and safety rules is also very important because of the complexity, size and speed of
 process equipment and machinery.

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

'O	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
-	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 7
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	ADDITIONAL STUDIES

7.4 RISK ASSESSMENT

Risk is assessed by: -

- Identification of potential hazard areas;
- Identification of representative failure cases;
- Visualization of the resulting scenarios in terms of fire (thermal radiation) and explosion;
- Assess the overall damage potential of the identified hazardous events and the impact zones from the accidental scenarios;
- Assess the overall suitability of the site from hazard minimization and disaster mitigation point of view;
- Furnish specific recommendations on the minimization of the worst accident possibilities; and
- Preparation of broad Disaster Management Plan (DMP), On-site and Off-site Emergency Plan, which includes Occupational Health and Safety Plan.
- Identifying potential risks to local people and local resources in the event of an emergency.

7.4.1 Risk Assessment Summary

The preliminary risk assessment has been completed for the proposed cold rolling mill and associated facilities and the broad conclusions are as follows:

- There will be no significant community impacts or environmental damage consequences; and
- The hazardous event scenarios and risks in general at this facility can be adequately
 managed to acceptable levels by performing the recommended safety studies as part of
 detailed design, applying recommended control strategies and implementing a Safety
 Management System.

7.5 Risk Prevention Techniques

- Education and awareness
- Training Programmes
- Best practices Risk Based Maintenance Planning
- Hazard identification
- Quantitative Hazard Assessment
- Probabilistic Hazard Assessment
- Risk Quantification

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 7
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	ADDITIONAL STUDIES

- Risk evaluation
- Setting up risk acceptance criteria
- Risk comparison
- Maintenance planning

7.5.1 Safety and Health Measures

Safety organization

- Safety organization is of prime importance in cold rolling industry, where safety depends so much on workers' reaction to potential hazards. The first responsibility for management is to provide the safest possible physical conditions, but it is usually necessary to obtain everyone's cooperation in safety programmes. Accident-prevention committees, workers' safety delegates, safety incentives, competitions, suggestion schemes, slogans and warning notices can all play an important part in safety programmes. Involving all persons in site hazard assessments, behavior observation and feedback exercises can promote positive safety attitudes and focus work groups working to prevent injuries and illnesses.
- Accident statistics reveal danger areas and the need for additional physical protection as well as greater stress on housekeeping. The value of different types of protective clothing will be evaluated and the advantages can be communicated to the workers concerned.

Training

• Training will include information about hazards, safe methods of work, avoidance of risks and the wearing of PPE. Before new methods or processes will be introduced, it may be necessary to retrain even those workers with long experience. Training and refresher courses for all levels of personnel are particularly valuable. They will be familiarized personnel with safe working methods, unsafe acts to be proscribed, safety rules and the chief legal provisions associated with accident prevention. Training will be conducted by experts and will make use of effective audio-visual aids. Safety meetings or contacts will be held regularly for all persons to reinforce safety training and awareness.

Engineering and administrative measures

All dangerous parts of machinery and equipment will be securely guarded. A
regular system of inspection, examination and maintenance is necessary for all
machinery and equipment of the plant, particularly for cranes, lifting tackle, chains

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

שב	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 7
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	ADDITIONAL STUDIES

and hooks. An effective lockout/tagout programme will be in operation for maintenance and repair. Defective tackle will be scrapped. Safe working loads will be clearly marked, and tackle not in use will be stored neatly. Means of access to overhead cranes will, where possible, be by stairway. If a vertical ladder must be used, it will be hooped at intervals. Effective arrangements will be made to limit the travel of overhead cranes when persons will be at work in the vicinity.

There is a never-ending need for good housekeeping. Falls and stumbles caused by
obstructed floors or implements and tools left lying carelessly. All materials will
be carefully stacked, and storage racks will be conveniently placed for tools. Spills
of grease or oil will be immediately cleaned. Lighting of all parts of the shops and
machine guards will be of a high standard.

Industrial hygiene

- Good general ventilation throughout the plant and local exhaust ventilation (LEV)
 wherever substantial quantities of dust and fumes will be generated or gas may
 escape are necessary, together with the highest possible standards of cleanliness
 and housekeeping.
- With a view to improving the work environment, induced ventilation will be installed to supply cool air. Local blowers may be located to give individual relief, especially in hot working places. Heat protection can be provided by installing heat shields between workers and radiant heat sources, Acclimatization leads to natural adjustment in the salt content of body sweat. The incidence of heat affections may be much lessened by adjustments of the workload and by well-spaced rest periods, especially if these are spent in a cool room, air-conditioned if necessary. Light meals will to be preferred during working hours. Salt replacement is needed for jobs involving profuse sweating and is best achieved by increasing salt intake with regular meals.
- Wherever possible, sources of noise will be isolated. Remote central panels remove some operatives from the noisy areas; hearing protection will be required in the worst areas. In addition to enclosing noisy machinery with sound-absorbing material or protecting the workers with sound-proofed shelters, hearing protection programmes have been found to be effective means of controlling noise-induced hearing loss.

Personal protective equipment

• All parts of the body are at risk in most operations, but the type of protective wear ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

м	NOW WEEKEIRING DAI WAA	
-	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 7
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	ADDITIONAL STUDIES

required will vary according to the location. Those working at furnaces need clothing that protects against burns-overalls of fire-resisting material, spats, boots, gloves, helmets with face shields or goggles against flying sparks and also against glare. Safety boots, safety glasses and helmets are imperative in almost all occupations and gloves are widely necessary. Strict supervision and continuous propaganda are necessary to ensure that personal protective equipment is worn and correctly maintained.

Medical supervision

- Pre-placement medical examinations are of great importance in selecting persons suitable for the arduous work in iron and steel making. For most work, a good physique will be required: hypertension, heart diseases, obesity and chronic gastroenteritis disqualify individuals from work in hot surroundings. Special care will be needed in the selection of crane drivers, both for physical and mental capacities.
- Medical supervision will pay particular attention to those exposed to heat stress; periodic chest examinations will be provided for those exposed to dust, and audiometric examinations for those exposed to noise; mobile equipment operators will also receive periodic medical examinations to ensure their continued fitness for the job.

Table 7.4: Details of Personnel Protective Equipment

S. No.	Equipment
1.	Helmet
2.	Shoes
3.	Apron
4.	Ear plug
5.	Mask
6.	Goggle
7.	Gloves
8.	Spats

7.6 DISASTER MANAGEMENT PLAN

Rapid development has posed wide-ranging hazards threatening safety and health of people. Accidents may adversely affect the environment and the people living in the vicinity. These accidents can be minimized to a great extent by proper procedures, handling and

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

P(C	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX		
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 7	
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	ADDITIONAL STUDIES	

training but it may be difficult to reach zero risk or absolute safety level. Whenever such incidents do occur in order to prevent loss of lives and damage to property, it becomes necessary to take immediate steps to control the situation. This can be achieved through a planned advance preparation to face such a situation with respect to both on site and off site emergencies.

7.6.1 On- Site Emergency Plan

Name and address of the person furnishing the information

Name - Mr. Rohit Kushwaha

Designation of Occupier: Safety Officer

Address: Ivoti Strips Private Limited

Plot No. Kila No. 4 to 24, Prithla - Tatarpur Road, Village Tatarpur, Palwal, Haryana Mobile

No. -+91-9110067556

Email:- projectnew@jyotistrips.com

a) Objectives

The objective of the On-site Emergency Plan should be to make maximum use of the combined resources of the plant and the outside services to

- Effect the rescue and treatment of casualties
- Safeguard other personnel in the premises
- Minimize damage to property and environment
- Initially contain and ultimately bring the incident under control
- Identify any dead
- Provide for the needs of relatives
- Provide authoritative information to the news media
- Secure the safe rehabilitation of affected areas
- Preserve relevant records and equipment for the subsequent enquiry into the
- cause and circumstances of emergency

b) Action Plans

The Action Plan should consist of:

- Identification of Key Personnel
- Defining Responsibilities of Key Personnel
- Designating Emergency Control Centers and Assembly Points
- Declaration of Emergency
- Sending All Clear Signal

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 7
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	ADDITIONAL STUDIES

• Defining actions to be taken by non-key personnel during emergency

c) Key Personnel

The actions necessary in an emergency will clearly depend upon the prevailing circumstances. Nevertheless, it is imperative that the required actions are initiated and directed by nominated people, each having specified responsibilities as part of coordinate plan. Such nominated personnel are known as Key Personnel.

The Key Personnel are:

- Site Controller (SC)
- Incidental Controller (IC)
- Liaison and Communication Officer (LCO)
- Fire and Security Officer (FSO)
- Team Leaders (TL)

d) Site Controller (SC)

In the emergency situation, decisions have to be taken which may affect the whole or a substantial part of the plant and even places outside. Many of these decisions will be taken in collaboration with the other officers at the plant and the staff. It is essential that the authority to make decision be invested in one individual. In this plan, he is referred to as the 'Site Controller'. The Factory Manager (however called) or his nominated deputy will assume responsibility as SC.

e) Incident Controller (IC)

In the emergency situation, someone has to direct the operations in the plant area and coordinate the actions of outside emergency services at the scene of incident. The one who will shoulder this responsibility is known as 'Incident Controller' in this plan. A Senior Operations Officer or an officer of similar rank of the unit may be nominated to act as the IC.

f) Liaison and Communication Officer (LCO)

Operations Officer or any other officer of deputy rank will work as LCO and will be stationed at the main entrance during emergency to handle Police, Press and other enquiries. He will maintain communication with the IC.

g) Fire and Safety officer (FSO)

The Fire and Safety Officer will be responsible for firefighting. On hearing the fire alarm he shall contact the fire station immediately and advise the security staff in the plant and cancel the alarm. He will also announce on PAS (public Address System) or convey

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

P(C	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX		
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 7	
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	ADDITIONAL STUDIES	

through telephones or messengers to the SC, IC and LCO about the incident zone. He will open the gates nearest to the incident and stand by to direct the emergency services. He will also be responsible for isolation of equipment from the affected zone.

A number of special activities may have to be carried out by specified personnel to control as well as minimize the damage and loss. For this purpose designated teams would be available. Each team will be headed by a Team Leader (TL). Following teams are suggested:

- Repair Team
- Fire Fighting Team
- Communication Team
- Security Team
- Safety Team
- Medical Team

h) Responsibilities of Key Personnel Site Controller (SC)

- On getting information about emergency, proceed to Main Control Centre
- Call in outside emergency services
- Take control of areas outside the plant, which are affected
- Maintain continuous communication, review situation and assess possible course of events
- Direct evacuation of nearby settlements, if necessary
- Ensure that casualties are getting enough help
- Arrange for additional medical help and inform relatives
- Liaison with Fire and Police Services and Provide advice on possible
- effects on outside areas
- Arrange for chronological recording of the emergency
- Where emergency is prolonged, arrange for relieving personnel, their catering needs etc.

168

- Inform higher officials in head office
- Ensure preservation of evidence
- Direct rehabilitation work on termination of emergency

i) Incident Controller (IC)

- On getting emergency information, proceed to Main Control Centre
- Activate emergency procedure such as calling in various teams
- Direct all operations within plant with following priorities:

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 7
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	ADDITIONAL STUDIES

- Control and contain emergency
- Secure safety of personnel
- Minimize damage to plant, property and the environment
- Minimize loss of material
- Direct rescue and repair activities
- Guide fire-fighting teams
- Arrange to search affected area and rescue trapped persons
- Arrange to evacuate non-essential personnel to safe area/assembly point
- Set up communications network and establish communication with SC
- Arrange for additional help/equipment to key personnel of various teams
- Consider need for preserving all records, information for subsequent enquiries

j) Liaison and Communications Officer

- To ensure that casualties receive adequate attention, arrange additional help if required and inform relatives
- To control traffic movements into the plant and ensure that alternative transport is available when need arises
- When emergency is prolonged, arrange for the relief of personnel and organize refreshments/catering facility
- Advise the Site Controller of the situation, recommending (if necessary) evacuation of staff from assembly points
- Recruit suitable staff to act as runners between the Incident Controller and himself if the telephone and other system of communication fail. –Maintain contact with congregation points
- Maintain prior agreed inventory in the Control Room
- Maintain a log of the incident on tape
- In case of a prolonged emergency involving risk to outside areas by windblown materials - contact local meteorological office to receive early notification of changes in weather conditions

k) Fire and Safety Officer

- Announce over the PAS in which zone the incident has occurred and on the advice of the Shift Officer informs the staff to evacuate the assembly
- Inform the Shift Officer In-charge, if there is any large escape of products
- Call out in the following order:

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024 169

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 7
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	ADDITIONAL STUDIES

- 1. Maintenance Officer
- 2. Personnel and Administrative Officer
- 3. Departmental Head in whose area the incident occurred
- 4. Team Leaders (TL)

l) Emergency Control Centre

The Emergency Control Centre will be the focal point in case of an emergency from where the operations to handle the emergency are directed and coordinated. It will control site activities. Emergency management measures in this case have been proposed to be carried from single control Centre designated as Main Control Centre (MCC)

MCC is the place from which messages to outside agencies will be sent and mutual aids and other helps for the management of emergency will be arranged. It will be located in the safe area. It will be equipped with every facility for external and internal communication, with relevant data, personal protective equipments to assist hose manning the centre to enable them to co-ordinate emergency control activities. CC will be attended by SC.

Following facilities would be available in the MCC:

- P&T phones, mobile phones, intercoms, and wireless
- Fax and telex
- Emergency manuals
- Blown up area maps
- Internal telephone directories
- District telephone directories
- Emergency lights
- Wind direction and speed indicator
- Requisite sets of personal protective equipment such as gloves, gumboots and aprons
- MCC will be furnished with call out list of key persons, fire, safety, first aid, medical, security, police and district administrative authorities. MCC will also contain safety data pertaining to all hazardous materials likely to cause emergency and welldefined procedures of fire fighting, rescue operations, first aid etc.

m) Assembly Point

In an emergency, it will certainly be necessary to evacuate personnel from affected areas and as precautionary measure, to further evacuate non-essential workers, in the first instance, from areas likely to be affected, should the emergency escalate. The evacuation will

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 7
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	ADDITIONAL STUDIES

be effected on getting necessary message from i.e. On evacuation, employees would be directed to a predetermined safe place called Assembly Point. Proposed Location: Area opposite to service building will be the Assembly Point where all non-key personnel would assemble on getting direction over Public-Address System. Outdoor assembly points, predetermined and premarket, will also be provided to accommodate evacuees from affected plant area(s). Roll call of personnel collected at these assembly points, indoor and outdoor will be carried out by roll call crew of safety team to account for any missing person(s) and to initiate search and rescue operations if necessary.

n) Declaration of Emergency Mutual Aid

Procedure: All factories may not be equipped with an exhaustive stock of equipment/materials required during an emergency. Further, there may be a need to augment supplies if an emergency is prolonged.

It would be ideal to pool all resources available in the and nearby outside agencies especially factories during an emergency, for which a formal Mutual Aid scheme should be made among industries in the region.

Essential Elements

Essential elements of this scheme are given below:

- Mutual aid must be a written document, signed by Location In-charge of all the industries concerned
- It should specify available quantity of materials/ equipment that can be spared (not that which is in stock)
- Mode of requisition during an emergency.
- It should authorize the shift-in-charge to quickly deploy available material/equipment without waiting for formalities like gate pass etc.
- It should spell out mode of payment/replacement of material given during an emergency
- It should specify key personnel who are authorized to requisition materials from other industries or who can send materials to other industries
- It should state clearly mode of receipt of materials at the affected unit without waiting for quantity/quality verification etc.
- Revision number and validity of agreement should be mentioned
- This may be updated from time to time based on experience gained

Emergency Management Training

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

ľ	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX		
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 7	
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	ADDITIONAL STUDIES	

The Key Personnel would undergo special courses on disaster management. This may preferably be in-plant training. The Factory Managers, Senior Officers and Staff would undergo a course on the use of personal protective equipment. The Key Personnel belonging to various Teams would undergo special courses as per their expected nature of work at the time of emergency. The plant management should conduct special courses to outside agencies like district fire services to make them familiar with the plant layout and other aspects, which will be helpful to them during an emergency

Mock Drills

It is imperative that the procedures laid in this Plan are put to the test by conducting Mock Drills. To avoid any lethality, the emergency response time would be clocked below 2 minutes during the mock drill.

1st Step: Test the effectiveness of communication system

2nd Step: Test the speed of mobilization of the plant emergency teams

3rd Step: Test the effectiveness of search, rescue and treatment of casualties

4th Step: Test emergency isolation and shut down and remedial measures taken on the system

5th Step: Conduct a full rehearsal of all the actions to be taken during an emergency The Disaster Management Plan would be periodically revised based on experiences gained from the mock drills. The on-site emergency organization chart for various emergencies is shown in **Fig 1**.

Fire Fighting System

- Fire water is sourced from the raw water storage tanks of adequate capacity.
- An exclusive pipeline connecting water storage tank and plant area (vulnerable areas) with adequate pump is envisaged to fight any fires.
- Fire water pump containing combination of diesel and electrically driven pumps.
- Portable and mobile extinguishers, such as pressurized water type, carbon dioxide type, foam type, dry chemical powder (DCP) type located at strategic locations throughout the plant.

Table 7.5: Details of Fire Fighting Equipment

S. No.	Particular	Quantity
1.	ABC powder type	46 Nos
	extinguishers	
2.	CO2 Fire type	29 Nos.
	extinguishers	
3.	Sand Bucket	16 Nos.
4.	Main fire pump	2 Nos.
5.	De Driven pump	1 Nos.

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024 172

PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 7
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	ADDITIONAL STUDIES

6.	Jockey pump	2 Nos.

TABLE 7.6: LIST OF EMERGENCY TELEPHONE NUMBERS

\$	EMERGENCY CONTAC	CT NUMBER
Sr. No.	Particulars	Helpline Number
1	Police Station	100
2	Fire Brigade Station	101
3	Ambulance	102
4	Disaster Management	108
5	One Emergency Number	112

Apart from this, all the employees are provided with helmets and safety shoes. It is statutory on the part of the company employees to wear the appropriate safety gear given while attending duty in the factory.

Other safety Measures

Considering that fire and explosion is the most likely hazard in such installations, the plant will provided with systems to guard against such hazards. Salient among these are:

A proper layout to prevent and minimize the effects of any hazardous situation

- Provision of operating systems to conduct the process through well-established safe operating procedures
- Provision of a fire protection system to control fire
- Provision of flame-proof lighting system in the fire prone areas
- The First Aid Medical Centre is proposed. It will be fully equipped with emergency facilities. It will be open round the clock. Adequate number of first aid boxes will be kept at strategic locations. Required stock of first aid medicines will be maintained.

0

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

34 3120/38//2024/RECIBIN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 7
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	ADDITIONAL STUDIES

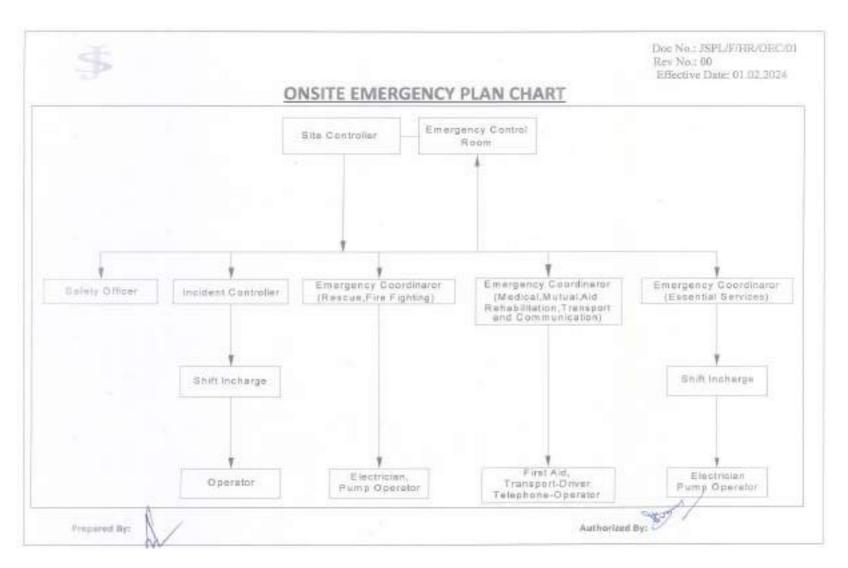


Figure No. 7.2.: On-Site Emergency Organization Chart

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

269

174

3	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 7
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	ADDITIONAL STUDIES

7.6.2 OFF-SITE EMERGENCY PLAN

The off-site emergency plan deals with measures to prevent and control. Emergencies within the factory and not affecting outside public or environment.

a) Fire Services

To combat fire and carry out other emergency operations as per the need In case of fire, the fire brigade is the best help from outside. Even in a disaster not involving fire, the fire brigade could be of good help, inside the plant and outside, in view of their specialized equipments and expertise in rescue and relief.

Responsibilities

- To reach the accident spot as soon as possible with all necessary equipments to extinguish the fire.
- To provide all other necessary help depending on nature of emergency.

b) Police

To manage and control the mob, violence, sabotage or outbreak if any; Cordoning of the area and help in firefighting and other emergency operations.

In case of emergency the police department has a number of functions to perform; these are:

Responsibilities

- Maintain law and order situation near the Depot premises.
- To control the traffic to facilitate the victims to reach hospitals as early as possible.
- To restrict entry of any unauthorized persons.
- To set up communication to assist in disaster management operation.
- To take control of surrounding transport facilities and assist in disaster management operation by shifting injured persons and casualties to nearby hospitals.
- To assist in firefighting and other emergency operations.

c) Hospital

Prompt and efficient medical aid is important in an emergency situation. The first center inside the Depot cannot cope up with all the treatment requirements; the right approach to this problem is to have arrangements with nearby hospitals so that in case of an emergency, services and facilities available with the nearby hospitals can be utilized.

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 7
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	ADDITIONAL STUDIES

Responsibilities

- Depute doctors and nurses to site with ambulance.
- To provide immediate medical relief to casualties.
- Augmentation of equipments, drugs and doctors.
- To provide first aid on the spot to casualties.
- To take all out efforts on war footing to save maximum lives.
- To continue treatment to casualties till all of them are attended and properly shifted to medical centers.

d) Medical Facilities

The nearest medical facilities are available in palwal. The other medical facilities available from outer agencies are as follows:

Antidotes and emergency medicines

General medicine such as antiseptic, analgesic, Anti-Snake Venom etc available in the first aid Centre.

The other local hospitals available in nearby cities are given below and specialist doctors are available in these hospitals.

Table-7.7: Details of hospital in nearby Plant site

S. No.	Name	Distance	Direction
		(From Project Boundary)	
	Medical Facility		
1.	Nobel Charitable Hospital - GT Road,	1.16 Km	W
	Prithla		
2.	ESI Dispansary Prithla	1.67 Km	WNW
3.	Shri Hari Hospital, Tatarpur	1.67 Km	WNW

e) District Collectorate/Administration

- To supervise of all off-site emergency operations; order to evacuate off-site population.
- Local administration means those who are responsible for administration of the geographical area where the Depot is located.

Responsibilities

- To protect the citizens.
- To assess the situation for overall control.
- To monitor the functioning and need of various agencies in rescue operation at site.
- To requisite and make available the services and facilities available in the area like hospitals, doctors, transport, police, fire brigade and so on.

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD	ROLLING MILL COMPLEX
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 7
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	ADDITIONAL STUDIES

• To coordinate the activities outside the Depot in view of their authority and experience in coordinating rescue and relief operations.

f) RTO

To clear all approach roads to and from corporation area for free flow of vehicular traffic, which is engaged in combating the emergency and demarcate parking area for vehicles to evacuate population.

g) Controller of Explosives & Factory Inspectorate

- To provide expert advice and help in coordinating emergency operations with government agencies.
- The inspector of factories is expected to be a friend and a guide to industrial establishments. His involvement is a matter of course, since he would be officially connected with inquires after the disaster.

Responsibilities

- To coordinate with local govt. body e.g. collectorate, civil hospital, police department etc. as well as surrounding voluntary organizations.
- To act as Off-site emergency controlling authority.
- To inform public for precautionary measures.

h) Voluntary Organizations

 Voluntary organizations could help in relief and humanitarian services to victims in case of any emergency.

Responsibilities

- To assist in rescue operations and first aid to the victims.
- To arrange transport, refreshment and shelter.
- To take necessary assistance from social organizations like Red Cross Society, Scouts, NCC, Rotary, Lions clubs etc.

i) Other Installations near to the site

Industrial installations or oil installations present near the site should help to combat the fire with the firefighting equipments present in their locations.

Responsibilities

- To provide the strongest possible support and resources to the plant managers so that the best accident prevention and emergency preparedness procedures are in place in the industrial facility.
- To encourage their facility managers to commit themselves fully to the ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

0

APRIL'2024

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLIN	G MILL COMPLEX
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER- 7
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	ADDITIONAL STUDIES

awareness and preparedness for emergencies at local level process.

To monitor the involvement of their facilities in the process.

Safety training of personnel and mock drill / rehearsing emergency procedures

On appointment of every personnel it is essential to provide training to cope with all types of perceived emergencies. Training is to be provided for:

- Properties and hazards of the steel industry as given in the report.
- Knowledge, location and use of fire fighting and protective equipments.
- Emergency actions for various emergency scenarios.
- Many organizations use table-top exercises to test their emergency plans.
 These are very cost-effective because they do not interrupt the day today running of the plant and because the organizer of the exercise can "arrange" for a variety of difficulties to be taken.
- Full-scale exercises, providing a realistic rehearsal setting, will still be needed to complement the tabletop exercises.

Longer Term Clean Up

- I. Regular cleaning and housekeeping is practiced in the Plant.
- II. Find out the causes for an accident/disaster.
- III. Calculate economical as well as material losses.
- IV. Provide the necessary facilities to the causalities.

	•
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 8
TROJECT. DIGIT I EIT / EIT REI ORT OF TROTOSED COED ROLLING MILL COM ELA	CIMII TER U
APPLICANT: IYOTI STRIPS PRIVATE LIMITED	PROJECT BENEFITS
, , , , , , , , , , , , , , , , , , , ,	
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	
DOCUMENT NO.: LESI E/JSI E/IND/EC/2022-25/117	

CHAPTER-8 PROJECT BENEFITS

33 320/38/20/24/RECEIBN PALWAL
PROJECT: DRAFT EIA/EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER- 8
PROJECT BENEFITS

CHAPTER-8

INDEX

8.1	PROJECT BENEFITS	181
8.2	ENVIRONMENTAL BENEFITS	181
8.3	IMPROVEMENTS IN INFRASTRUCTURE.	181
8.3.1	IMPROVEMENTS IN THE PHYSICAL INFRASTRUCTURE	181
8.3.2	IMPROVEMENTS IN THE SOCIAL INFRASTRUCTURE	182
8.4	EMPLOYMENT POTENTIAL -SKILLED; SEMI-SKILLED AND UNSKILLED	182
8.4.1	Direct Employment	182
8.4.2	Indirect Employment	183
25	OTHER TANCIRI F RENEFITS	183

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER-8
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	PROJECT BENEFITS
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

CHAPTER- 8 PROJECT BENEFITS

8.1 PROJECT BENEFITS

The proposed project is for Proposed Cold Rolling Mill Complex which is highly demanded in the states like, Haryana, Uttar Pradesh, Gujarat, Rajasthan etc. These states are the led by development as it is facing mega infrastructure projects.

8.2 ENVIRONMENTAL BENEFITS

- The proposed green area inside the plant premises is 36077.10 sq. mtr (28.35%) with 9019 No.s of plants @ 2500 trees/ha. The deficit plantation of about 4.65% will be done in container plantation within the project site to achieve total 33% plantation as per norms.
- Twin type fume scrubber is proposed to be installed to control emissions from the manufacturing process
- The solid waste generated from the process at plant site is Sent to Nearest Municipal Council.
- 318.75 KLD water generation in the process will be sent to ETP1 & ETP2. Treated water from ETP 1 and ETP 2 will be sent to WRP-RO followed by MEE (ZLD plant)
- The overall treated water of 270KLD is reused after treatment in COC to Cooling Tower.
- Domestic sewage 75 KLD will be treated STP (Capacity-100KLD) and 37.5 KLD of Treated water will be reused in plantation. And 30 KLD will be recycled for flushing purposes.
- No waste water will be disposed of on ground outside the plant premises.
- Installed LED Lights at admin building and street lights inside the plant premises.

8.3 IMPROVEMENTS IN INFRASTRUCTURE

8.3.1 IMPROVEMENTS IN THE PHYSICAL INFRASTRUCTURE

The proposed project of cold rolling mill complex will have numerous induced impacts on society such as growth in schools, hospitals, hotels & resorts, transport etc. It will also attract business, tourism and other entrepreneur to establish their venture in the region. The project will improve the physical infrastructure of the adjoining areas. This will include the following: -

181

PKO	JECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER-8
APP	LICANT: JYOTI STRIPS PRIVATE LIMITED	PROJECT BENEFITS
DOC	CUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

- Rain water Harvesting structure is proposed to augment the water availability for plantation;
- Skill development & capacity building like vocational training to persons for income generation;
- Awareness program and community activities, like health camps, family welfare programs, immunization camp, plantation etc.

8.3.2 IMPROVEMENTS IN THE SOCIAL INFRASTRUCTURE

The social infrastructure will develop with the positive externalities like better educational and health facilities, Bus stations, railway stations, play grounds, stadium, religious places (temple, mosque, church, gurdwara); marriage homes, creation of new employment opportunities will be improved due to the induced impact of the proposed project of cold rolling mill complex.

Following are the benefits in specific area of social domain: -

Socio-Economic: - There will be positive impact in socio-economic area due to increased economic activities, creation of new employment opportunities, infrastructural development and better educational and health facilities.

Health Care Facilities: - Company will undertake awareness program and community activities like health, camps, family welfare camps etc.

Employment Potential: - There is a possibility of creation of direct and indirect employment opportunities due to working of this plant.

8.4 EMPLOYMENT POTENTIAL -SKILLED; SEMI-SKILLED AND UNSKILLED

8.4.1 Direct Employment

During the operational phase, about 2000 people will be employed directly. Considering that some of the skilled personnel to be employed for the project will be from outside the area and un-skilled/ semi-skilled personnel will be from within the study area, the project will add to the wellbeing of the area. In addition to the workforce the indirect employment will also be generated for local persons. It will help in bringing prosperity to the area.

Category	Proposed	Total
Permanent staff	300	300
Skilled worker	650	650
Semi-skilled workers	350	350
Unskilled workers	700	700

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 8
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	PROJECT BENEFITS
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	

Total	2000	2000

8.4.2 Indirect Employment

The industrial activity will provide indirect employment to the people of nearby area of project site. Some people will get engaged in some pet shops like tea shop, vehicle repair centre etc. The project also provides some need-based opportunity to the local public.

- The increased employment through transportation, warehousing, loading and unloading of container / material will provide indirect agency employment.
- Development of Ancillary industries. Transportation and warehousing in the region would eventually be needed more therefore truckers and jobs in logistical activities will increase.
- The products available will provide agency employment in the value chain analysis, which will add place utility and retail in the domestic market.

There would be additional development of ancillary industries or opportunities for example:

- Small petty businesses
- Scrap Trading
- Demand for Communication facilities.

This would create Indigenous Technologies for sustainable development.

8.5 OTHER TANGIBLE BENEFITS

The other tangible benefits include demonstrating process and system cost savings, compliant inspections and customer audits, faster product approvals and manufacturing throughput, less rejected material, reduced nonconformance issues, and more efficient continuous improvement and project implementation. Intangible benefits include improved staff morale, faster, more accurate transparent decision making, less employee turnover, increased staff accountability, and an enhanced culture of quality throughout the organization.

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 34/120/38/2024/RECTIBN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER- 9

ENVIRONMENTAL COST BENEFIT ANALYSIS

CHAPTER-9 ENVIRONMENTAL COST BENEFITS ANALYSIS

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 34 20038/2024/REGIBN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 9
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	ENVIRONMENTAL COST BENEFIT ANALYSIS
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	ENVINORMENTAL COST BENEFIT MANEETSIS

CHAPTER-9

INDEX

9.1 Environmental Cost Benefit Analysis......185

3 **4 120/38//2024//ESCIBIN PALWAL**

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 9
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	ENVIRONMENTAL COST BENEFIT ANALYSIS
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	ENVIRONMENTAL GOST BENEFIT MINIBISIS

CHAPTER - 9

ENVIRONMENTAL COST BENEFITS ANALYSIS

9.1 Environmental Cost Benefit Analysis

Environmental Concerns

It is essential to mention that emissions generated from cold rolling mill processes are mostly air emissions and solid wastes. Though this industry does not contribute to significant amount of liquid effluent, but inefficient use of water resources especially ground water in Palwal (OE Block) areas may lead to depletion of ground water resources. The other concern in the unit is release of high carbon dioxide generation.

POLICY ISSUES AND DIRECTIVES FOR GOOD PRACTICE

The growing pollution from the cold rolling mills units is of great concern, therefore a suitable policy should be formulated and implemented to ensure environmentally sound operation of such units.

The State Pollution Control Boards directives should be adhered for pollution control and clean operation of these units. The following guidelines will be adhered to:

- 1. Optimize usage of water.
- 2. Adopting rainwater harvesting system.
- 3. Ensuring effective operation of air pollution control devices.
- 4. Avoiding opening of After Burning Chamber cap for a considerable period during power cuts.
- 5. Disposing off Bag filter refuse regularly; avoiding storage of coal char, coal fines in open space.
- 6. Providing
- 7. water sprinkling arrangement at strategic points to avoid re-suspension of particulate matter.
- 8. Good housekeeping like paving roads inside the factory premises and regular cleaning of such road.
- 9. Developing adequate green area

The cost incurred as part of EMP will add benefits to the unit on running time which can be derived after proper implementation of the above measures to add to the environmental cost benefit analysis.

ſ		
ď	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 10
APPLICANT: JYOTI STRIPS PRIVATE LIMITED		ENVIRONMENTAL MANAGEMENT
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	PLAN

CHAPTER-10 ENVIRONMENTAL MANAGEMENT PLAN

34 320/38 / 2024 / REGIBN PALWAL
PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX
APPLICANT: JYOTI STRIPS PRIVATE LIMITED
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119
CHAPTER- 10
ENVIRONMENTAL MANAGEMENT
PLAN

CHAPTER-10 INDEX

10.1	INTRODUCTION	189
10.2	Description of Administrative Aspect	189
10.2.1	Environment Management Cell	189
10.2.2	Vision, Mission & Environment Policy	190
10.3	CRITICAL ACTIVITIES FOR EMP IMPLEMENTATION	190
10.4	ENVIRONMENT MANAGEMENT DEPARTMENT	190
10.4.1	Environmental department policies	190
10.4.2	Environmental department structure	191
10.5	ENVIRONMENTAL ACTION PROGRAMME	193
10.6	PLANTATION DEVELOPMENT	201
10.7	CREP GUIDELINES	203

CHAPTER-10

33 320/38 / 2024 / RECEIBN PALWAL
PROJECT: DRAFT EIA / EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX
APPLICANT: JYOTI STRIPS PRIVATE LIMITED
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119
CHAPTER- 10
ENVIRONMENTAL MANAGEMENT
PLAN

ENVIRONMENTAL MANAGEMENT PLAN

10.1 INTRODUCTION

The Environmental Management Plan (EMP) is a site specific plan developed to ensure that the project is implemented in an environmental sustainable manner where all contractors and subcontractors, including consultants, understand the potential environmental risks arising from the proposed project and take appropriate actions to properly manage that risk. It is required for formulation, implementation and monitoring of environmental protection measures during and after commissioning of projects. The plans should indicate the details as to how various measures have been or are proposed to be taken including cost components as may be required. Cost of measures for environmental safeguards should be treated as an integral component of the project cost and environmental aspects should be taken into account at various stages of the projects. EMP also ensures that the project implementation is carried out in accordance with the design by taking appropriate mitigative actions to reduce adverse environmental impacts during its life cycle. The plan outlines existing and potential problems that may adversely impact the environment and recommends corrective measures where required. Also, the plan outlines roles and responsibility of the key personnel and contractors who are charged with the responsibility to manage the proposed Plant.

Aims of EMP

- > Overall conservation of environment.
- Judicious use of natural resources and water.
- > Safety, welfare and good health of the work force.
- > Ensure effective operation of all control measures.
- > Vigilance against probable disasters and accidents.

10.2 Description of Administrative Aspect

10.2.1 Environment Management Cell

JSPL Board committee periodically review compliance report of all norms, clauses, laws applicable to the company and the step taken by the company to rectify instances of non-compliance if any.

Plant head provide & support training to implementation of the environmental policy, share good practices with unit head and ensure that environmental policy is implemented as per plant procedure. Plant head provide all resources for environmental function so that the system of compliances achieved. Manager Environment department

189

שיב	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 10
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	ENVIRONMENTAL MANAGEMENT
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	PLAN

is responsible for all the activities related to environmental issues and concerns and coordinates with unit head. Unit head shall reports to the board of director on the important environmental issues and concerns with respect to compliances, clearances, and certification etc.

10.2.2 Vision, Mission & Environment Policy

VISION

Our vision is to emerge as one of the strongest and most reliable cold rolling mill complex with a diversified product base to meet the demands of our customers.

MISSION

Our mission is to fulfill our promise of delivering quality to our customers and building long lasting relationships to fulfill their needs ensuring new success and sustained returns.

10.3 CRITICAL ACTIVITIES FOR EMP IMPLEMENTATION

- 1. Training and Environmental Awareness;
- 2. Documentation and record keeping;
- 3. Reporting Procedures;
- 4. Stakeholder/ Project Proponent engagement;
- 5. Auditing;
- 6. Responding to Non-compliance.

10.4 ENVIRONMENT MANAGEMENT DEPARTMENT

10.4.1 Environmental department policies

The unit will ensure the following activity

a. Commitment & Policy

The proposed project management is/will strive to provide and implement the Environmental Management Plan that incorporates all issues related to air, land and water.

b. Planning

This includes identification of environmental impacts, legal requirements and setting environmental objectives. The various potential impacts are discussed under Chapter- 4 of the EIA Report.

c. Implementation

This comprises of resources available to the proponents, accountability of contractors, training of operational staff associated with environmental control facilities and documentation of measures to be taken.

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

U	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 10
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	ENVIRONMENTAL MANAGEMENT
Ī	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	PLAN

d. Measurement & Evaluation

This includes monitoring, corrective actions, and record keeping.

10.4.2 Environmental department structure

i. Environment management cell:

- The Company has an Environment Management Cell, headed by a Manager. Trained
 engineers shall be responsible for incident free operation of all pollution control
 devices and the enforcement of any rules / laws applicable.
- The staff of the company is regularly exposed to training & refresher courses and
 the subject of Environment Management & Pollution Control is also dealt with in
 detail. The company has well equipped laboratory to regularly monitor it
 discharges. It is proposed to continue these practices.

ii. Environment Monitoring Laboratory:

- The industry has a well-equipped Quality Assurance Laboratory to consistently
 ensure the highest quality of products. A section of this laboratory has been
 dedicated to Pollution & Environment Monitoring.
- Effluent quality tests will be carried out regularly.
- The company does not have adequate facilities for Air / Stack testing, as yet. Its
 present monitoring is conducted by external agencies that have the approval of
 MOEF&CC and SPCB.

iii. Library

- · Books on environment & monitoring
- Records/drawing
- Collection of standards/norms/guidelines/notification etc.

iv. Safety, health, fire services and security

• For the supervisors and workers

v. Training facility

For the supervisors and workers

vi. Maintenance

Response time for emergency maintenance, spare availability and routine programme of maintenance

- Disaster Management Plan (DMP)
- On-site Emergency Management Plan
- Risk Assessment (RA)
- Environmental Audit (EA)

U	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 10
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	ENVIRONMENTAL MANAGEMENT
Ī	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	PLAN

vii. Monitoring data

- Ambient air quality with meteorological data/information
- Ambient noise level
- Receiving water quality up-stream and down-stream of treated wastewater disposal point (if any / applicable)
- Ground water quality in and around factory
- Storm water disposal facility inside & outside the factory

viii. Plantation development

- Plants selection of Local species
- Plantation covered area
- Future plan, if any

ix. Waste Management

- Recovery,
- · Recycle and
- Reuse

x. Performance study of waste management

- Identification of shortcomings
- Finding out proper remedial measures
- Implementation time frame

xi. Material balance

Mass Balance

xii. Identification of hazardous installations

- list with details of hazardous installations
- measures, in case of unforeseen release of pollutants
- Was there any episode discharge of pollutants in past?
- experience
- remedial measures
- strategy to be adopted based on experience

xiii. Prepare an environment check list to review environmental safeguard

- House keeping
- Complaints
- Complaints received, if any
- Accident occurred in last two years
- Compliance of standards

0

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

2(PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 10
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	ENVIRONMENTAL MANAGEMENT
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	PLAN

Copy of water consent

Copy of air consent

Copy of authorization of hazardous wastes

- Comply with the standards, stipulations, guidelines etc.
- If not, indicate deviations with reasons for the same
- Find difficulty in complying with the conditions of consent letters.

xiv. EC COMPLIANCE SCHEDULE WITH ENVIRONMENTAL STATEMENT AND AUDIT

EC Compliance will be submitted six monthly by June 1 and December 1, every year to the regional office of the Ministry of Environment and Forests and the appropriate regulatory authority.

Environmental statement (Form-V) and audit report for the financial year ending will be submitted on 31st March on or before 30th of September every year.

10.5 ENVIRONMENTAL ACTION PROGRAMME

The management of "Jyoti Strips Private Limited." is quite conscious of its responsibility for maintaining clean and a healthy environment. The management is also keen to modify and make more efficient measures towards suppression of pollution sources. Lot of adequate funds for Pollution Control Measures are provided as a part of overall project financing to ensure the availability of proper treatment facilities during the commissioning of the unit. The overall capital investment for the EMP activities for the proposed project will be Rs.4000 lacs (capital) and Rs. 770 Lacs (Recurring). The breakup of the proposed project cost for Environment Management Programme is given as under: - The proposed Environment Management plan for the unit is summarized in the below table:

Table No. 10.1: Fund allocated for Environment Protection Measures

S. No.	Description of Item	Proposed Capital Cost (Lacs)	Proposed Recurring Cost (Lacs)	Remarks
1	Air Emission mitigation measure adopted for point source, area source and line source	1500	500	Twin type fume scrubber, Water sprinkling
2	Water discharge mitigation measures to maintain ZLD with effectiveness	200	20	MEE with MBR technology will be proposed
3	Rain water Harvesting	200	20	
4	Plantation Development	100	10	
5	Fire fighting	1500	150	Firefighting equipments as per NBC code are installed and FIRE NOC will be obtained.
6	Corporate Environmental Responsibility *Any activity desired in the Final EIA /EMP report will be added.	500	50	Reduction of carbon and emission trading will be projected

193

Œ		
•	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 10
APPLICANT: JYOTI STRIPS PRIVATE LIMITED		ENVIRONMENTAL MANAGEMENT
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	PLAN

Total	4000	770	

Table. 10.2: Environment Management Plan during Construction and Operation phase

		Со	nstruction phase	
S. No.	Source	Environmental	Management Plan	Remarks
		Component		
1.	Excavation,	Land	> Topsoil will be conserved and used for	-
	construction, debris		landscaping.	
			➤ Reutilization and recycling of	
			construction debris	
2.	Dust emission from	Ambient Air	Regular sprinkling of the water will be	Impacts will be
	excavation, air	Quality	done along with the construction	temporary during
	emission from		activities.	construction phase
	machinery		➤ Periodic maintenance of construction	and confined to short
			equipment.	distances, as coarse
			➤ Use of good quality fuels.	particles will settle
			➤ Use of Personal Protective Equipments	within the short
				distance from
				activities.
3.	Surface runoff from	Water	Silt fences to reduce run-off. Altering	No perennial surface
	project site. Oil/fuel		the slope	water resource
	and waste spills.		The domestic sewage generated during	adjacent to site.
	Improper debris,		the construction activity will be routed	
	domestic sewage	OK	to Modular STP.	
	water			
4.	Noise generated	Noise	➤ Use of well maintained equipment.	Temporary impacts
	from construction		➤ Heavy construction activity limited to	during Construction
	activities and		day- time hours only. Use of noise	phase.
	operation of		mufflers in and construction vehicle.	
	construction		> Use of earplugs/muffs by construction	
	equipment and DG		staff.	
	sets		➤ Regular preventing maintenance of	
			machinery and transportation of	
			vehicles during construction to reduce	
			noise pollution.	
			➤ Provision of silencer, to modulate the	
			noise generated by the machine, if	
			required.	

0

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

194

NOW WEEKEIRING DAI WAA	
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 10
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	ENVIRONMENTAL MANAGEMENT
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	PLAN

			➤ Reduce the exposure time of workers to the higher noise level by job rotation.	
5.	Construction activities and Excavation	Aesthetic & biological	The impacts will be compensated by tree plantation and gardening in the premises and along the both side of rods	
6.	Construction Phase	Occupational Health and safety	 Construction of temporary sheds for construction workers mobilized by the contractors. Work spots will be maintained clean, provided with optimum lighting and enough ventilation to eliminate dust/fumes. 	The safety department will supervise the safe working of the contractor and their employees.
7.	Construction Phase	Socio- Economic	➤ Management will give preference to local people through both direct and indirect employment	Positive impact

	Operation phase											
Particulars	Mitigation Measures											
A. Air	Point Sources:											
Emissions:	1. Boiler –											
1. Boiler	2. Pickling plant: -											
(10 Ton/hr)	3. DG Set; -											
2.Pickling												
plant	Management:											
3. DG Set	Boiler (LPG Fired) having capacity of 10 TPH is attached to 30 m. stack height.											
(1000 kVA-	• Flue gases during pickling are routed into a Twin type fume scrubber through 30.0 m stack height.											
2 Nos)	• The proposed green area inside the plant premises is 36077.10 sq. mtr (28.35%) with 9019 No.s											
	of plants @ 2500 trees/ha. The deficit plantation of about 4.65% will be done in container											
	plantation within the project site to achieve total 33% plantation as per norms.											
B. DG Sets-	• DG Set having capacity of 2Nos.1000 KVA is attached to 30m stack height (Fuel- Natural Gas).											
1000 kVA 2												
No.												
C. Vehicular	Emissions of vehicle exhausts include SOx, NOx, CO from combustion of fossil fuels will be envisaged											
Emission	for transportation of raw material and finished goods. 3000 Nos. (1500 for Raw Materials + 1500 for											
	Finished Goods) of Vehicles will be used for the project. Transportation details for proposed project											
	is given below:											
	Transportation Details Total (No's)/month											
	Truck/ Trailer (20 MT & 40MT) for Raw materials 1500 (Diesel)											
	Trucks/ Trailer (20 MT & 40MT) for finished goods 1500 (Diesel & CNG)											

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

33 PO/38/2024/RECEIBN PALWAL
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX
APPLICANT: JYOTI STRIPS PRIVATE LIMITED
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119
CHAPTER- 10
ENVIRONMENTAL MANAGEMENT
PLAN

	Management:											
	Source	Man	agement									
		>	PUC certifie	ed ve	ehicle	s will b	e used;					
		>	Vehicles used for transporting raw materials are driven by High Speed									
			Diesel and vehicles used for transporting finished goods are driven by									
			CNG >50%				rtrans	por	ing ini	sinca goods are arriven by	'	
	Transportation	>	Speed limit	of 1	0Km	hr. is/	will be	mai	ntained	in the plant premises.		
	Transportation	>	The propos	ed g	green	area in	side th	e pl	ant prei	nises is 36077.10 sq. mtr		
			(28.35%)	with	901	9 No.s	of pla	ints	@ 250	00 trees/ha. The deficit	t	
	plantation of about 4.65% will be done in container plantation within the project site to achieve total 33% plantation as per norms. > Good House Keeping is/ will be maintained.											
Fugitive	Material Handling:											
Emissions	_	ion du	ring handlii	ng o	of Scra	ıp, loac	ling an	d u	nloadin	g point, transfer points a	and	
from	storage area.											
materials handling	TransportationDust generation is of	nnvicac	and an all the	o int	tornal	roada	incido t	hai	alant nr	omicos		
including	Dust generation is a Management:	envisa	geu as an un	e mi	ternar	Toaus	ilisiue t	пер	piant pr	eiilises.		
storage or	> Proper House Keep	oing wi	ill be done. S	Swe	eping	of road	ls will l	e d	one.			
transport	All paved roads are						•					
(other raw	_						-					
materials)		dically, water sprinkling on paved road will moisten the surface to prevent the fugitive dust.										
	Speed limit is also	restric	cted up to 1	0 kn	n/hr.							
Odors from				-			_	_		TP by using Sequential bat		
sewage		•		-	•			ed w	vater wi	ll be used for plantation a	and	
	flushing purpose to	reduce	the fresh w	ater	cons	umptio	n.					
	Mitigation measure	ia bain							لمعمد			
Hazardous	Good housekeeping Hazardous Wa				ате р	ractice	WIII DE	e au	optea.	Treatment /		
waste	Type of Waste		Schedule	Co	de	Prop	osed	То	tal	Treatment/ disposal		
generation	Chemical Slud		1	35		1600			000	Send to registered		
· ·	from waste									recyclers		
	treatment (TP Used Oil or		1	5.1	1	200		20	0	Send to registered		
	Oil	Spent	1	3.1	L	200		20	U	recyclers		
	Iron oxide		1	5.2	2	4000		4000		Send to registered		
		recyclers										
Solid waste	The solid waste gene			_		e as fo	llows:		m ·	1 / 1: 1		
Generation	Particulars		aste Quantit						Treatr	nent/ disposal		
			pe of Waste)	prop	osed	Total					
	Sludge TPA	ST	P Sludge		0.5		0.5		Used as manure for plantation			
	Municipal Sol Waste (@0.12 Kg/ day				0.25		0.25		Sent to Nearest Municipal site			

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

MD###EFFEIRM DAI\A/AI	
"PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 10
APPLICANT: IYOTI STRIPS PRIVATE LIMITED	ENVIRONMENTAL MANAGEMENT
	-
DOCUMENT NO.: EESPL/ISPL/IND/EC/2022-23/119	PLAN
DOCOMENT NO. LEST L/JST L/ IND/ LC/ 2022 23/ 117	FLAN

		Scrap from Scrap Process	181.81	181.81	Sold to Local market
Water	Waste	water Generation is as given			
Environment	S. No.	Liquid Effluents	Quantity	Unit	Mode of Treatment/ Disposal
During Operation Phase	1	Domestic Sewage	75	KLD	Domestic waste water 75KLD treated in STP (Capacity-100KLD) and 37.5 KLD of Treated water will be reused in plantation. And 30 KLD will be recycled for flushing purposes.
	2	Trade Effluent	318.75	KLD	Stage-1: The effluent generation from industrial process is 127.5 KLD will be treated in ETP-1 (160KL capacity) of low COD and low TDS Stage-2: spent and coolant waste water of 48.75KL will be treated in ETP-2 (65KL Capacity) of high COD and high TDS Treated water from ETP 1 and ETP 2 will be sent to WRP-RO followed by MEE (ZLD plant) The overall treated water of 270KLD is reused after treatment in COC to Cooling Tower. No waste water will be disposed of on ground outside the plant premises.

Noise Pollution

During Operation Phase

Sources of Noise:

 Fans, motors/engines, Loading/Unloading Scrap, Noise due to Heavy Equipment Operations.

Mitigation Measures:

- All equipment's will be procured meeting the permissible noise standards.
- The insulation provided for prevention and loss of heat and PPE will also act as noise reducer.
- Foundations and structures will be designed to minimize vibrations and noise.
- Regular equipment maintenance and better work habits is will be adopted.
- D.G. set is housed in an inbuilt acoustic enclosure with stack height as per CPCB norms.

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

34 120/38//2024/REGIBN PALWA PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX CHAPTER- 10 APPLICANT: JYOTI STRIPS PRIVATE LIMITED **ENVIRONMENTAL MANAGEMENT** DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119 PLAN Necessary safety and personal protective equipment such as ear plugs, ear muffs, helmet etc will be provided to the workers. Implementation of Plantation within the premises of plant will absorb the noise. Thus will help to control the noise pollution. Proper lubrication and housekeeping will be usually done to avoid excessive noise generation. Supervisor will be responsible to control the noise by maintaining conditions of machineries and silencers. Use of ear protective devices. The proposed green area inside the plant premises is 36077.10 sq. mtr (28.35%) with 9019 No.s of plants @ 2500 trees/ha. The deficit plantation of about 4.65% will be done in container plantation within the project site to achieve total 33% plantation as per norms. Rain water The Rain water Collected from Roof Top and paved areas will be collected through Channels **Harvesting** and Sent to Rain water Harvesting Pits. Plan Six rain water harvesting structure are proposed with the capacity of 32.4 m3/hr. **Occupational Health Hazards:** Health and Major physical hazards in cold rolling mill plant are caused by fumes and dusts, smoke, molten Safety metal and noise. High priority health hazards are particulates, were identified as causes of the most significant risks in the work environment. Fire and explosions. Hazards: Process hazards due to loss of containment during handling of materials or processes resulting in fire, explosion, etc. Mechanical hazards due to "mechanical" operations such as welding, maintenance, falling objects etc. - basically those NOT connected to hazardous materials. **Electrical hazards:** electrocution, high voltage levels, short circuit, etc. Out of these, the material and process hazards are the one with a much wider damage potential as compared to the mechanical and electrical hazards, which are by and large limited to very small local pockets. **Mitigation Measures:** Enclose and isolate potential sources of air emissions to the work zone to the extent practical; Monitor worker exposure using personal occupational hygiene sampling devices; Providing training and encourage good personal hygiene, and prohibiting smoking and eating at the worksite; Automate processes and material handling to the extent practical and provide enclosures for operators: **WORK AREA SAFETY & HEALTH PRECAUTIONS: ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR**

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078

198 APRIL'2024

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 34 120/38//2024//REGIBN PALWA PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

CHAPTER- 10

APPLICANT: JYOTI STRIPS PRIVATE LIMITED **ENVIRONMENTAL MANAGEMENT** DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119 PLAN Provision of fire-resistant gloves Face & Eye protection to prevent splashing Approved respirators to prevent inhaling of fumes Provision of adequate ventilation & exhausts Adequate storing facility with defined inventory Adequate Wet scrubbing system with suitable scrubbing solution Periodic Inspection of Equipment/Machinery. Socio-Economic There is a possibility of creation of direct and indirect employment opportunities due to Aspect working of this plant. Direct employment of 2000 Nos to the local people which help to sustain their livelihood. During the operational phase by the implementation of certain CER activities indirect employment will also generate. Apart from this, movement of trucks for carrying raw materials in, and products around 40 Persons will get employment as Driver and Cleaner, out will bring outside workers of supply chain into the area regularly, and will provide additional business to local vendors in the form providing food, and their other day to day requirements, thus generating additional income to the local businesses. Improved livelihood. Training will be provided to the local persons. Awareness programme will be organized. Health and **Health and Safety:** Safety Following measures will be adopted in the plant: -Regular inspection and maintenance of Pollution Control Equipment. All workers related to safety such as safety appliances, training, safety awards, posters, slogans will be undertaken. The workers exposed to noisy sources will be provided PPE's. Adequate facilities for drinking water and toilets will be provided to the employees. The fire and safety equipment will be properly utilized and maintained regularly. Company will undertake awareness program and community activities like health, camps, family welfare camps etc. Regular medical check-up of workers. E-Waste There is no generation of E-waste within the plant premises. Management Plastic Waste There is no generation of plastic waste within the plant premises. Management **Biological** To mitigate adverse impact on the biodiversity and to improve habitat status of the study area:-Environment The proposed green area inside the plant premises is 36077.10 sq. mtr (28.35%) with 9019

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

199

33 PO/38/2024/RECEIBN PALWAL
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX
APPLICANT: JYOTI STRIPS PRIVATE LIMITED
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119
CHAPTER- 10
ENVIRONMENTAL MANAGEMENT
PLAN

	No.s of plants @ 2500 trees/ha. The deficit plantation of about 4.65% will be done in contained
	plantation within the project site to achieve total 33% plantation as per norms.
	At present total 12 no. of trees/shrubs of different species are present in area.
Proposed Green	➤ In proposed project area plantation will be developed as per the Guidelines of MoEF & CC o
Area Development	around 2500 trees/Ha of land shall planted. Total 9019 nos. of trees will be planted.
Development	> Plantation will be done all along the road and Plant boundary and other suitable location within
	plant premises.
	Plantation will be start along the construction work.
Techniques for	Combination of plant is selected depending upon the topographical suitability and species
Green Area	selected as per CPCB Guideline. The soil characteristics will be kept in mind. Based on this and
Development	environmental conditions suitable native plants species have been proposed for year wise
	plantation programme.
Design of Green	Selection of plants will also take into consideration of the following factors:
Area	a. For absorption of gaseous emissions:
	> Tolerance towards pollutants in question, at concentrations, that are not too high to be
	instantaneously lethal, Longer duration of foliage,
	Freely exposed foliage, through Adequate height of crown,
	Openness of foliage in canopy,
	Big leaves (long and broad laminar surface)
	Large number of stomata apertures
	Stomata well- exposed (in level will the general epidermal surface)
	b. For the removal of suspended particulate matter:
	Height and spread of crown
	Leaves supported on firm petioles,
	 Abundance of surface on bark and foliage, through
	> Roughness of bark,
	 Epidermal outgrowth on petioles,
	 Abundance of axillary's hairs,
	 Hairs or scales on laminar surfaces Stomata protected (by was, arches/rings, hairs, etc.)
	All plants selected are locally adapted, and the present site is capable of supporting their growt
	with suitable horticultural practices. Approx. 10 feet size (height) grown plants will be planted at
	density of 2500 per Ha in suitable spacing. Around 9019 plants are proposed to be raised withi
	first 3 years. Under proposed plantation development programme 45.09 Lacs_ budget is proposed
	All plants are locally adapted and the present site is capable of supporting their growth with
	suitable horticultural practices. Sufficient resources and man power for development an
	maintenance is essential for a good plantation management. A suggested list of plant specie
	suitable for plantation and list of Trees proposed for plantation is given below:

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED	CHAPTER- 10	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	ENVIRONMENTAL MANAGEMENT	
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	PLAN	

10.6 PLANTATION DEVELOPMENT

Benefits of Planting and Protecting Trees

Environmental Value: Trees provide a variety of environmental values, including screening of unpleasant odours, absorption of noise and reduction of pollution and temperatures in the area as described below:

Air Quality: Trees are an efficient and cost-effective way for a community to improve its Air quality and reduce pollution. A mature tree absorbs of small particles and gases, like carbon dioxide, which are released into the air by automobiles and industries. In addition, a single tree produces nearly three-quarters of the oxygen required for a person.

Reduced Noise Pollution: Noise pollution is an often-overlooked problem. Excessive or unwanted sound has negative physical and psychological effects. Noise can come from many sources, especially roads and highways. Trees can play an important role in deadening unwanted noise. Sound waves are absorbed by a tree's leaves, branches, and twigs.

Trees (special effects): Trees in this section should include those sufficiently individualistic, spectacular or strong in character to occupy the isolated positions, either because of these qualities or because they do not mix easily in visual sense with other trees.

34 372003/81/2024//REGGIBIN PALWAL

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 10
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	ENVIRONMENTAL MANAGEMENT
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	PLAN

10.6.2 Details of proposed year wise Plantation

II .	TOTOLE POUNTS OF Propose.												
			a w .				Year wise Plantation programme			No of	Budget for proposed plantation		
S.No.	Scientific Name	Common Name	S. No.in CPCB Manual	НА	HT (m)	E/D	I Yr.	II Yr.	III Yr.	Trees to be planted	Plant cost including transportation, pitting, watering and fertilizers@ Rs. 300/sapling	Maintenance cost including causality replacement and watering @ Rs 200/ plants	Total
1	Azadirachta indica	Neem	A-44	Tree	20	Evergreen	235	215	212	662	198600	132400	331000
2	Polyalthia longifolia	Ashok	P-9	Tree	15	Evergreen	210	200	212	622	186600	124400	311000
3	Albizia lebbeck	Siris	A-29	Tree	20	Deciduous	215	210	212	637	191100	127400	318500
4	Cassia fistula	Amaltash	C-7	Tree	12	Deciduous	215	210	212	637	191100	127400	318500
5	Dalbergia sissoo	Shisham	D-2	Tree	10	Evergreen	225	215	212	652	195600	130400	326000
6	Ficus religiosa	Pipal	F-7	Tree	20	Evergreen	200	215	212	627	188100	125400	313500
7	Ficus bengalensis	Bad	F-3	Tree	12	Evergreen	200	200	212	612	183600	122400	306000
8	Terminalia arjuna	Arjun	T-6	Tree	15	Deciduous	215	210	212	637	191100	127400	318500
9	Syzygium cumini	Jamun	S-20	Tree	20	Evergreen	230	215	212	657	197100	131400	328500
10	Psidium guajava	Guava	P-20	Tree	05	Evergreen	230	215	212	657	197100	131400	328500
11	Bauhinia variegata	Kachnar	B-10	Tree	05	Deciduous	215	215	212	642	192600	128400	321000
12	Aegle marmelos	Beal tree	A-22	Tree	12	Evergreen	225	210	213	648	194400	129600	324000
13	Annona squamosa	Sitaphal	A37	Tree	10	Evergreen	225	225	212	662	198600	132400	331000
14	Mangifera indica	Aam	M-5	Tree	15	Evergreen	230	225	212	667	200100	133400	333500
	Total						3070	2980	2969	9019	2705700	1803800	4509500

Protection, care and monitoring of plantation:

- In order to protect the plants from sun burn and heat stress during summer, jute bags and agro net will be used.
- After Care: timely and sufficient after care is required such as soil manuring, weeding, proper watering etc.
- Proper monitoring of the plantation will be made.

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

202

287

CHAPTER- 10
ENVIRONMENTAL MANAGEMENT
PLAN

10.7 CREP GUIDELINES

S.	CREP Guidelines	Action		
No.				
1.	Utilization of Steel/ Melting shop (SMS)/ Blast Furnace (BF) Slag as per the following schedule: * By 2004 - 70% * By 2006 - 80% and * By 2007 - 100 %.	There is no generation of slag is from the manufacturing process		
2.	Water Conservation/ Water Pollution - To reduce specific water consumption to 5 m3/t for long products and 8 m3/t for flat products by December 2005. To operate the Co-BP effluent treatment plant efficiently to achieve the notified effluent discharge standards. – by June 2003.	 Total one time Water demand: 750 KLD Proposed-Fresh water Demand-450 KLD (Industry: 382.5, Domestic: 67.5 KLD and) Recycled Water -300 KLD Waste water generated from process will be treated in ETP followed by WRP & RO. The treated water will be reused in COC to colling tower. Domestic waste water 75KLD treated in STP (Capacity-100KLD) and 37.5 KLD of Treated water will be reused in plantation. And 30 KLD will be recycled for flushing purposes. 		
3.	Installation of Continuous stack monitoring system & its calibration in major stacks and setting up of the online ambient air quality monitoring stations by June 2005.	The proposed project will perform the stack emission quarterly and will update the pollution control equipment as required and the result will display at plant site.		
4. 5.	To operate the existing pollution control equipment efficiently and to keep proper record of run hours, failure time and efficiency with immediate effect. Compliance report in this regard be submitted to CPCB/SPCB every three months. To implement the recommendations of Life	This is a proposed project. Not Applicable		
J.	Cycle Assessment (LCA) study sponsored by MoEF by December 2003.	Постиринали		
6.	Processing of the waste containing flux & ferrous wastes through waste recycling plant.	Not Applicable.		
7.	To implement rainwater harvesting	Six rain water harvesting structure is proposed at plant site.		

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	CHAPTER- 10
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	ENVIRONMENTAL MANAGEMENT
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	PLAN

To set targets for Resource Conservation such | Water Consumption Details:

<u> </u>	P		M 1 1 1 1 1 1 1 1 1			
	as Raw material, energy and water		Total one time Water demand: 750 KLD			
	consumption to match International		> Pro	Proposed-Fresh water Demand-450 KLD		
	Standards.			> (In	dustry: 382.5, Domes	stic: 67.5 KLD and)
				➤ Rec	cycled Water -300 KI	'D
				> Wa	aste water generate	ed from process will be
				tre	ated in ETP followed	by WRP & RO. The treated
				water will be reused in COC to colling tower.		
				> Domestic waste water 75KLD treated in STP		
				(C	apacity-100KLD) ar	nd 37.5 KLD of Treated
				Wa	ater will be reused i	n plantation. And 30 KLD
				wi	ill be recycled for flus	hing purposes.
	S. No.	Particulars		esh	Recycled	Total Water Demand
	1	7 1 1		LD)	(KLD)	(KLD)
	1.	Industrial Domestic	1	32.5 7.5	270 30	652.5 97.5
	3.	Plantation and others		7.3	37.5*(STP treated	37.5*(STP treated
					waste water will be	waste water will be
					used in plantation)	used in plantation)
		Total	4	·50	300	750
	Source: - Ground water (*-Reuse)			from Co	CIA/A will be emplied	l accom
8.	Permission for abstraction of ground water for Reduction Green House Gases by :			The Greenhouse gases emission will be reduced by		
		on in power consumption		>	_	as for Transportation of
			nower	vehicles		
	* Use of by -products gases for power generation		power	>		00 KW is proposed to be
	*Promotion of Energy Optimization		ization		installed.	o iiii is proposed to se
		33	ization		mstaneu.	
	technology including energy/ audit		M- '		l	
9.		tion in the monitoring and a	•	Monitoring for air and water has been done by Third		
	facilities for air and water pollution. Also to					
	impart ela	borate training to the manpo	wer so			
	that real	istic data is obtained i	n the			
	environme	ental monitoring laboratories.				
10.	To Improv	e overall housekeeping.		Noted	and measures will	be taken to improve the
					_	
				House	Keeping to reduce the	e fugitive emissions.

	· · · · · · · · · · · · · · · · · · ·	
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX		
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER - 11- SUMMARY & CONCLUSIONS	
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	CHAFTER - 11- SUMMART & CONCLUSIONS	

CHAPTER-11 SUMMARY & CONCLUSIONS

33 70038/2024/RETEIBN PALWAL
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX
APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER - 11- SUMMARY & CONCLUSIONS

CHAPTER-11 INDEX

11.1	LOCATION OF THE PROJECT	207
11.2	LOCATION & REGULATORY COMPLIANCE	207
11.3	DETAILS OF ESZ & SENSITIVE AREAS	207
11.4	BASELINE ENVIRONMENT	207
11.5	INTERPRETATION OF BASELINE MONITORING	207
11.6	BIOLOGICAL ENVIRONMENT	209
11.7	SOCIO-ECONOMIC MANAGEMENT	. 212
11 R	CONCLUSION OF FIA STUDY	212

34 12023/2024/RECEIBN PALWAL
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPLICANT: JYOTI STRIPS PRIVATE LIMITED

DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119

CHAPTER - 11- SUMMARY & CONCLUSIONS

CHAPTER- 11.0

SUMMARY & CONCLUSIONS

11.1 LOCATION OF THE PROJECT

Jyoti Strips Private Limited is a Proposed Cold Rolling Mill Complex with Galvanizing and colour coating line having total Capacity of Various products 7,80,000 MTPA" located at # Kila No. 4 to 24, Prithla - Tatarpur Road, Village Tatarpur, Palwal, Haryana over an area of 127294.69 sq.m.

The proposed project is categorized under item <u>3(a) Metallurgical industries (ferrous</u> & non ferrous) of Schedule, EIA Notification dated Sep 14th, 2006 and its subsequent amendments issued by MOEF&CC.

11.2 LOCATION & REGULATORY COMPLIANCE

There is no forest land involved, and the location of the plant does not attract any government order, state or central with respect to any on the attributes, and thus does meet criteria as laid out in the siting guidelines.

11.3 DETAILS OF ESZ & SENSITIVE AREAS

- ➤ No forest land is involved within the proposed project. Hence, Forest Clearance is not applicable.
- ➤ There is No National Parks, Sanctuaries, Biosphere Reserves, Migratory Corridors of Wild Animals, Eco-sensitive Zone and Eco-sensitive areas located within 10 km radius of the proposed project.

11.4 BASELINE ENVIRONMENT

The Baseline Environment data such as air quality, water quality, soil quality, land environment, flora and fauna, and socioeconomic environment, are within standards and levels that are significantly below the permissible levels due to the Baseline Environment status's predominantly rural and urban location and lack of significant industrial operations. With regard to each parameter in their respective environmental qualities, there wasn't even a single cause for alarm except for Particulate matter (PM_{10} & $PM_{2.5}$).

11.5 INTERPRETATION OF BASELINE MONITORING AIR QUALITY DATA:

The analysis results for the study period are presented in above monitoring tables. Various statistical parameters like 98th percentile, average, maximum and minimum values have been computed from the observed raw data for all the AAQ monitoring

0

0	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER - 11- SUMMARY & CONCLUSIONS
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	CHAPTER - 11- SUMMART & CONCLUSIONS

stations. These are compared with the standards prescribed by Central Pollution Control Board (CPCB) for rural and residential zone.

The observation based on the perusal of the results is summarized below: -

PM10: The maximum value for PM10 observed at Plant Site 84.90 μ g/m3 and minimum value for PM10 observed at **Baghaula** 64.1 μ g/m3. The 24 hours applicable limit for industrial, Residential Rural and Other Areas is 100 μ g/m3.

PM2.5: The maximum value for PM2.5 observed at **Gadpuri** 67.4 μ g/m3 and minimum value for PM2.5 observed at Village- **Gadpuri** 35.1 μ g/m3. The 24 hours applicable limit for industrial, Residential Rural and Other Areas is 60 μ g/m3.

SO2: The maximum value for SO2 observed at **Dundsa** 15.4 μ g/m3 and minimum value for SO2 observed at Village- Plant Site 3.13 μ g/m3. The 24 hours applicable limit for industrial, Residential Rural and Other Areas is 80 μ g/m3.

NO2: The maximum value for NO2 observed at **Dundsa** 18.1 μ g/m3 and minimum value for NO2 observed at Village- **Dundsa** 6.88 μ g/m3. The 24 hours applicable limit for industrial, Residential Rural and Other Areas is 80 μ g/m3.

CO: The maximum value for CO observed at **Payala** 0.65 μ g/m3 and minimum value for CO observed at **Plant Site** 0.21 μ g/m3. The 8 hours applicable limit for Industrial, Residential Rural and other areas is 2000 μ g/m3.

Results and Conclusions

The results of the monitored data indicate that the ambient air quality of **PM10**, **PM2.5**, **Sox**, **NOx** & **CO** are within the permissible limit by CPCB at all the locations.

Mitigation measures:

The mitigation measures prescribed by Air Commission are being adopted holistic to reduce the air pollution for which the mitigation measure are incorporated in Chapter-4 of EIA/EMP report.

NOISE QUALITY DATA:

a) Day Time Noise Levels (Leqday)

The daytime (Leqday) noise levels are observed in Pirthala to be in the range of 61.1 dB(A) which are within the prescribed limit of 75 dB(A) and in residential areas to be in the range of 45.9 - 61.1 dB(A) which are within the prescribed limit of 55 dB(A).

b) Night time Noise Levels (Leqnight)

O ₄	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX		
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER - 11- SUMMARY & CONCLUSIONS	
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	CHAI TER - 11- SUMMART & CONCEUSIONS	

The nighttime (Leqnight) noise levels are observed in Plant Site to be in the range of 39.1 dB(A) which are within the prescribed limit of 70 dB(A) and in residential areas to be in the range of 39.1 - 48.4 dB(A) which are within the prescribed limit of 45 dB(A).

GROUND WATER

- ➤ The analysis results of eight ground water samples showed the pH in range of 6.92 7.60 indicating alkaline nature of ground water.
- ➤ Color and turbidity of the samples ranged from <1 Hazens and <1 NTU respectively.
- ➤ The total hardness of the samples ranged from 132 mg/l -180 mg/l. The minimum value was observed in (GW6) and whereas the maximum value observed at (GW7).
- ➤ Calcium and magnesium concentrations ranged from 23 -38.88 mg/l and 19.93 26.06 mg/l respectively.
- ➤ The dissolved solids of the samples ranged from 421mg/l -598 mg/l. The maximum value was observed at G-7 and whereas the minimum value observed at G-6.
- ➤ Range of chlorides and sulphate concentrations at all the locations 102.25 mg/l 210mg/l and 15.72 mg/l -22.63 mg/l respectively.
- ➤ Fluoride concentration ranged from 0.25mg/l -0.84 mg/l.
- ➤ Nitrates are also found ranging in between 3.82mg/l -8.17mg/l.
- ➤ Iron concentrations in ground water varied from 0.11-0.16 mg/l.
- ➤ Zinc was observed <0.01 mg/l at all the locations.
- ➤ Aluminium concentration is observed <0.01 mg/l at all the locations which are within the limits stipulated.
- ➤ Mercury concentrations at all the locations observed is <0.001 mg/l

Based on the above results, it is evident that all of the parameters in ground water fairly meet the standard limits of IS: 10500.

SURFACE WATER:

The surface water collected from Pahladpur Distributary, Agra Canal, Village:-Pirthala Pond. The Results of Surface water are pH-7.16 – 8.05; DO-4.7 to 5.5 mg/l and BOD- 8.2 to 22.71 mg/l & COD 39.28 to 120 mg/l. The results obtained is compared with the standard IS:2296 Limits and found to be Class-C

SOIL ANALYSIS:

• It is observed that the pH of the soil in the study area ranged from 7.71 to 8.23. The maximum pH value of 8.23 is observed at S-3 and whereas the minimum value of 7.71 was observed at S-4.

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER – 11– SUMMARY & CONCLUSIONS
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	CHAI TER - 11- SUMMART & CONCLUSIONS

- The electrical conductivity was observed to be in the range of $193\mu S/cm$ to $289\mu S/cm$ with the maximum observed at S-2 and the minimum observed at S-8.
- The phosphorus values range between 8.7 to 16.2 kg/ha. Indicating that the phosphorus content in the study area falls in medium category.
- The potassium values range between 30.0 to 45.0 mg/100gm.

 The result obtained is compared with the standard soil classification given Agriculture Soil Limits. It has been observed that the soils are Sandy loam in texture and slightly alkaline in nature. The nutrient and organic matter contents are medium to average sufficient and the soil is normally fertile.

11.6 BIOLOGICAL ENVIRONMENT

YEAR WISE PROPOSED PLANTATION WITH BUDGETOERY ALLOCATION

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

34 3720/38//2024//REGIBIN PALWA

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER - 11- SUMMARY & CONCLUSIONS
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	CHAI LEK - 11- SOMMAKI & CONCLUSIONS

			2 11			E/D		Year wise Plantation programme			Budget for	on	
S.No.	Scientific Name	Common Name	S. No.in CPCB Manual	НА	HT (m)		I Yr.	II Yr.	III Yr.	No of Trees to be planted	Plant cost including transportation, pitting, watering and fertilizers@ Rs. 300/sapling	Maintenance cost including causality replacement and watering @ Rs 200/ plants	Total
1 '	Azadirachta indica	Neem	A-44	Tree	20	Evergreen	235	215	212	662	198600	132400	331000
2	Polyalthia longifolia	Ashok	P-9	Tree	15	Evergreen	210	200	212	622	186600	124400	311000
3	Albizia lebbeck	Siris	A-29	Tree	20	Deciduous	215	210	212	637	191100	127400	318500
4	Cassia fistula	Amaltash	C-7	Tree	12	Deciduous	215	210	212	637	191100	127400	318500
5	Dalbergia sissoo	Shisham	D-2	Tree	10	Evergreen	225	215	212	652	195600	130400	326000
6	Ficus religiosa	Pipal	F-7	Tree	20	Evergreen	200	215	212	627	188100	125400	313500
7	Ficus bengalensis	Bad	F-3	Tree	12	Evergreen	200	200	212	612	183600	122400	306000
8	Terminalia arjuna	Arjun	T-6	Tree	15	Deciduous	215	210	212	637	191100	127400	318500
9	Syzygium cumini	Jamun	S-20	Tree	20	Evergreen	230	215	212	657	197100	131400	328500
10	Psidium guajava	Guava	P-20	Tree	05	Evergreen	230	215	212	657	197100	131400	328500
11	Bauhinia variegata	Kachnar	B-10	Tree	05	Deciduous	215	215	212	642	192600	128400	321000
12	Aegle marmelos	Beal tree	A-22	Tree	12	Evergreen	225	210	213	648	194400	129600	324000
13	Annona squamosa	Sitaphal	A37	Tree	10	Evergreen	225	225	212	662	198600	132400	331000
14	Mangifera indica	Aam	M-5	Tree	15	Evergreen	230	225	212	667	200100	133400	333500
		Tota	A .				3070	2980	2969	9019	2705700	1803800	4509500

Protection, care and monitoring of plantation:

- In order to protect the plants from sun burn and heat stress during summer, jute bags and agro net will be used.
- After Care: timely and sufficient after care is required such as soil manuring, weeding, proper watering etc.
- Proper monitoring of the plantation will be made.

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

O)	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX		
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER - 11- SUMMARY & CONCLUSIONS	
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	CHAPTER - 11- SUMMART & CONCLUSIONS	

11.7 SOCIO-ECONOMIC MANAGEMENT

- The socio-economic expectations of the villagers in the surrounding have minimalistic needs as the sources of employment and earning are available owing to the Study Area. The proposed plant activity will provide employment (round the year) to local people and contribute in the economic status of the area.
- Various questions on the adequacy for safety precautions required by the plant activity
 operations were enquired. The incumbents replied that they were well aware of the
 proposed unit operations and that they work in silence & isolation, without disturbing
 anyone.
- Higher Education facilities for Girls are limited.
- The villagers believe that, for economic growth and sustainable development it is important to protect the environment and harmonize the business activities with it. Habitants view a symbiosis between environment and business development.

Expectation

- Employment of Local and only local people in the proposed project.
- The local prioritized civic facilities as follows from a Ranking from 1-5.
 - 1. Jobs
 - 2. Higher Education
 - 3. Sewage disposal / Sanitary pipelining
 - 4. Security
 - 5. Water

11.8 CONCLUSION OF EIA STUDY

As discussed, it is safe to say that the project is not likely to cause any significant impact on the ecology of the area, as adequate preventive measures will be adopted to contain the various pollutants with in permissible limits. Green area development around the area would also be taken up as an effective pollution mitigative technique, as well as to control the pollutants released from the premises of Jyoti Strips Private Limited.

-		
D/3	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER - 12
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	DISCLOSURE OF CONSULTANT ENGAGED

CHAPTER-12 DISCLOSURE OF CONSULTANT ENGAGED

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

073	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER - 12
		DISCLOSURE OF CONSULTANT ENGAGED
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	DISCLOSURE OF CONSOLITANT ENGAGED

DISCLOSURE OF CONSULTANTS ENGAGED

Declaration by Experts contributing to the EIA of Proposed:

Draft EIA Report for proposed project of "Jyoti Strips Private Limited is a Proposed Cold Rolling Mill Complex with Galvanizing and colour coating line having total Capacity of Various products 7,80,000 MTPA" located at # Kila No. 4 to 24, Prithla - Tatarpur Road, Village Tatarpur, Palwal, Haryana over an area of 127294.69 sq.m. I hereby, certify that I was a part of the EIA team in the following capacity that developed the above EIA.

EIA Coordinator	Signature & Date	
EIA Coordinator	K. N. Sudershan Rao	Anga
EIA Coordinator	Dr. Alka Sharma	Zom gint
Period of Involvement	09.09.2022 – till date	
Contact Information	0141- 4920770, 4920771	

Functional Area Experts: -

S.	Functiona	Name of the	Involvement	Signature &
No.	l Areas	Expert/s	(Period & Task**)	Date
1	AP	Sunita Mantri	> Selection of AAQ stations in	I M
		Dr. Alka Sharma	compliance with CPCB/MoEF&CC	
			guidelines	Jum 21nt
		O.Y	> Interpretation of baseline data	
			w.r.t CPCB standards	
			> Identification of sources of	
			pollution and its inventorization	
			> Preparation of Management plan	
			with budgetary provision for all	
			the sources of pollution	
			> Suggestion of Operational	
			monitoring program to verify and	
			keep the levels well within the	
			norms from time to time	

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER - 12
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	DISCLOSURE OF CONSULTANT ENGAGED

WP Sunita Mantri Dr. Alka Sharma Selection of water monitoring locations in line with CPCB norms Interpretation of baseline data w.r.t to CPCB standards Identification of pollution sources with relevant inventorization Preparation of Water Balance Prediction of water pollution and its management plan. SHW Sunita Mantri Dr. Alka Sharma Identification of nature of waste, categorization, and quantity of generated waste. Prediction of waste pollution and preparation of its management. SE Puran Singh Collection of Secondary data (Census of India & District Handbook) Collection of primary data of the study area through Questionnaire method Compilation and analysis of primary & secondary data to identify the various activities required on need basis Identification and prediction of Socio-economic impacts Enumerating the benefits of the project in terms of employment, development, etc. Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in compliance with Companies act					
> Interpretation of baseline data w.r.t to CPCB standards > Identification of pollution sources with relevant inventorization > Preparation of Water Balance > Prediction of water pollution and its management plan. > Identification of nature of waste, categorization, and quantity of generated waste. > Prediction of waste pollution and preparation of its management. SE Puran Singh (Census of India & District Handbook) > Collection of primary data of the study area through Questionnaire method > Compilation and analysis of primary & secondary data to identify the various activities required on need basis > Identification and prediction of Socio-economic impacts > Enumerating the benefits of the project in terms of employment, development, etc. > Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in	2	WP	Sunita Mantri	➤ Selection of water monitoring	
w.r.t to CPCB standards Identification of pollution sources with relevant inventorization Preparation of Water Balance Prediction of water pollution and its management plan. Identification of nature of waste, categorization, and quantity of generated waste. Prediction of waste pollution and preparation of its management. Prediction of Secondary data (Census of India & District Handbook) Collection of primary data of the study area through Questionnaire method Compilation and analysis of primary & secondary data to identify the various activities required on need basis Identification and prediction of Socio-economic impacts Enumerating the benefits of the project in terms of employment, development, etc. Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in			Dr. Alka Sharma	locations in line with CPCB norms	Q . M .
> Identification of pollution sources with relevant inventorization > Preparation of Water Balance > Prediction of water pollution and its management plan. 3 SHW Sunita Mantri Dr. Alka Sharma > Identification of nature of waste, categorization, and quantity of generated waste. > Prediction of waste pollution and preparation of its management. 4 SE Puran Singh (Census of India & District Handbook) > Collection of primary data of the study area through Questionnaire method > Compilation and analysis of primary & secondary data to identify the various activities required on need basis > Identification and prediction of Socio-economic impacts > Enumerating the benefits of the project in terms of employment, development, etc. > Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in				> Interpretation of baseline data	2 - 4- (
with relevant inventorization Preparation of Water Balance Prediction of water pollution and its management plan. Identification, and quantity of generated waste. Prediction of waste pollution and preparation of its management. Prediction of waste pollution and preparation of its management. When the sum of its management. Because of India & District Handbook) Collection of primary data of the study area through Questionnaire method Compilation and analysis of primary & secondary data to identify the various activities required on need basis Identification and prediction of Socio-economic impacts Enumerating the benefits of the project in terms of employment, development, etc. Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in				w.r.t to CPCB standards	
> Preparation of Water Balance > Prediction of water pollution and its management plan. > Identification of nature of waste, categorization, and quantity of generated waste. > Prediction of waste pollution and preparation of its management. 4 SE Puran Singh Cujar (Census of India & District Handbook) > Collection of primary data of the study area through Questionnaire method > Compilation and analysis of primary & secondary data to identify the various activities required on need basis > Identification and prediction of Socio-economic impacts > Enumerating the benefits of the project in terms of employment, development, etc. > Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in				> Identification of pollution sources	
> Prediction of water pollution and its management plan. 3 SHW Sunita Mantri Dr. Alka Sharma				with relevant inventorization	
its management plan. SHW Sunita Mantri Dr. Alka Sharma Prediction of nature of waste, categorization, and quantity of generated waste. Prediction of waste pollution and preparation of its management. SE Puran Singh Gujar Collection of Secondary data (Census of India & District Handbook) Collection of primary data of the study area through Questionnaire method Compilation and analysis of primary & secondary data to identify the various activities required on need basis Identification and prediction of Socio-economic impacts Enumerating the benefits of the project in terms of employment, development, etc. Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in				Preparation of Water Balance	
SHW Sunita Mantri Dr. Alka Sharma Dr. Alka Sharma				Prediction of water pollution and	
Dr. Alka Sharma categorization, and quantity of generated waste. Prediction of waste pollution and preparation of its management. SE Puran Singh (Census of India & District Handbook) Collection of primary data of the study area through Questionnaire method Compilation and analysis of primary & secondary data to identify the various activities required on need basis Identification and prediction of Socio-economic impacts Enumerating the benefits of the project in terms of employment, development, etc. Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in				its management plan.	
Dr. Alka Sharma categorization, and quantity of generated waste. Prediction of waste pollution and preparation of its management. SE Puran Singh (Census of India & District Handbook) Collection of primary data of the study area through Questionnaire method Compilation and analysis of primary & secondary data to identify the various activities required on need basis Identification and prediction of Socio-economic impacts Enumerating the benefits of the project in terms of employment, development, etc. Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in	3	SHW	Sunita Mantri	➤ Identification of nature of waste.	0 . ×
generated waste. Prediction of waste pollution and preparation of its management. SE Puran Singh (Census of India & District Handbook) Collection of primary data of the study area through Questionnaire method Compilation and analysis of primary & secondary data to identify the various activities required on need basis Identification and prediction of Socio-economic impacts Enumerating the benefits of the project in terms of employment, development, etc. Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in					
> Prediction of waste pollution and preparation of its management. SE Puran Singh (Census of India & District Handbook) > Collection of primary data of the study area through Questionnaire method > Compilation and analysis of primary & secondary data to identify the various activities required on need basis > Identification and prediction of Socio-economic impacts > Enumerating the benefits of the project in terms of employment, development, etc. > Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in					2001 915
preparation of its management. SE Puran Singh Collection of Secondary data (Census of India & District Handbook) Collection of primary data of the study area through Questionnaire method Compilation and analysis of primary & secondary data to identify the various activities required on need basis Identification and prediction of Socio-economic impacts Enumerating the benefits of the project in terms of employment, development, etc. Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in					3(VM) 1
SE Puran Singh (Census of India & District Handbook) Collection of primary data of the study area through Questionnaire method Compilation and analysis of primary & secondary data to identify the various activities required on need basis Identification and prediction of Socio-economic impacts Enumerating the benefits of the project in terms of employment, development, etc. Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in					
Gujar (Census of India & District Handbook) Collection of primary data of the study area through Questionnaire method Compilation and analysis of primary & secondary data to identify the various activities required on need basis Identification and prediction of Socio-economic impacts Enumerating the benefits of the project in terms of employment, development, etc. Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in	4	SE	Puran Singh		
Handbook) Collection of primary data of the study area through Questionnaire method Compilation and analysis of primary & secondary data to identify the various activities required on need basis Identification and prediction of Socio-economic impacts Enumerating the benefits of the project in terms of employment, development, etc. Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in			9		From
 Collection of primary data of the study area through Questionnaire method Compilation and analysis of primary & secondary data to identify the various activities required on need basis Identification and prediction of Socio-economic impacts Enumerating the benefits of the project in terms of employment, development, etc. Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in 			,		
study area through Questionnaire method > Compilation and analysis of primary & secondary data to identify the various activities required on need basis > Identification and prediction of Socio-economic impacts > Enumerating the benefits of the project in terms of employment, development, etc. > Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in					
method Compilation and analysis of primary & secondary data to identify the various activities required on need basis Identification and prediction of Socio-economic impacts Enumerating the benefits of the project in terms of employment, development, etc. Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in				study area through Questionnaire	
primary & secondary data to identify the various activities required on need basis Identification and prediction of Socio-economic impacts Enumerating the benefits of the project in terms of employment, development, etc. Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in					
identify the various activities required on need basis > Identification and prediction of Socio-economic impacts > Enumerating the benefits of the project in terms of employment, development, etc. > Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in				Compilation and analysis of	
required on need basis Identification and prediction of Socio-economic impacts Enumerating the benefits of the project in terms of employment, development, etc. Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in			071	primary & secondary data to	
 Identification and prediction of Socio-economic impacts Enumerating the benefits of the project in terms of employment, development, etc. Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in 				identify the various activities	
Socio-economic impacts Enumerating the benefits of the project in terms of employment, development, etc. Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in				required on need basis	
 Enumerating the benefits of the project in terms of employment, development, etc. Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in 				> Identification and prediction of	
project in terms of employment, development, etc. Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in				Socio-economic impacts	
development, etc. > Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in				> Enumerating the benefits of the	
> Preparation of Environmental Social Responsibility activities based on the need basis with budgetary provisions in				project in terms of employment,	
Social Responsibility activities based on the need basis with budgetary provisions in				development, etc.	
based on the need basis with budgetary provisions in				> Preparation of Environmental	
budgetary provisions in				Social Responsibility activities	
				based on the need basis with	
compliance with Companies act				budgetary provisions in	
				compliance with Companies act	

PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER - 12
DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	DISCLOSURE OF CONSULTANT ENGAGED

			and MoEF&CC guidelines	
5	EB	Dinesh Bohra	> Identification of samples and its	
			size based on the present land use	(Dul) 6.11
			and land cover pattern.	Genger
			> Collection of primary data of flora	-
			and fauna for the study area with	
			standard methodology and	
			guidelines	
			> Collection of secondary data for	
			cross verification of the primary	
			data	
			> Inventorization and compilation	
			of biological aspects of the study	
			area	
			> Identification and prediction of	
			various impacts on Ecological and	
			biodiversity	
			> Preparation of management plan	
			including greenbelt development	
			plan with budgetary allocation	
6	HG	Ashish Sudhakar	Collection of secondary data	worde
		Tadas	(Ground water Authority)	/3 1
			Interpretation of Water resource	
			evaluation of the area.	
			➤ Interpretation of Pre-monsoon &	
			Post-monsoon water levels &	
	200		quality data.	
7	GEO	Ashish Sudhakar	Collection of secondary data with	Astrale ?
		Tadas	respect to regional and local	/ 3
			geology from Ground water	
			Department. Interpretation of collected data in	
			the report	
8	۸۵	K. N. Sudershan	Collection of primary data	
0	AQ	Rao		
		NdU	➤ Quantification of Air pollution	

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078
34 120/33/2024/R5G:BN PALWA
PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX

APPL	ICANT:	JYOTI STRIPS PR	CHAPTER – 12		
DOCU	IMENT	NO.: EESPL/JSPL/	DISCLOSURE OF CONSULTANT ENGAGED		
			urces) Ansa		
				Impact prediction using A	AERMOD
				View Modelling an	nd its
				interpretation.	
				Delineating the Incremer	ntal load
				on the existing scenario	
				Suggesting managemen	it plan
				with budgetary provision	
				➤ Suggestion of Ope	erational
				monitoring program to ve	erify and
				follow up to keep the lev	vels well
				within the norms from	time to
				time	
=	9	NV	K. N. Sudershan	➤ Identification and selec	ction of Arrea
			Rao	NAAQ monitoring location	ns.
				Collection of primary dat	ca (noise
				quality of the study area)	
				➤ Identification of Noise p	pollution
				sources.	
				➤ Impact prediction of	noise
				pollution sources a	nd its
			Q.Y	interpretation	
				Preparation of management	ent plan
				with budgetary provision	
					erational
				monitoring program to ve	
				follow up to keep the lev	-
				within the norms from	
				time	
-	10	LU	Ashish Sudhakar	➤ Collection of Primar	ry and
	10	20	Tadas	secondary data (Topo	10
			- 5.000	satellite imaginary, coord	1.0
				known vectors, etc.)	
				Geo-referencing the prim	arv data
				with secondary data	-
L				with secondary data	using

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

APRIL'2024

217

Q	IQ II TANDA II IEEFEI ENA BAI NAA	
	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER - 12
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	DISCLOSURE OF CONSULTANT ENGAGED
	1	l

			AutoCad, ERDAS, GIS software	
			Preparation of Land use and Land	
			cover map	
			> Identification and its Impact	
			prediction (if any)	
11	RH	K. N. Sudershan	➤ Identification of risk and hazards	00
		Rao	> QRA study and prediction of risks	America
			involved.	
			> Management of Hazard controls	
			due to chemical storage	
			> Preparation of Disaster	
			Management Plan with Onsite	
			and Offsite Emergency Plan	
			> Delineating fire fighting facilities	
			and system	
			Preparation of Occupational	
			Health and Safety Management	
			Plan with budgetary allocations.	
12	SC	Dinesh Bohra	Collection of primary data	
			Interpretation of existing quality	Runger .
			of soil.	07 109
		QY	> Prediction of Impact and its	
			management (if any).	
			0 (-))	

Team member/FAA *

S. No.	Name of Team Members	Functional Areas	Signature
1.	Yamini Singh Rathore (FAA)	EB, AP	(anu'n
2.	Himanshi Shukla(FAA)	SC, AP	- Historian
3.	Neha Shree(TM)	HG, Geo	Description

ENKAY ENVIRO SERVICES PVT. LTD., JAIPUR

0/3	PROJECT: DRAFT EIA /EMP REPORT OF PROPOSED COLD ROLLING MILL COMPLEX	
	APPLICANT: JYOTI STRIPS PRIVATE LIMITED	CHAPTER - 12
	DOCUMENT NO.: EESPL/JSPL/IND/EC/2022-23/119	DISCLOSURE OF CONSULTANT ENGAGED

Declaration by the Head of the Accredited Consultant Organization

I, Sunita Mantri, hereby, confirm that the above mentioned experts prepared the EIA of Draft EIA Report For proposed project of "Jyoti Strips Private Limited is a Proposed Cold Rolling Mill Complex with Galvanizing and colour coating line having total Capacity of Various products 7,80,000 MTPA" located at # Kila No. 4 to 24, Prithla - Tatarpur Road, Village Tatarpur, Palwal, Haryana over an area of 127294.69 sq.m. I also confirm that I shall be fully accountable for any misleading information mentioned in this statement.

Signature	I re-M to		
Name	Sunita Mantri		
Designation	CMD		
Name of the EIA Consultant	Enkay Enviro Services Pvt. Ltd., Jaipur		
Organization			
NABET Certificate No. & Issue Date	At S.No. 60 (as on April 2024) as per List of		
	Accredited EIA Consultant Organizations.		

File No.SEIAA/HR/2023/426

Goverment of India
State Level Environment Impact Assessment Authority
Haryana

To,

M/s JYOTI STRIPS PRIVATE LIMITED
Kila No. 4 to 24, Prithla - Tatarpur Road, Village - Tatarpur, Palwal, Haryana.,
Palwal-121102
Haryana

Tel.No.-; Email:sanjaybatra@jyotistrips.com

Sub. Terms of Reference to the Jyoti Strips Private Limited "Proposed Cold Rolling Mill Complex with Galvanizing and color coating line having total Capacity of Various products 7, 80,000 MTPA" located at # Kila No. 4 to 24, Prithla - Tatarpur Road, Village Tatarpur, Palwal, Haryana over an area of 127294.69 sq.m. (12.729 ha)., Kila No. 4 to 24, Prithla - Tatarpur Road, Village - Tatarpur, Palwal, Haryana.

Dear Sir/Madam,

This has reference to the proposal submitted in the Ministry of Environment, Forest and Climate Change to prescribe the Terms of Reference (TOR) for undertaking detailed EIA study for the purpose of obtaining Environmental Clearance in accordance with the provisions of the EIA Notification, 2006. For this purpose, the proponent had submitted online information in the prescribed format (Form-1) along with a Pre-feasibility Report. The details of the proposal are given below:

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 343120788/2024/医時的 PALWAL

1. Proposal No.: SIA/HR/IND1/438851/2023

Jyoti Strips Private Limited "Proposed Cold Rolling Mill Complex with Galvanizing and color coating line having total Capacity of Various

2. Name of the Proposal: products 7, 80,000 MTPA" located at # Kila No.

4 to 24, Prithla - Tatarpur Road, Village Tatarpur, Palwal, Haryana over an area of

127294.69 sq.m. (12.729 ha).

3. Category of the Proposal: Industrial Projects - 1

4. Project/Activity applied for: 3(a) Metallurgical industries (ferrous & non

ferrous)

5. Date of submission for TOR: 11 Oct 2023

Date: 27-10-2023

Sh. Pardeep Kumar, IAS (Member Secretary)

Office: Bays No. 55-58, Ist Floor, Prayatan Bhawan, Sector-2, Panchkula, Haryana

Phone No: Mobile: 9811840212
Email id: seiaa-21.env@hry.gov.in

Note: This is auto tor granted letter.

In this regard, under the provisions of the EIA Notification 2006 as amended, the Standard TOR for the purpose of preparing environment impact assessment report and environment management plan for obtaining prior environment clearance is prescribed with public consultation as follows:

ACTIVITY 3 (a)- METALLURGICAL INDUSTRY (Ferrous and Non-ferrous)

STANDARD TERMS OF REFERENCE FOR CONDUCTING ENVIRONMENT IMPACT ASSESSMENT STUDY FOR METALLURGICAL INDUSTRY (Ferrous and Non-ferrous) AND INFORMATION TO BE INCLUDED IN EIA/EMP REPORT

GENERAL CONDITIONS-

1. Introduction

- i. Background about the project
- ii. Need of the project
- iii. Purpose of the EIA study
- iv. Scope of the EIA study

2. Project description

A. Site Details

- i. Location of the project site covering village, Taluka/Tehsil, District and State.
- ii. Site accessibility
- iii. Adigital toposheet in pdf or shape file compatible to google earth of the study area of radius of 10km and site location preferably on 1:50,000 scale. (including all eco-sensitive areas and environmentally sensitive places).
- iv. Latest High-resolution satellite image data having 1m-5m spatial resolution like quickbird, Ikonos, IRS P-6 pan sharpened etc., along with delineation of plant boundary co-ordinates. Area must include at least 100m all around the project location.
- v. Environment settings of the site and its surrounding along with map.
- vi. A list of major industries with name, products and distance from plant site within study area (10km radius) and the location of the industries shall be depicted in the study area map.
- vii. In case if the project site is in vicinity of the water body, 50 meters from the edge of the water body towards the site shall be treated as no development/construction zone. If it's near the wetland, Guidelines for implementing Wetlands (Conservation and Management) Rules, 2017 may be followed.
- viii. In case if the project site is in vicinity of the river, the industry shall not be located within the river flood plain corresponding to one in 25 years flood, as certified by concerned District Magistrate/Executive Engineer from State Water Resources Department (or) any other officer authorized by the State Government for this purpose as per the provisions contained in the MoEF&CC Office Memorandum dated 14/02/2022.
- ix. Type of land, land use of the project site.
- x. Status of acquisition of land. If acquisition is not complete, stage of the acquisition process as per the MoEF&CC O.M. dated 7/10/2014 shall be furnished.
- xi. Engineering layout of the area with dimensions depicting existing unit as well as proposed unit indicating storage area, plant area, greenbelt area, utilities etc. If located within an Industrial area/Estate/Complex, layout of Industrial Area indicating location of unit within the Industrial area/Estate.

B. Forest and wildlife related issues (if applicable):

Page 1 of 10

- i. Status of Forest Clearance for the use of forest land shall be submitted.
- ii. Copy of application submitted for clearance under the Wildlife (Protection) Act, 1972, to the Standing Committee of the National Board for Wildlife if the project site located within notified Eco-Sensitive Zone, 10km radius of national park/sanctuary wherein final ESZ notification is not in place as per MoEF&CC Office Memorandum dated 8/8/2019.
- iii. The projects to be located within 10 km of the National Parks, Sanctuaries, Biosphere Reserves, Migratory Corridors of Wild Animals, Eco-sensitive Zone and Eco-sensitive areas, the project proponent shall submit the map duly authenticated by Divisional Forest Officer showing the distance between the project site and the said areas.
- iv. Wildlife Conservation Plan duly authenticated by the Competent Authority of the State Government for conservation of Schedule I fauna, if any exists in the study area.

C. Salient features of the project

- i. Products with capacities in **Tons per Annum** for the proposed project.
- ii. If expansion project, status of implementation of existing project, details of existing/proposed products with production capacities in Tons per Annum.
- iii. Site preparatory activities.
- iv. List of raw materials required and their source along with mode of transportation.
- v. Other than raw materials, other chemicals and materials required with quantities and storage capacities.
- vi. Manufacturing process details along with process flow diagram of proposed units.
- vii. Consolidated materials and energy balance for the project.
- viii. Total requirement of surface/ ground water and powerwith their respective sources, status of approval.
- ix. Water balance diagram
- x. Details of Emission, effluents, hazardous waste generation and mode of disposal during construction as well as operation phase.
- xi. Man-power requirement.
- xii. Cost of project and scheduled time of completion.
- xiii. Brief on present status of compliance (Expansion/modernization proposals)
- a. Cumulative Environment Impact Assessment for the existing as well as the proposed expansion/modernization shall be carried out.
- b. In case of ground water drawl for the existing unit, action plan for phasing out of ground water abstraction in next three years except for domestic purposes and shall switch over to 100 % use of surface water from nearby source.
- c. Copy of <u>all</u> the Environment Clearance(s) including Amendments thereto obtained for the project from MoEF&CC/SEIAA shall be attached as an Annexure. A certified copy of the latest Monitoring Report of the Regional Office of the Ministry of Environment and Forests as per circular dated 30th May, 2012 on the status of compliance of conditions stipulated in <u>all</u> the existing environment clearances including amendments shall be provided.
- d. In case the existing project has not obtained EnvironmentClearance, reasons for not taking EC under the provisions of the EIA Notification 1994 and/or EIA Notification 2006 shall be provided. Copies of Consent to Establish/No Objection Certificate and Consent to Operate (in case of units operating prior to EIA Notification 2006, CTE and CTO of FY 2005-2006) obtained from the SPCB shall be submitted. Further, compliance report to the conditions of consents from the Regional Office of the SPCB shall be submitted.

3. Description of the Environment

i. Study period

ii. Approach and methodology for data collection as furnished below.

	Attributes	Samp		Remarks
		Network	Frequency	1
A.	Air Environment		•	•
M11	wind speed (Hourly) Wind direction Dry bulb temperature Wet bulb temperature Relative humidity Rainfall Solar radiation Cloud cover Environmental Lapse Rate	Minimum 1 site in the project impact area	l hourly continuous	 IS 5182 Part 1-20 Site specific primary data is essential Secondary data from IMD, New Delhi CPCB guidelines to be considered.
Pol	PM _{2.5}	At least 8-12 locations	As per National Ambient	Sampling as per CPCB guidelinesCollection of AAQ data
	PM ₁₀ SO ₂ NOx CO HC Other parameters relevant to the project and topography of the area		Ambient Air Quality Standards, CPCB Notification.	 (except in monsoon season) Locations of various stations for different parameters should be related to the characteristic properties of the parameters. The monitoring stations shall be based on the NAAQM standards as per GSR 826(E) dated 16/11/2009 and take into account the predominant wind direction, population zone and sensitive receptors including reserved forests, Raw data of all AAQ measurement for 12 weeks of all stations as

Attributes	Samp	ling	Remarks
	Network	Frequency	
			per frequency given in the NAAQM Notification of 16/11/2009 along with min., max., average and 98% values for each of the AAQ parameters from data of all AAQ stations should be provided as an annexure to the EIA Report.
B. Noise			
 Hourly equivalent 	At least 8-12	-	
noise levels	locations	norms	
C. Water	Commiss for vystar	avality abould b	a collected and analyzed as
Parameters for water quality PH, temp, turbidity, magnesium hardness, total alkalinity, chloride, sulphate, nitrate, fluoride, sodium, potassium, salinity Total nitrogen, total phosphorus, DO, BOD, COD, Phenol Heavy metals Total coliforms, faecal coliforms Phyto plankton Zoo plankton	per: IS: 2488 (Par Industrial effl Standard me wastewater ar Association.	rt 1-5) methods uents ethods for exa nalysis published	e collected and analyzed as for sampling and testing of amination of water and by American Public Health
For River Bodies Total Carbon PH Dissolved Oxygen Biological Oxygen Demand Free NH4 Boron Sodium Absorption Ratio Electrical	water quality of the nearest River (60m upstream and downstream) and other surface water	during critica Standard me	ter sources to be measured al season ethodology for collection of r (BIS standards)

Attributes	Sampling		Remarks
	Network	Frequency	
Conductivity	bodies		
For Ground Water	minimum of	8 locations (current records	ata should be collected at from existing wells /tube s) from the study area and
D. Traffic Study			
 Type of vehicles 	•		
Frequency of			
vehicles for			
transportation of			
materials			
 Additional traffic 			
due to proposed			
project			
• Parking arrangement			
E. Land Environment	L		
Soil	Soil samples be co	ollected as per BI	S specifications
• Particle size			
distribution			
• Texture			
• pH			
• Electrical			
conductivity			
• Cation exchange			
capacity			
• Alkali metals			
Sodium Absorption			
Ratio (SAR)			
• Permeability			
• Water holding			
capacity			
Porosity			
Land use/Landscape Location code			
Total project area			
TopographyDrainage (natural)			
• Cultivated, forest,			
plantations, water			
bodies, roads and			
settlements			
E. Biological Environme	nt		
P. Piological Environme	111		

	Attributes		Sampling		Remarks
			Network	Frequency	
Aquatic Primary productivity Aquatic weeds Enumeration of phyto plankton, zoo plankton and benthos Fisheries Diversity indices Trophic levels Rare and endangered species Marine Parks/ Sanctuaries/ closed areas /coastal regulation zone (CRZ) Ferrestrial Vegetation-species list, economic importance, forest produce, medicinal value Importance value index (IVI) of trees Fauna Avi fauna Rare and endangered species Sanctuaries / National park / Biosphere reserve Migratory routes			Detailed descapation exists special refere Indicator spenyironment included to would result in Samples to discharge possible also from dug For forest sturn while selection Secondary discharge discharge possible from the selection of the selecti	cription of flora ting in the study nce to rare, ender becies which degradation sl clearly state wh n to any adverse collect from ups int, nearby tribut wells close to act dies, direction of g forests.	and fauna (terrestrial and y area shall be given with mic and endangered species. indicate ecological and hould be identified and ether the proposed project effect on any species. Stream and downstream of itaries at downstream, and etivity site. If wind should be considered from Government offices,
	Demographie	L	Casia	· · · · · ·	hand as area of
	Demographic structure		Socio-econon	nic survey is random sampling	based on proportionate,
	Infrastructure			collection through	
	resource base		•	_	s records, statistical hard
	Economic resource		•		ecords and relevant official
	base		_	ible with Govt. A	
	Health status: Morbidity pattern Cultural and		records availe	ole will dovi. A	Echeros
	aesthetic attributes				

Attributes	Sampling		Remarks
	Network	Frequency	
Education			

- iii. Interpretation of each environment attribute shall be enumerated and summarized as given below:
- Ambient air quality
- Ambient Noise quality
- Surface water quality
- Ground water quality
- Soil quality
- Biological Environment
- Land use
- Socio-economic environment
- 4. Anticipated Environment Impacts and mitigation measures (In case of expansion, cumulative impact assessment shall be carried out)
- i. Identification of potential impacts in the form of a **matrix** for the construction and operation phase for all the environment components

Activity	Environment	Ecological	Socio-economic
Construction phase			
Operation phase			

- ii. Impact on ambient air quality (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact)
- a. Construction phase
- b. Operation phase
- Details of stack emissions from the existing as well as proposed activity.
- Assessment of ground level concentration of pollutants from the stack emission based on AQIP Modelling The air quality contours shall be plotted on a location map showing the location of project site, habitation nearby, sensitive receptors, if any along with wind rose map for respective period
- Impact on ground level concentration, under normal, abnormal and emergency conditions. Measures to handle emergency situations in the event of uncontrolled release of emissions.
- iii. Impact on ambient noise quality (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact)
- a. Construction phase
- b. Operation phase
- iv. Impact on traffic (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact)
- a. Construction phase
- b. Operation phase
- v. Impact on soil quality (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact)

Page **7** of **10**

- a. Construction phase
- b. Operation phase
- vi. Impact on land use (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact)
- a. Construction phase
- b. Operation phase
- vii. Impact on surface water resource and quality (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact)
- a. Construction phase
- b. Operation phase
- viii. Impact on ground water resource and quality (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact)
- a. Construction phase
- b. Operation phase
- ix. Impact on terrestrial and aquatic habitat (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact)
- a. Construction phase
- b. Operation phase
- x. Impact on socio-economic environment (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact)
- a. Construction phase
- b. Operation phase
- xi. Impact on occupational health and safety (Sources; Embedded control measures; Assessment; Mitigation measures; Residual impact)
- a. Construction phase
- b. Operation phase

5. Analysis of Alternatives (Technology & Site)

- i. No project scenario
- ii. Site alternative
- iii. Technical and social concerns
- iv. Conclusion

6. Environmental Monitoring Program

- i. Details of the Environment Management Cell
- ii. Performance monitoring schedule for all pollution control devices shall be furnished.
- iii. Corporate Environment Policy
- a. Does the company have a well laid down Environment Policy approved by its Board of Directors? If so, it may be detailed in the EIA report.
- b. Does the Environment Policy prescribe for standard operating process / procedures to bring into focus any infringement / deviation / violation of the environment or forest norms / conditions? If so, it may be detailed in the EIA.
- c. What is the hierarchical system or Administrative order of the company to deal with the environment issues and for ensuring compliance with the environment clearance conditions? Details of this system may be given.

Page 8 of 10

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 343120788/2024/医時的 PALWAL

d. Does the company have system of reporting of non compliances / violations of environment norms to the Board of Directors of the company and / or shareholders or stakeholders at large? This reporting mechanism shall be detailed in the EIA report

iv. Action plan for **post-project environment monitoring matrix**:

Activity	Aspect	Monitoring Parameter	Location	Frequency	Responsibility					
Construction phase										
Operation phase										

7. Additional Studies

- i. Public consultation details (Entire proceedings as separate annexurealong with authenticated English Translation of Public Consultation proceedings).
- ii. Summary of issues raised during public consultation along with action plan to address the same as per MoEF&CC O.M. dated 30/09/2020

S	Physical activity	Year of implementation (Budget in INR)			Total Expenditu	
	Name of the Activity	Physical Targets	1 st	2 nd	3 rd	re (Rs. in Crores)

- iii. Risk assessment
- Methodology
- Hazard identification
- Frequency analysis
- Consequence analysis
- Risk assessment outcome
- iv. Emergency response and preparedness plan

8. Project Benefits

- i. Environment benefits
- ii. Social infrastructure
- iii. Employment and business opportunity
- iv. Other tangible benefits

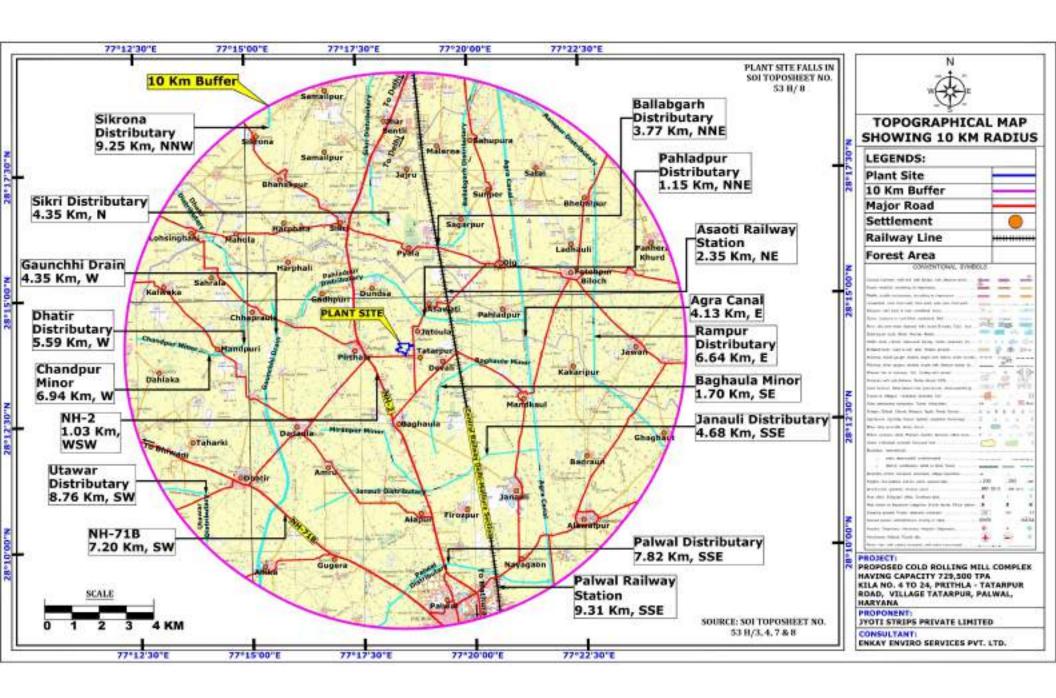
9. Environment Cost Benefit Analysis

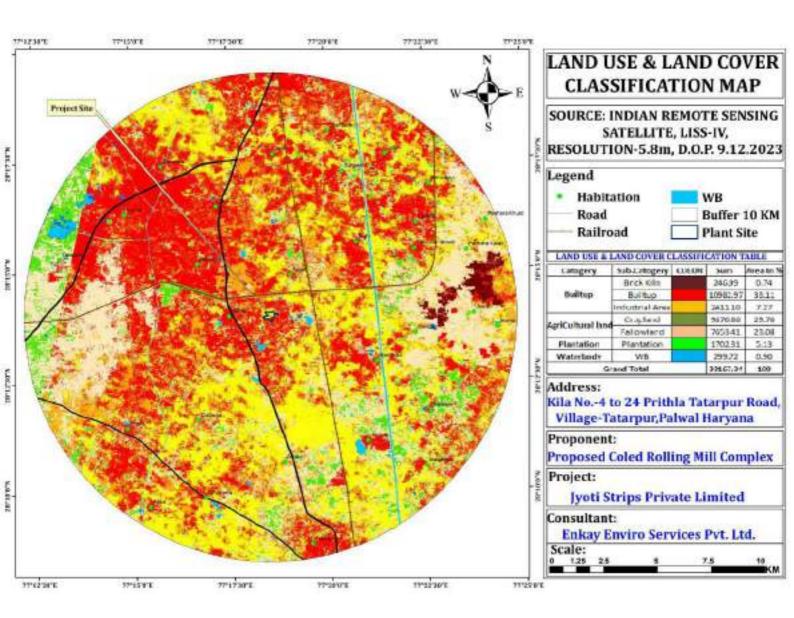
- i. Net present value
- ii. Internal rate of return
- iii. Benefit cost ratio
- iv. Cost effectiveness analysis

10. Environment Management Plan (Construction and Operation phase)

- i. Air quality management plan
- ii. Noise quality management plan

Page 9 of 10


- iii. Solid and hazardous waste management plan
- iv. Effluent management plan
- v. Storm water management plan
- vi. Rain water harvesting plan
- vii. Occupational health and safety management plan
- viii. Green belt development plan
- ix. Socio-economic management plan
- x. Wildlife conservation plan (In case of presence of schedule I species)
- xi. Total capital cost and recurring cost/annum for environment pollution control measures shall be included.


11. Conclusion of the EIA study

12. In addition to the above, any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.

SPECIAL CONDITIONS-

- 1. For Large ISPs, a 3-D view i.e. DEM (Digital Elevation Model) for the area in 10 km radius from the proposal site. MRL details of project site and RL of nearby sources of water shall be indicated.
- 2. Plan for the implementation of the recommendations made for the steel plants in the CREP guidelines.
- 3. Plan for solid wastes utilization
- 4. Plan for utilization of energy in off gases (coke oven, blast furnace)
- 5. System of coke quenching adopted with justification.
- 6. Details on environmentally sound technologies for recycling of hazardous materials, as per CPCB Guidelines, may be mentioned in case of handling scrap and other recycled materials.
- 7. Details on toxic metal content in the waste material and its composition and end use (particularly of slag).
- 8. Details on toxic content (TCLP), composition and end use of slag.
- 9. 100 % dolo char generated in the plant shall be used to generate power.
- 10. Fourth Hole fume extraction system shall be provided for SAF.WHR system shall be installed to recover sensible heat from flue gases of EAF. Provision for installation of jigging and briquetting plant to utilise the fines generated in the process.
- 11. No tailing pond is permitted for Iron ore slimes. Dewatering and filtration system shall be provided.
- 12. Emission/effluent norms as per G.S.R 894 (E) dated 4/12/2019.

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 34312028/2024/RE馆的N PALWAL

Directorate of Town & Country Planning, Haryana Plot No. 3, Sec-18A, Madhya Marg, Chandigarh 160018, web site: www.tcpharyana.gov.in,

Phone: 0172-2549349, e-mail: tcpharyana7@gmail.com

To

Jyoti Strips Pvt. Ltd., Through its Director Sh. Naresh Kumar, Corp. Off. Plot no. 100 to 106, HUDA, Sector-59, Phase-II, Tehsil Ballabgarh & District Faridabed-121004

Memo No.CLU/PL-1681A/CTP/6757/2022

Dated: 11/03/2022

Subject:

Letter of Intent for grant of additional change of land use permission for setting up of Industrial Unit in the revenue estate of Village Maindapur/Jatola, Tehsil & District Palwal— Jyoti Strips Pvt. Ltd

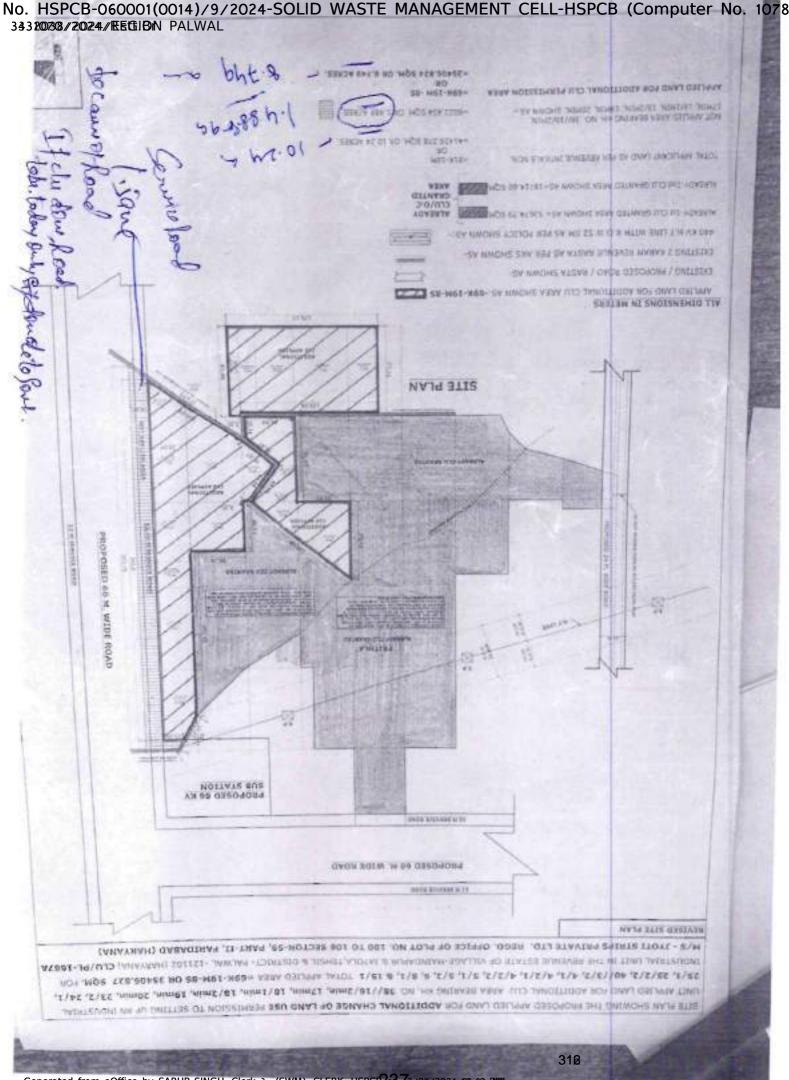
Reference: Your application dated 06.08.2021 on the above cited subject

Your request for grant of additional change of land use permission for setting up of Industrial Unit over an area measuring 35406.827 Sqm comprising Khasra no. 38//16/2 min, 17 min, 18/1 min, 18/2 min, 19 min, 20 min, 23/2, 24/1, 25/1, 25/2/2, 40//3/2, 4/1, 4/2/1, 4/2/2, 5/1, 5/2, 6, 8/1, 15/1 of Village Maindapur/Jatola Tehsil Hodal District Palwal has been considered and it has been decided in principle to grant permission for change of land use on the land shown on the enclosed site plan. Therefore, as per requirement of the provisions of Rule 26-C of Rules, 1965 i/we are hereby required to fulfill the following terms and conditions in accordance with Rule 26-D of Rules, 1965 and submit the following documents as prerequisite: -

- An agreement deed on prescribed CLU-II Performs (https://tcpharyana.gov.in/Forms/CLU-Forms/Form%20CLU-II.pdf) on the Non-judicial Stamp Paper as required under the provisions of the Punjab Scheduled Roads and Controlled Areas Restriction of Unregulated Development Act, 1963 and Rules, 1965 framed there under.
- A Sum of Rs.1770341.00 on account of Conversion Charges (refer Fees and charges at https://tcpharyana.gov.in/) be deposited online at www.tcpharyana.gov.in.
- An undertaking on Non-Judicial Stamp Paper that (I/we _____hear by undertake and undertaking that:
- I/we shall Opay the additional amount of Conversion charges for any variation in area at site in lump sum within a period of 30 days as and when detected and demanded by the Director, Town & Country Planning, Haryana, Chandigarh.
- II. I/we shall complete the demarcation at site within 7 days and will submit the Demarcation Plan in the office of concerned District Town Planner.
- III. I/we shall pay the total external development charges as demanded by the department in case the subject land comes under organizable limit due to its extension in future.
- IV. I/we shall give at least 75% employment to the domiciles of Haryana where the posts are not technical in nature and a quarterly statement indicating the category wise total employment to those who belong to Haryana shall be furnished to the G.M.D.I.C.
- V. I/we shall deposit labor cess at the time of approval of building plan.
- VI. I/we shall have no objection to land acquisition for laying/augmentation of services at any point of time in future as required by Govt/HSVP.

- VII. That no other application for grant of license/CLU permission for the Khasra nos. covered under the present CLU application stand submitted by i/we which is pending for consideration/orders
- VIII. I/we shall obtain occupation certificate from the department after completing the building within two years of issuance of this permission.
- IX. I/we shall get the building plans for the site approved from the department before commencing the construction at site and will start the construction within six months from the date of issuance of final permission.
- To deposit an amount of Rs. 91,25,841/- against 10% of the total EDC @ Rs. 104.305 lacs per gross acre to be deposited online at www.tcpharyana.gov.in
- Submit an undertaking that I/we shall maintain the ROW of 440 KV HT line passing through the applied site
- 6. Submit an undertaking that I/we shall pay the 40% of the total External Development Charges at the time of acquisition of land of this sector and balance 50% in four annual installments with 15% interest of the updated rates of EDC as existing on the date of announcement of award.
- 7. Submit an undertaking that the EDC have been charged on the basis of EDC Indexation Mechanism Policy dated 11.02.2016, which stands approved by cabinet. If there will be any change and delay in the amendment in the Act/Rules w.r.t. the said rates, then differential amount from the original calculation will required to be deposited as and when demanded by the Department
- 8. Submit an undertaking that i/we are fully aware that the development/construction cost of 24/18/15 m wide road/major internal road is not included in the EDC rates and i/we shall pay the proportionate cost for acquisition of land, if any along with the construction cost of 24/18 m wide road/major internal road as and when finalized and demanded by the Director, Town & Country Planning, Haryana
- Submit an undertaking that i/we shall obtain NOC/Clearance as per provisions of notification dated 14.09.2006 issued by Ministry of Environment & Forest, Govt. of India, if applicable before execution of development works at site.
- I/we shall not submit any other application for CLU/License for this land and the land is free from litigation/court case/acquisition etc.
- I/we shall not object the acquisition of land falling under road widening in future, if any.

As faid down under Rule 26-C, I/we are hereby called upon to fulfill the above said terms and conditions and submit the requisite documents within a period of 30 days from the date of issue of this letter (L.O.I). On your failure, this letter shall stand withdrawn and permission shall be refused as per the provisions of Rule 26-C(2) of Rules, 1965.


Surena District Town Planner Directorate of Town & Country Planning, Haryana

Dated, 11/03/2022

Endst No. CTP/8758-6759/2022 1. Senior Town Planner, Faridabad. No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 343 20078/2024/底底证的 PALWAL

2 District Town Planner, Palwal

District Town Planner Directorate of Town & Country Planning, Haryana

- Soli: Request of grant of additional Change of Land Use permission for setting up an Industrial unit bearing kh. no. 36//16/2 min, 17 min, 16/1 min, 16/2 min, 19 min, 20 min, 23/2, 24/1, 25/1, 25/2/2, 40//3/2, 4/1, 4/2/1, 4/2/2, 5/1, 5/2, 6, 3/1, 15/1, in the revenue estate of village Maindapur/jatola, Tehsil & Distr. Palwal M/s lyou Strips Private Ltd. (PL-16S1A).
- Def.: Applicant's application received through e-office bearing dury no. TCP-OFA/14041/2021 dated 30.07.2021 & Application No. GLU/PL-16B1A dated 06.08.2021.

With reference to subject cited above, it is intimated that the applicant company Le. Jyoti Strips Pvt. Ltd. has already been granted CLU permission to the subjected unit vide Directorate office memo no. PL-1443-JE(S)-2017/3660 dated 27.02.2017, bearing kh. no. 76//B, 9, 10/2. 11/1, 11/2, 11/3, 12/2, 12/1, 13, 18, 19/1, 19/2, 20, 23/2, 24, 77//15/1 min, 15/2 min, 98//4, 7 min. 8/1 min, CLI) granted area 53674.79 squ. of village Prithla, & additional CLU permission has already been granted vide Directorate office memo no. PL-1443-B-PA (SS)-2018/5405 dated 09.02.2018 bearing kh. no. 38//21, 22, 23/1, 40//2, 3/1, 8/2, 9, of village Maindapur & 40//7, CLU granted area 18714.60 sqm of village Jatola, Tehsii & Distr. Palwal. As per record of this office, building plan of the same has been approved vide Directorate office memo no. PL: 1443-B/AD (RA)/2018/30979 dated 02.11.2016 [53674.79 + 18714.60 = 72389.39 sqm.] & Occupation Certificate has already been granted vide Directorate office memo no. PL-1443-B/AD (NK)/2021/14036 dated 16.06.2021, total covered area on ground floor 10546.40 sqm. Now, the applicant has applied on the adjacent land of said CLU granted land bearing kh. no. 38//16/2 min, 17 min, 18/1 min, 18/2 min, 19 min, 20 min, 23/2, 24/1, 25/1, 25/2/2, 40//3/2, 4/1, 4/2/1, 4/2/2, 5/1, 5/2, 6, 8/1, 15/1, in the revenue estate of village Maindapur/Jatola, Tehsil & Distt. Palwal total land bearing 69K-19M-8S or 35406.827 squ. or 8.749 acres for industrial unit in the revenue estate of village Maindapur/Jatola Tehsil & Dist. Palwal. The applicant uploaded the requisite documents on the web portal. The CLU application alongwith uploaded documents have been examined and also the applied site has been visited/inspected. The detailed report is as under-

- As per the copy of revenue documents, total applicant land 81K-18M, but applied land 69K-19M-8S or 3540a.827 sqm, or 8.749 acres, bearing kh. No. 38//16/2 min, 17 min, 18/1 min, 18/2 min, 19 min, 20 min, 23/2, 24/1, 25/1, 25/2/2, 40//3/2, 4/1, 4/2/1, 4/2/2, 5/1, 5/2, 6, 8/1, 15/1, in the revenue estate of village Maindapur/Jatola, Tehsil & Distt. Palwal is under the ownership of M/s lyoti Strips Private Ltd. vide mutation no. 963, 1166, 1175, 961, 937, 935, 1039 & 1077.
- Applied site falls in controlled area around primary school at village jatola notified no. CCP(NCR)/EW/(KMP)/FBD/18/CA/B/2008/1264 dated 31.05.2006.
- As per published Final Development Plan Prithla 2031AD, the applied land falls in Industrial zone, sector-11.
- As per aks sajra plan applied land is approachable through already CLU granted site.
- The applied site falls in the urban area Prithla. Therefore no violation under section 7(i)
 of the Haryana Development Regulations of Urban Area Act 1975.
- 6. Site visited on 09.08 2021 and found vacant.
- 7. No Gas pipe line passes through the applied site.

- There is a 440 KV HT Line passes through right of way the applied land as shown on the site plan.
- The site plan has been prepared on the basis of Aks-Sajra/Site Com Survey Plan uploaded by the applicant.
- Applied site does not come under Notification dated 07.05.1992 of Ministry of Environment & Forest, Govt, of India and Punjab Land Preservation Act, 1900.
- The applied site does not fall in 1 KM restricted belt of K.M.P. Expressway.
- 12. As per the revenue documents uploaded by the applicant company and as well as this office record, there is no acquisition proceeding on the applied land.
- 13. As per Revised Regional Plan NCR 2021AD, Sub Regional Plan of Haryana and ground truthing report submitted by District Level Sub Committee, on 24.06.2019 the applied site falls outside the Natural Conservation Zone.

The above report of above referred application alongwith Site Sketch Plan.

Urban Area Plan Prithla, Part Copy of FDP Prithla 2031AD & Part Copy of Approved Circulation Plan are submitted for consideration and further forwarding to STP office. Faridabad, please.

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 3432023/2024/医時的 PALWAL

Directorate of Town & Country Planning, Haryana

SCO-71-75, 2nd Floor, Sector-17-C, Chandigarh, Phone: 0172-2519342 Web site topharyana gov.in - a-mail: topharyana3/figmail.com

Regd

Form Ct.U-III (See Rule-25-E)

To

Jyoti Strips Pvt. Ltd
C/o 103-B, Singh Farm Road, Mithabpur Extension,
Badarpur Road, New Delhi, – 110044
Email id – md@ivotistrips.com

Memo. No. PL-1443-JE(S)-2017/ 3660 Dated: 27-02-2017

Subject: -

Grant of change of land use permission for setting up of Industrial Unit in the revenue estate of village Prithla and Jatola, Sector-11, Prithla, Distt. Palwal – Jyoti Strips Pvt. Ltd.

Reference: - Your application dated 02.12.2016 on the above cited subject.

Permission of change of land use for setting up of an Industrial Unit over an area measuring 53674.79 Sqm falling in Khasra no. 40//13, 14, 17/1, 18, 17/2, 23, 24 and 42//4 of village Jatols, 76//8, 9, 10/2, 11/1, 11/2, 11/3, 12/2, 12/1, 13, 18, 19/1, 19/2, 20, 23/2, 24, 77//15/1 min, 15/2 min, 98//4, 7 min and 8/1 min of village Prithla, Sector-11, Prithla, District Palwal is hereby granted after receipt an amount of Rs. 26,83,740/- on account of conversion charges and Rs. 1,38,33,307/- on account of external development charges.

This permission is further subject to the following terms and conditions:-

- That the conditions of agreement executed by you with the Director General, Town & Country Planning, Haryana, Chandigarn and the provisions of the Punjab Scheduled Roads and Controlled Areas Restriction of Unregulated Development Act, 1983 and Rules framed there under shall be complied with by you.
- 2 That you shall pay the 40% of the total external development charges at the time of acquisition of land of this sector and balance 50% in four annual installments with 15% interest of the updated rates of EDC as existing on the date of announcement of award.
- The EDC have been charged on the basis of EDC Indexation Mechanism Policy dated 11.02.2016, which stands approved by cabinet. If there will be any change and delay in the amendment in the Act/Rules w.r.t. the said rates, then differential amount from the original calculation will required to be deposited as and when demanded by the Department.
- 4. That you are fully aware that the development/construction cost of 24/18/15 m wide read/major internal road is not included in the EDC rates and you shall pay the proportionate cost for acquisition of land, if any alongwith the construction cost of 24/18 m wide read/major internal road as and when finalized and demanded by the Director General Town & Country Planning, Haryana.
- 5 That you shall pay the additional amount of conversion charges for any variation in area at site in lump sum within 30 days as and when detected and demanded by the Director General Town & Country Planning, Haryana, Chandigarh.
- That you shall give at least 75% employment to the domiciles of Haryana where the posts
 are not of technical nature and a quarterly statement indicating the category wise total
 employment and of those who belongs to Haryana shall be furnished to the G.M.D.t.C.
 Palwal.
- That you shall get the building plans for the site approved from the Department before commencing the construction at site and will start construction within six months from squance of change of land use permission.

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 3432028/2024/限時的 PALWAL

- That you shall obtain occupation certificate from the Department after completing the building within two years of issuance of this permission.
- That you shall deposit labour cess before approval of building plans.
- That you shall maintained the right of way along HT Line and take appropriate measures of safety as per guideline issued by the Electricity Department
- 11. That you shall construct the part of 24 m wide sector road, 12 m wide service road at your own cost in concurrence with the concerned authority and handover the same to Government Authority as and when directed by this Department.
- That this permission shall be valid for two years from the date of issue of this letter subject to fulfillment of the terms and conditions of the permission granted and agreement executed.
- That this permission will not provide any immunity from any other Act/Rules/Regulations applicable to the land in question.

(T.L. Safyaprakash, IAS) Director, Town & Country Planning Haryana, Chandigarh

Endst. No. PL-1443-JE(S)-2017/

Dated:-

A copy is forwarded to the following for information and necessary action:-

- Senior Town Planner, Faridabad.
- 2. District Town Planner, Palwal.
- GM, DIC, Palwal.
- 4. Nodal office (website) to host the permission on website.

(Vijender Singh)
District Town Planner (HQ)
For:-Director, Town & Country Planning
Haryana, Chandigarh

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 34320038/2024/医時間N PALWAL

Directorate of Town & Country Planning, Haryana

SCO-71-75, 2rd Floor, Sector-17-C, Chandigarh, Phone: 0172-2549349 Web site topheryene, gov.in - e-mail: topheryene@gmeil.com

Regd.

'n

Form CLU-III (See Rule-26-E)

Jyoti Strips Pvt. Ltd.

Regd. Off: 103-B, Sindhu Farm Road, Mithabpur Extension,

Badarpur Road, New Delhi - 110044 Email id - md@jyotistrlps.com

Memo. No. PL-1443-B-PA (SS)-2018/5405 Dated: 09-02-2018

Subject: -

Grant for change of land use permission for setting up of industrial Unit (Steel strips) over an additional area in the revenue estate of village Maidapur and Jatola, Sector- 11, Palwal - Jyoti Strips Pvt. Ltd.

Please refer to your application dated 01.01.2018 and 06.02.2018 on the above

cited subject.

Permission for change of land use for setting up of an Industrial Unit (Steel strips) over an additional area measuring 18714.60 Sqm falling in Khosra no. 38//21, 23/1, 22, 40//2, 3/1, 8/2, 9 of village Maidapur and 40//7 of village Jatola, Sector- 11, Palwal is hereby granted after receipt an amount of Rs. 9,35,730/- against conversion charges and Rs. 48,23,570/- against 10% of total external development charges.

This permission is further subject to the following terms and conditions:-

- That the conditions of agreement executed by you with the Director General, Town & Country Planning, Haryana, Chandigarh and the provisions of the Punjab Scheduled Roads and Controlled Areas Restriction of Unregulated Development Act, 1963 and Rules framed there under shall be complied with by you.
- That you shall pay the 40% of the total external development charges at the time of acquisition of land of this sector and balance 50% in four annual installments with 15% interest of the updated rates of EDC as existing on the date of announcement of award.
- The EDC have been charged on the basis of EDC indexation Alechanism Policy dated 11.02.2016, which stands approved by cabinet. If there will be any change and delay in the amendment in the Act/Rules w.r.t. the said rates, then differential amount from the original calculation will required to be deposited as and when demanded by the Department.
- 4. That you are fully aware that the development/construction cost of 24/18/15 m wide road/major internal road is not included in the EDC rates and you shall pay the proportionate cost for acquisition of land, if any alongwith the construction cost of 24/18 m wide road/major internal road as and when finalized and demanded by the Director General, Town & Country Planning, Haryana.
- That you shall pay the additional amount of conversion charges for any variation in area at site in lump sum within 30 days as and when detected and demanded by the Director General, Town & Country Planning, Haryena, Chandigarh.
- That you shall give at least 75% employment to the domiciles of Haryana where the
 posts are not of technical nature and a quarterly statement indicating the category
 wise total employment and of those who belongs to Haryana shall be furnished to the
 G.M.D.I.C. Palwa.
- That you shall get the building plans for the site approved from the Department before commencing the construction at site and will start construction within six months from issuance of change of land use permission.
- That you shall obtain occupation certificate from the Department after completing the building within two years of issuance of this permission.

- 9. That you shall deposit tabout case before approval of building plans.
- That this permission shall be valid for two years from the date of issue of the tetter subject to fulfillment of the terms and conditions of the permission granted and agreement executed.
- That this permission will not provide any innountry from any other Act/Rules /Regulations applicable to the lend in question.

Olivetor General, Town & Country Planning Baryane, Chandigarh

Endst. No. 91-1443-8-PA (55) 2012/

Dated:-

A copy is forwarded to the following for information and necessary action:

- I. Sevier Your Planner, Faridated.
- 2. District Town Plenner, Palwal.
- I. Project Manager (IT) with a request to host the permission an website.

District Town Planner (HO)
For: Director General, Town & Country Planning
Haryana, Cherdigarti

Directorate of Town & Country Planning, Haryana

SCO-71-75, 2rd Floor, Sector-17-C, Chandigarh, Phone: 0172-2549349 Web site topharyana.gov.in - e-mail: topharyanai@gmail.com

Regd.

To

Jyoti Strips Pvt. Ltd

Regd. Off: 103-8, Sindhu Farm Road, Mithabpur Extension,

Bederpur Road, New Delhi - 110044 Email id - md@iyotistrips.com

Merrio. No. PL-1443-B-PA(SS)-2018/ 4414 Dated: 02-02-2018

Subject: -

Letter of Intent for change of land use permission for setting up of Industrial Unit (Steel strips) over an additional area in the revenue estate of village Prithia and Jatola, Sector- 11, Palwai - Jyoti Strips Pvt. Ltd.

Please refer to your application dated 01.01.2018 on the above cited subject.

Your request for grant of change of land use for setting up of an industrial Unit (Steel strips) over an additional area measuring 18714.680 Sqm falling in Khasra no. 38//21, 23/1, 22, 49//2, 3/1, 8/2, 9 of village Maidapur and 40//7 of village Jatola, Sector-11, Palwall has been considered and it has been decided in principle to grant permission for change of land use on the land shown on the enclosed site plan. Therefore, as per requirement of the provisions of Rule 26-C of Rule, 1965 you are hereby required to fulfill the following terms and conditions in accordance with Rule 26-D of Rules 1965 and submit the following documents as prorequisite:-

- An agreement deed on prescribed CLU-II Performs (Specimen Enclosed) on the Non-Judicial Stamp Paper as required under the provisions of the Punjab Scheduled Roads and Controlled Areas Restriction of Unregulated Development Act, 1963 and Rules, 1965 framed there under.
- 7. An amount of Rs. 9,35,730/- against conversion charges @ Rs. 50/- per Sqm and Rs. 48,23,570/- against 10% of total EDC @ Rs. 104,305/- lacs per gross acre (125% FAR) to be deposited online at www.tcpharyana.gov.in
- 3. An undertaking on Non-Judicial Stamp Paper stating that:
 - a) You shall pay the additional amount of Conversion Charges for any variation in area at site in lump sum within 30 days as and when detected and demanded by the Director, Town & Country Planning, Haryana, Chandigarh.
 - b) You shall pay the 40% of the total External Development Charges at the time of acquisition of land of this sector and balance 50% in four annual installments with 15% interest of the updated rates of EDC as existing on the date of announcement of award.
 - The EDC have been charged on the basis of EDC indexation Mechanism Policy dated 11.02.2016, which stands approved by cabinet. If there will be any change and delay in the amendment in the Act/Rules w.r.t. the said rates, then differential amount from the original calculation will required to be deposited as and when demanded by the Denartment.
 - Thus are fully aware that the development/construction cost of 24/18/15 m wide road/major internal road is not included in the EDC rates and you shall pay the proportionate cost for acquisition of land, if any alongwith the construction cost of 24/18 m wide road/major internal road as and when finalized and demanded by the Director, Town & Country Planning, Haryana.

- e) You shall give at least 75% employment to the domiciles of Haryana where the posts are not of technical nature and a quarterly statement indicating the category wise total employment and of those who belongs to Haryana shall be furnished to the G.M.D.I.C., Palwal.
- f) You shall get the Building plans for the site approved from the Department before commencing the construction at site and will start the construction within Six months from the date of issuance of final permission.
- You shall obtain Occupation Certificate from the Department after completing the building within two years of issuance of this permission.
- h) You shall deposit the labour cess before approval of building plans.
- 3) You shall have no objection to acquire the land, if required for road widening.
- You have not submitted any other application for CLU/Licence for this land and the land is free from litigation/court case/acquisition etc.

As Inid down under rule 26-C, you are hereby called upon to fulfill the above said terms and conditions and submit the requisite documents within a period of 30 days from the date of fature of this letter (L.O.I.) On your failure, this letter shall stand withdrawn and permission shall be refused as per the provisions of rule 26-C (2) of Rules, 1965.

DA/ CLU-II agreement

(Vijender Singh)
District Town Planned (HQ)
For:-Director, Town & Country Planning
Haryana, Chandigarh

Emist No. Pt-1443-B-PA (SS) 2018/

A copy is forwarded to the following for information and necessary action:-

- 1. Senior Town Planner, Faridabad.
- 2. District Town Planner, Palwal.

(Vijender Singh)
District Town Planner (HQ)
For:-Director, Town & Country Planning
Haryana, Chandigarh

FORM BR-III (See Code 4.2 (4)) Form of Sanction

From

Chief Town Planner, Haryana-cum- Chairman, Building Plan Approval Committee, O/o Director, Town & Country Planning Department, Haryana, SCO-71-75, Sector-17-C, Chandigarh. Tele-Fax: 0172-2548475; Tel.: 0172-2549851, E-mail: tcpharyana7@gmail.com Website www.tcpharyana.gov.in

To

 Jyoti Strips Pvt. Ltd.
 103-B, Singh Farm Road, Mithabpur Extension, Badarpur Road, New Delhi-110044.

Memo No. PL 1443-B/AD (RA)/2018/ 30979 Dated: 02-11-2018

Subject: -

Approval of Building Plans of Industrial Building over an area measuring 72389.39 Sqm. In the Revenue Estate of Village Prithia and Jatola, Sector-11, Prithia District Palwal for which CLU permission has been granted to Jyoti Strips Pvt. Ltd.

Reference your application dated 31.08.2018 for permission to erect the industrial Building on the area measuring 72389.39 Sqm. in the Revenue Estate of Village Prithla and Jatola, Sector-11, Prithla District Palwal in accordance with the plans submitted with it.

Permission is hereby granted for the aforesaid construction subject to the provisions of the Punjab Scheduled Roads & Controlled Areas Restriction of Unregulated Development Act, 1963 and Haryana Building Code-2017 subject to the following amendments, terms and conditions: -

- The plans are valid for a period of 2 years of the buildings less than 15.00 meters in height and 5 years for the multistoried buildings from the date of issuance of sanction, subject to validity of CLU permission.
- The structural responsibility of the construction shall be entirely of the Owner/ supervising Architect/ Engineer of the scheme.

Further that: -

- a) The building shall be constructed in accordance to the Structure Design submitted by you and as prepared by Structure Engineer and certified by Proof Consultant on prescribed FORM BR-V (AZ), as per the provisions of NBC and relevant is Code for all seismic load, all dead and live loads wind pressure and structural safety from earthquake of the intensity expected under Zone-IV.
- All material to be used for erection of building shall conform to I.S.I. and N.B.C. standards.
- No walls/ceiling shall be constructed of easily inflammable material and staircases shall be built of the fire resisting material as per standard specification.
- d) The roof slab of the basement external to the buildings if any shall be designed/ constructed to take the load of fire tender up to 45 tones.

FIRE SAFETY:

- (i) The owner and the Supervising Architect of the project shall be entirely responsible for making provisions of fire safety and fire-fighting measures and shall abide by all fire safety bye laws.
- (ii) That you shall get approved the fire-fighting scheme in accordance with the section 15 of The Haryana Fire Safety Act, 2009 and directions issued by the Director, Haryana Fire Services, before starting the construction work at site.

- 4. No addition and alteration in the building plans/ layout plan shall be made without the prior approval of DTCP. Further only figured dimensions shall be followed and in case of any variation in the plans, prior approval of DTCP shall be pre-requisite.
- 5. The revenue Rasta if any passing through the site shell be kept unobstructed.
- If any infringement of byelaws remains unnoticed, the Department reserves the right to amend the plan as and when any such infringement comes to its notice after giving an opportunity of being heard and the Department shall stand indemnified against any claim on this account.
- The layout showing the electric installation shall have to be got approved from the Chief Electrical inspector before execution of work at site.
- 8. No person shall occupy or allow any other person to occupy any new building or part thereof for any purpose whatsoever until such building or part thereof has been certified by the Director or any person authorized by him in this behalf as having been completed in accordance with the permission granted and an occupation certificate in prescribed form has been duly issued in your favour.
- 9. You shall apply for occupation certificate as per the provisions of Code 4.10 of the Haryana Building Code-2017 which shall be accompanied by certificates regarding completion of works described in the plans and it shall be accompanied by:
 - Structural stability certificate duly signed by the recognized Architect & Structural Engineer.
 - (ii) A clearance from Fire Safety point of view from the competent authority.
- You shall comply with the conditions laid down in the Memo No. 188506 deted 18.09.2018 of Superintending Engineer (HQ), HSVP, Panchkula and Fire Officer Memo no. 102919 dated 17.10.2018 (copies enclosed).

11. GENERAL: -

- (i) That the owner shall obtain the clearance/NOC as per the provisions of the Notification No. S.O. 1533 (E) dated 14.9.2006 issued by Ministry of Environment and Forests, Government of India before starting the construction/execution of development works at site, if applicable.
- (ii) That the rain water harvesting system shall be provided as per Central Ground Water Authority norms/Haryana Govt, notification as applicable.
- (iii) That the owner shall use only Light-Emitting Diode lamps (LED) fitting for internal tighting as well as Campus tighting.
- (IV) That the owner shall strictly comply with the directions issued vide Notification No. 19/6/2016-5P dated 31.03.2016 issued by Haryana Government Renewable Energy Department.
- (v) That the owner shall ensure the installation of Solar Photovoltaic Power Plant as per the provisions of order No. 22/52/2005-5Power dated 21.03.2016 issued by Haryana Government Renewable Energy Department.
- (vi) That you shall deposit the labour cess in future, time to time as per construction of work done at site.
- (vii) That if any, site for Electric Sub Station is required, same will be provided by you in the site.
- (viii) That provision of parking shall be made within the area earmarked /designated for parking in the site and no vehicle shall be allowed to park outside the premises.
- (ix) The responsibility of taying and maintaining (including quality and design etc.) of internal public health services shall be entirely of the owner/supervising architect/engineer of the scheme.

- (x) That you shall follow provisions of section 46 of 'The Persons with Disabilities (Equal Opportunities, protection of Rights and full Participation) Act, 1995' which includes construction of Ramps in public buildings, adaption of tollets for wheel chair users, Braille symbols and auditory signals in elevators or lifts and other relevant measures for Hospitals, Primary Health Centre and other medical care and rehabilitation units.
- 12. Environment: That you shall strictly comply with the directions of MOEF Guidelines, 2010 while raising construction. In addition, you shall comply with the instructions of Director, Town & Country Planning, Haryana, Chandigarh issued vide order dated 14.05.2015, available on the Departmental Website www.tcpharyana.gov.in at URL: https://tcpharyana.gov.in/Policy/Misc392%200A%20No.%2021%20of%202014%20Yardhaman %20Kaush@320Ys.%20UOL ors.pdf in compliance of the orders dated 10.04.2015 passed by Hon'ble National Green Tribunal in OA No. 21 of 2014, which are as under:
 - (i) You shall put tarpaulin on scaffolding around the area of construction and the building. You are also directed that you shall not store any construction material particularly sand on any part of the street/roads.
 - (fi) The construction material of any kind that is stored in the site will be fully covered in all respects so that it does not disperse in the Air in any form.
 - (iii) All the construction material and debris shall be carried in the trucks or other vehicles which are fully covered and protected so as to ensure that the construction debris or the construction material does not get dispersed into the air or atmosphere, in any form whatsoever.
 - (N) The dust emissions from the construction site should be completely controlled and all precautions taken in that behalf.
 - (v) The vehicles carrying construction material and construction debris of any kind should be cleaned before it is permitted to ply on the road after unloading of such material.
 - (vi) Every worker working on the construction site and involved in loading, unloading and carriage of construction material and construction debris shall be provided with mask to prevent inhalation of dust particles.
 - (vii) Every owner and or builder shall be under obligation to provide all medical help, investigation and treatment to the workers involved in the construction of building and carry of construction material and debris relatable to dust emission.
 - (viii) It shall be the responsibility of every owner/builder to transport construction material and debris waste to construction site, dumping site or any other place in accordance with rules and in terms of Ho'nble NGT order dated 10.04,2015 referred above.
 - (ix) All to take appropriate measures and to ensure that the terms and conditions of the Ho'nble NGT order dated 10.04,2015 referred above in OA No. 21 of 2014 and the earlier orders passed in said case should strictly comply with by fixing sprinklers, creations of green air berriers.
 - (x) Compulsory use of wet jet in grinding and stone cutting.
 - (xi) Wind breaking walls around construction site.

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 34320738//2024//EEGIBN PALWAL

- 15 of the WGT Act on the principle of Politicar Pay. Such action would be in addition not in derogation to the other serion that the authority made take against such builder, owner, person and transporter under the laws to force.
- (utv). All the owners/builders shall ensure that C & D waste is cransported in terms of this order to the site in question only and due record in that behalf shall be maintained by the bailders, transporters and NCR of bethi.
- (ov) It is made clear that even if constructions have been started after seeking Environmental Clearance under the ELA notification 2006 and after taking other travel but is being carried out without taking the preventive and protective environmental steps as stated in above said order dated 10.04.2015 passed by HGT and MOEF guidelines, 2010, the State Government, SPCS and any officer of any Department as afore-stated shall be entitled to direct stoppage of work.
- (xvi) The temple building within the subject cited site shall be used for in house activity by the management it staff of this industrial thrit only, and not for general public at large and also you shall adurat an undertaking in this regard within one week from the issuance of this letter.

This senction will be void aboltio, if any of the conditions mentioned above are not compiled with.

BA/As above

Architect (HQ) Building Flan Appe

Memo No. FL:1443-8/AD (RA)/2018/

A copy is forwarded to the following for information: -

- 1- Haryana State Pullarion Coverol Sound, Fanchinals with the request that the compliance of the instructions travel by NST shell be monitored sed strict compliance to bo
- 2- Senior Yown Planner, Perklahed.
- Separinceding Engineer (NO) HSVP, Roadskala.
 District Town Planner, Palwal slong with one set of building plans.
 Nodal Officer, Website Updation.
- Fire Officer O/o Strector, Urban Local Bodies, Haryana, Panchicula.

Encl.: As above

Architect (HQ). Building Plan Approval Committee

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 3432028/2024/医時的 PALWAL

Directorate of Town and Country Planning, Haryana

SCO No. 71-75, 2rd Floor, Sector-17 C, Chandigarh, web site: topharyana.gov.in. Phone: 0172-2549349; e-mail: topharyana?@umail.com

Regd.

To

Jyoti Strips Pvt. Ltd C/o 103-B, Singh Farm Road, Mithabpur Extension, Badarpur Road, New Delhi - 110044 Ernail id - md@jyotistrips.com

Memo, No. PL-1443-JE(5K)-2019/ 62 73 Dated: 06-03-19

Subject: -

Grant of one year extension for change of land use permission for setting up of Industrial Unit in the revenue estate of village Prithla and Jatola, Sector-11, Prithla, Distt. Palwai - Jyoti Strips Pvt. Ltd.

Please refer to your application dated 13.02.2019 on the above cited

subject.

Your request for grant of one year extension of CLU permission issued vide this office memo no 3660 dated 27.02.2017 has been considered by the Director, Town and Country Planning, Haryana and I have been directed to inform you that one year extension upto 26.02.2020 is hereby granted after receipt an amount of Rs. 2,70,000/- subject to the condition that you shall apply for Occupation Certificate within extended period of CLU permission.

(Vijender Singh)

District Town Planner (HQ)

For: Director, Town & Country Planning

V Haryana, Chandigarh

Endst. No. PL-1443-JE(SK)-2019/

Dated:

A copy is forwarded to the following for information:-

- 1. Senior Town Planner, Faridabad.
- 2. District Town Planner, Palwal.

(Vijender Singh)
District Town Planner (HQ)
For: Director, Town & Country Planning
Haryana, Chandigarh

Directorate of Town & Country Planning, Haryana

Nagar Yojana Bhawan, Plot No.3, Sector-18-A, Madhya Marg, Chandigarh, Phone: 0172-2549349 Web site tcpharyana.gov.in - e-mail: tcpharyana7@gmail.com

Regd.

To

Jyoti Strips Pvt. Ltd C/o 103-B, Singh Farm Road, Mithabpur Extension, Badarpur Road, New Delhi - 110044 Email id - md@jyotistrips.com

Memo. No. PL-1443/JE(SK)-2020/ 3896 Dated: 10-02-2020

Subject: -

Grant of further one year extension for change of land use permission for setting up of Industrial Unit in the revenue estate of village Prithla and Jatola, Sector-11, Prithla, Distt. Palwal - Jyoti Strips Pvt. Ltd.

Please refer to your application dated 23.01.2020 on the above cited

subject.

Your request for further one year extension in change of land use permission issued for construction of proposed industrial unit in the revenue estate of village Prithla and Jatola, Sector-11, District-Palwal issued vide memo no. 3660 dated 27.02.2017, is hereby extended up to 26.02.2021 subject to condition that you shall complete the building as per the approved plans and apply for Occupation Certificate after completing the building within the extended period of CLU permisssion.

> (Vijender \$ingh) District Town Planner (HQ) For: Director General, Town & Country Planning Haryana, Chandigarh

Endst. No. PL-1443/JE(SK)-2020/

Dated:

A copy is forwarded to the following for information:-

- Senior Town Planner, Faridabad.
- District Town Planner, Palwal.

(Vijender Singh) District Town Planner (HQ)

For: Director General, Town & Country Planning

Haryana, Chandigarh

Directorate of Town & Country Planning, Haryana

Nagar Yojana Bhawan, Plot No.3, Sector-18-A, Madhya Marg, Chandigarh, Phone: 0172-2549349 Web site tcpharyana.gov.in - e-mail: tcpharyana7@gmail.com

Regd.

To

Jyoti Strips Pvt. Ltd C/o 103-B, Singh Farm Road, Mithabpur Extension, Badarpur Road, New Delhi - 110044 Email id - md@ivotistrips.com

Memo. No. PL-1443-B/JE(SK)-2020/ 3893 Dated: 10-02-2020

Subject: -

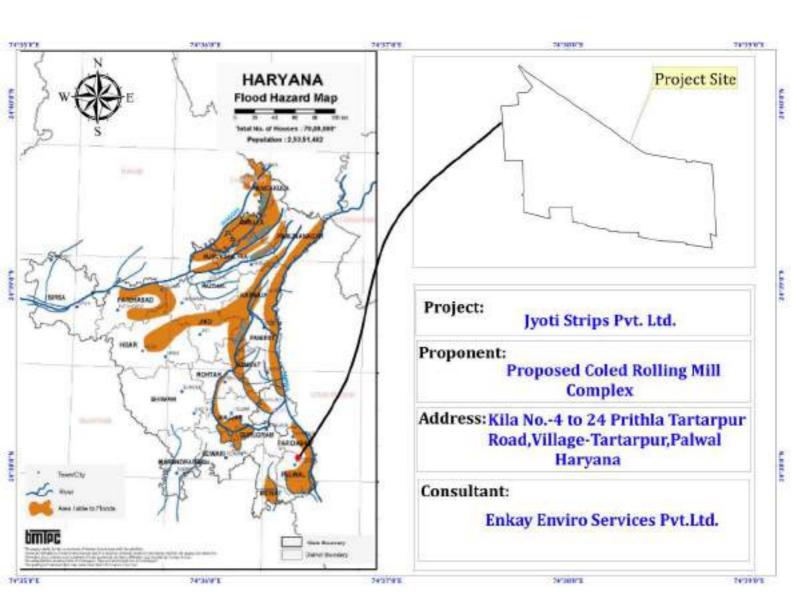
Grant of two year extension for change of land use permission for setting up of Industrial Unit for an additional area in the revenue estate of village Prithla and Jatola, Sector-11, Prithla, Distt. Palwal -Jyoti Strips Pvt. Ltd.

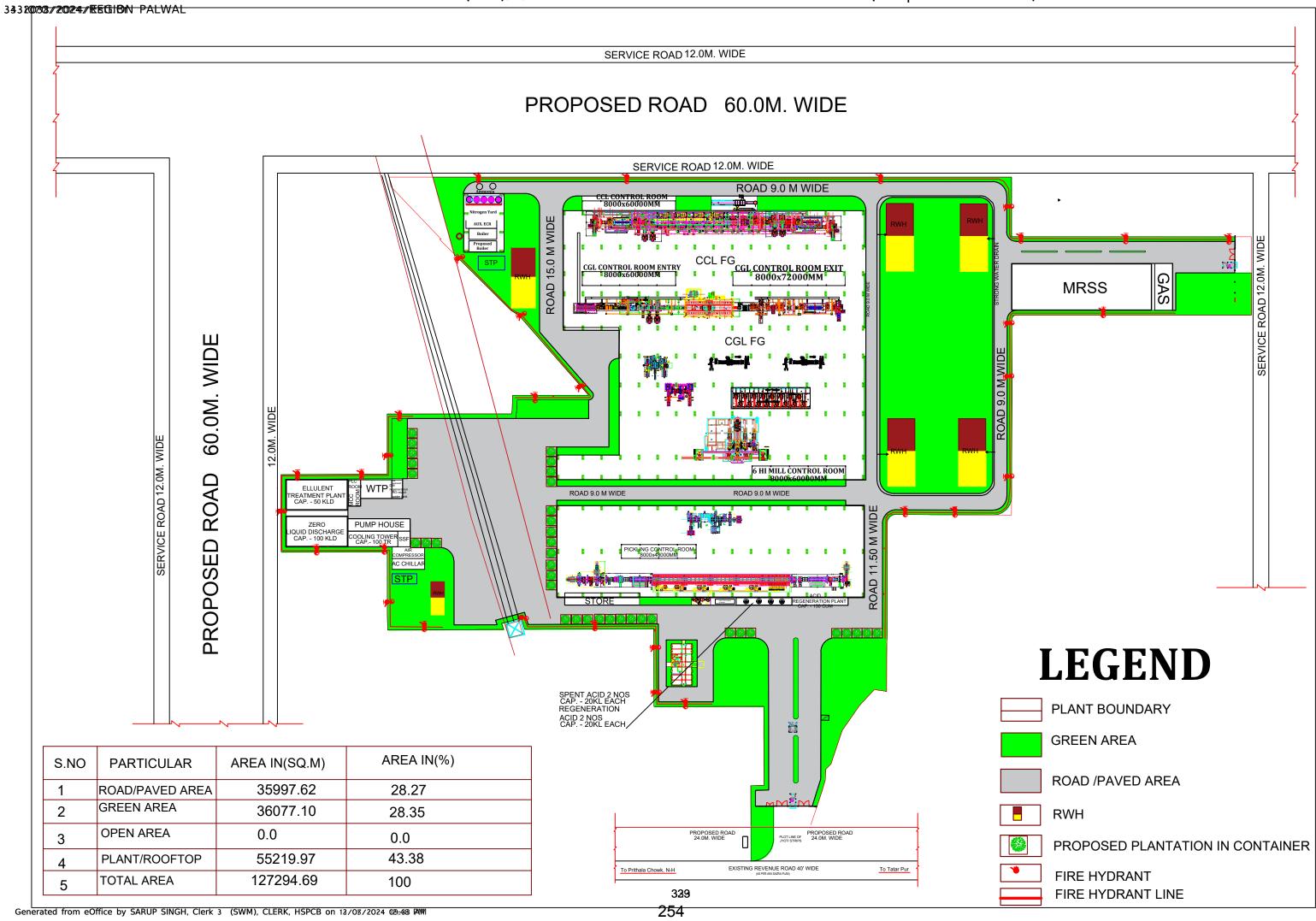
Please refer to your application dated 23.01.2020 on the above cited

subject.

Your request for grant of two year extension of CLU permission issued vide this office memo no 5405 dated 09.02.2018 has been considered by the Director General, Town and Country Planning, Haryana and I have been directed to inform you that two year extension upto 09.02.2022 is hereby granted after receipt an amount of Rs. 93,730/- subject to the condition that you shall apply for Occupation Certificate within extended period of CLU permission.

> (Vijender Singh) District Town Planner (HQ) For: Director General, Town & Country Planning Harvana, Chandigarh


Endst. No. PL-1443-B/JE(SK)-2020/


Dated:

A copy is forwarded to the following for information:-

- Senior Town Planner, Faridabad.
- District Town Planner, Palwal.

(Vijender Singh) District Town Planner (HQ) For: Director General, Town & Country Planning Haryana, Chandigarh

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 34320088/2024/ÆEGIBN PALWAL

1.0 SCOPE OF WORK

M/s. ENKAY ENVIRO SERVICES PVT LTD entrusted the job of environmental monitoring, sampling analysis and data generation to M/s ALKOM SYNERGY PVT.LTD., or three-month March to May 2023.

Monitoring of Ambient Air Quality, Water quality, Soil Quality and Ambient Noise Quality measurement are part of the scope of work given to M/s ALKOM SYNERGY PVT.LTD. The environmental monitoring has been carried out at the following locations:

A] Ambient Air Quality Locations:

Code Sample Collection Details		Location Name	Co-ordinates	
AAQ-1	Ambient Air Quality	Plant Site	28°13'57" N 77°18'28" E	
AAQ-2	Ambient Air Quality	Village:-Devali	28°13'49" N 77°19'15" E	
AAQ-3	Ambient Air Quality	Village:-Asawati	28°14'55" N 77°19'11" E	
AAQ-4	Ambient Air Quality	Village:-Pyala	28°16'02" N 77°18'51" E	
AAQ-5	Ambient Air Quality	Village:-Dundsa	28°15'23" N 77°17'44" E	
AAQ-6	Ambient Air Quality	Village:-Gadpuri	28°15'08" N 77°16'40" E	
AAQ-7	Ambient Air Quality	Village:-Pirthala	28°14'06" N 77°17'19" E	
AAQ-8	Ambient Air Quality	Village:-Baghaula	28°12'22" N 77°18°17" E	

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 3&320038/2024/底底18N PALWAL

B] Ambient Noise Quality Locations :

Location Code	I markley No.		Co-ordinates
N-I	Ambient Noise	Plant Site	28°13'57" N 77°18'28" F
N-2	Ambient Noise	Village:-Devali	28°13'49" N 77°19'15" E
N-3	Ambient Noise	Village:-Asawati	28°14'55" N 77°19'11" E
N-4	Ambient Noise	Village:-Pyala	28°16'02" N 77"18'51" E
N-5	Ambient Noise	Village:-Dundsa	28°15'23" N 77°17'44" E
N-6	. Ambient Noise	Village:-Gadpuri	28°15'08" N 77°16'40" E
N-7	Ambient Noise	Village:-Pirthala	28°14'06" N 77°17'19" E
N-8	Ambient Noise	Village:-Baghaula	28°12'22" N 77°18'17" E

C] Water Quality Locations:

Location Code	Sample Collection Details	Location Name	Co-ordinates
GW-1	Ground Water	Plant Site	28°13'57" N 77°18'28" E
GW-2	Ground Water	Villeage:-Devali	28°13'49" N 77°19'15" E
GW-3	Ground Water	Village;-Asawati	28°14'55" N 77°19'11" E
GW-4	Ground Water	Village:-Pyala	28°16'02" N 77°18'51" E
GW-5	- Ground Water	Village:-Dundsa	28°15'23" N 77"17'44" E
GW-6	Ground Water	Village:-Gadpuri	28°15'08" N 77°16'40" E
GW-7	Ground Water	Village:-Pirthala	28°14'06" N 77°17'19" E
GW-8	Ground Water	Village:-Baghaula	28°12'22" N 77°18'17" E
SW-1	Surface Water	Pahladpur Distributary	28°14'28" N 77°20'39" E
SW-2	Surface Water	Agra Canal	28°15'03" N 77°21'08" E
SW-3	Surface Water	Village:-Pirthala Pond	28°13'50" N 77°17'14" E

-

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 3&320038/2024/底底18N PALWAL

D] Soil Quality Locations:

Location Code	Sample Collection Details	Location Name	Co-ordinates
S-1	Soil Sample	Plant Site	28°13'57" N 77°18'28" E
·S-2	Soil Sample	Villeage;-Devali	28°13'49" N 77°19'15" E
S-3	Soil Sample	Village:-Asawati	28°14'55" N 77°19'11" E
S-4	Soil Sample	Village:-Pyala	28*16'92* N 77"18'51" E
S-5	Soil Sample	Village:-Dundsa	28°15'23" N 77°17'44" E
S-6	Soil Sample	Village:-Gadpuri	28°15'08" N 77°16'40" E
S-7	Soil Sample	Village:-Pirthala	28°14'06" N 77°17'19" E
S-8	Soil Sample	Village:-Baghaula	28°12'22" N 77°18'17" E

4

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 3**3**320038/**2024**/ÆEtGIBN PALWAL

MONITORING AND ANALYSIS METHODOLOGY

The consultant (EESPL) had Pre-identified the monitoring stations for Air, Water, Soil and Noise. Time bound program for carrying out fieldwork was prepared and was followed as far as possible. The APHA / IS methods are followed to decide the monitoring stations, analysis of sample.

Ambient Air Quality Monitoring:

Fine Particulate Samplers (FPS) has been used for PM_{2.5} Sampling. Respirable Dust Samplers (RDS) with gaseous attachment have been used for PM₁₀ Sampling. RDS with Gaseous attachment assembly is used for the collection of gaseous pollutants such as SO₂ & NO_x. The details of the instrument used for sampling and testing methods are given below: -

Ambient Air Monitoring Instruments

Instrument	Make	Model No.
Reparable Dust Sampler (RDS)	M/s. Lata Instruments Pvt. Ltd., Ghaziabad	APM 460 APM 451
Fine Particulate Sampler (FPS)	M/s. Envirotech Instruments Pvt. Ltd., Noida	APM 550
Combo for PM 10 & PM 2.5	M/s. Envirotech Instruments Pvt. Ltd., Noida	AAS 271

Testing Method to be followed for Ambient Air Quality

Particular		Testing Method to be Followed
Ambient A	ir Monitoring Characteristics	
Α	PM 10	1S 5182 (Part 23)
В	PM 25	IS 5182 (Part 24)
C	SO ₂ (Sulfur Dioxide)	IS 5182 (Part 2)
D	NO ₂ (Nitrogen Dioxide)	IS 5182 (Part 6)
E	CO (Carbon Monoxide)	SCS/SOP/AAQ/13

Noise Level Measurement

Sound level meter is used for the collection of data related to noise at an interval of one hour per reading. Noise level for 24 hours was conducted at mentioned date's pre-decided location. The details of the instrument used for the sampling is mentioned in the separate annexure under the heading of Details of instruments & Apparatus.

Noise (Sound) Measuring Instrument

Instrument	Make	Model No.	Detection Limit
Sound Level Measurement	HTC (Data	EL 4022ED	Low: 30-80dB
Instrument Standard Accessories	Logger)	SL-4033SD	High: 80-130dB

NIDA 337 No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 34320038/2024/ÆEtiBN PALWAL

Water and Soil Quality Survey

Water samples were collected in pre-sterilized sampling container. Chemical and Metals analysis was carried out as per standard Methods for ground water and surface water Analysis, Published by APHA, etc.

Quality Assurance

Alkom Synergy Pvt. Ltd is MOEF & NABL accredited laboratory and follows quality systems as per ISO 9001:2015. The QA/QC procedures are laid prior to sample collection and laboratory analysis. It includes the standard procedures of sample collection, preservation, transportation and laboratory analysis with all documented procedures and continuous monitoring of Quality Control Division.

Results of Survey Data

The Survey results of Meteorological Data, Ambient Air Quality, Ambient Noise Monitoring, Soil and Water Sampling analysis are presented below.

Meteorological Data

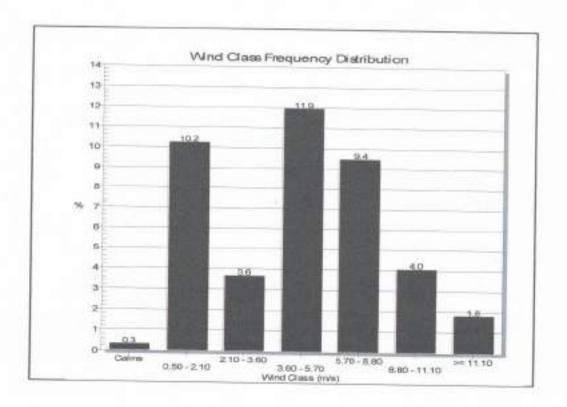
Percentage frequencies of wind in 16 directions have been computed from the recorded data during the study period [1st March 2022 to 31th may 2022] for hourly intervals to plot wind rose. The figure represents the summary of the wind pattern for the study period.

The hourly meteorological data recorded is given in table below:

THE SUMMARY OF THE WIND PATTERN

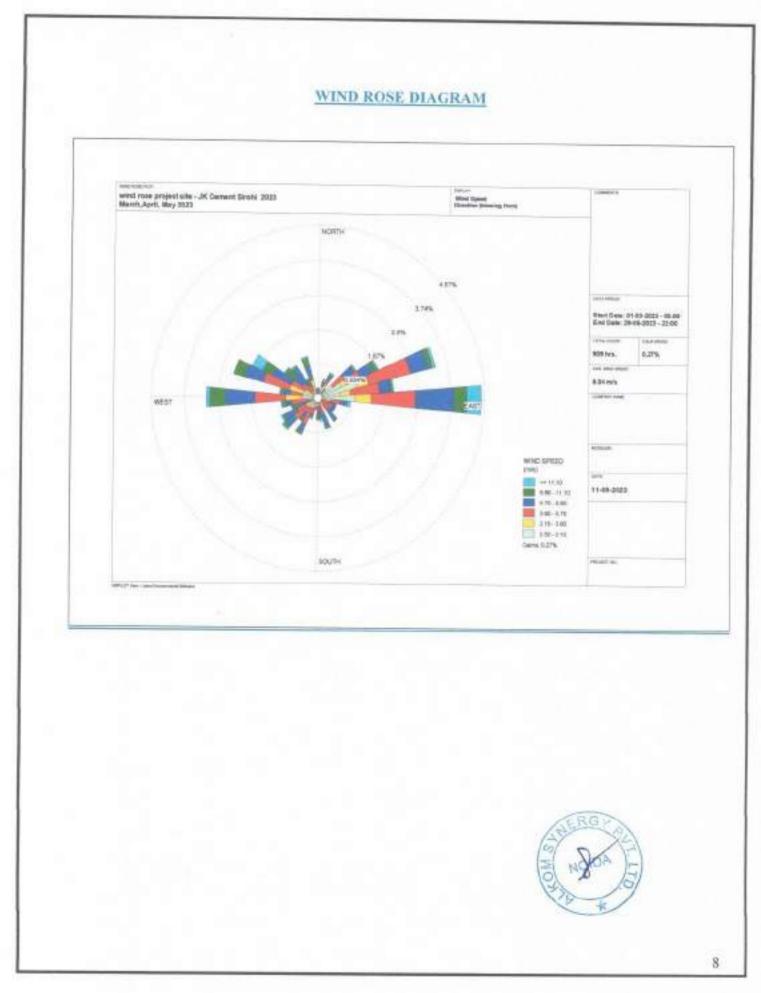
S. No.	Wind Direction	0.5-2.1 Speed m/s	>= 2.1 Speed m/s	Total
1.	N	6	0	6
2.	NNE	14	0	14
3.	NE	64	0	64
4.	ENE	70	4	74
5.	E	98	1	99
6.	ESE	115	0	115
7.	SE	103	1	104
8.	SSE	64	2	66
9.	S	106	2	108
10.	SSW	182	3	185
11.	SW	237	4	241
12.	WSW	266	4	270
13.	W	110	0	110
14.	- WNW	67	0	67
15.	NW	53	0	53
16.	NNW	32	1	33
Sub-Total				. 1610
Calms		621		
Missing/In	complete	7.	NERGA	1
Total		(6)	2 /6/	2232

6


No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 34320088/2024/ÆEGIBN PALWAL

SITE SPECIFIC WIND ROSE

The predominant wind direction during this study period is observed to be blowing between WSW, SW, SSW, N directions. The average wind speed during this period is 12.4 m/s. Calm wind during this period 0.08% the recorded meteorological data of study period at project site is given below.


Month	Tempe		Relative Humidity (%)		Rainfall in		Wind Speed mps	
	Max	Min	Max	Min	Max	Min	Max	Min
MARCH- 2023	33.2	11.5	89.0	21.0	8.1	0.0	21.0	<1.0
APRIL- 2023	39.2	18.1	87.0	13.0	6.3	0.0	18.0	<1.0
MAY- 2023	42.2	18.4	89,0	10.0	8.2	0.0	24.0	<1.0

WIND CLASS FREQUENCY CHART

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 3\$320078//Z024/ÆEGIBN PALWAL

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 33320038/2024/底底1BN PALWAL

Ambient Air Quality Monitoring Tested Results

The Ambient Air Quality has been monitored at nine locations as per work order. The tables showing Ambient Air Quality Tested Results in three months of pre monsoon season is as follows Observations:

Loca	tion: AAQ-01 (1	Plant Site)		Sam	pling Duration	: 24 hrs perio
S.	Date of			Parameter	the same of the sa	
No.	Sampling	PM ₁₀ µg/m ³	PM 2.5 µg/m ³	SO ₂ µg/m3	NO ₂ μg/m ³	CO µg/m³
	Standards	100 max	60 max	80 max	80 max	2000 max
1.0	01/03/2023	75.2	46.3	4.12	8.24	0.345
2.0	04/03/2023	82.6	48.1	3.65	9.31	0.468
3.0	07/03/2023	73.4	45.4	3.83	8.16	0.512
4.0	10/03/2023	81.6	49.6	3.75	9.04	0.491
5.0	14/03/2023	78.5	46.4	4.21	8.56	0.435
6.0	17/03/2023	77.2	47.1	3.86	9.34	0.391
7.0	21/03/2023	76.1	48.3	4.06	8.26	0.286
8.0	24/03/2023	73.9	47.5	3.89	7.15	0.368
9.0	27/03/2023	80.4	44.2	4.52	10.24	0.245
10	30/03/2023	83.6	47.6	5.34	10.63	0.239
Н	02/04/2023	82.1	46.4	4.61	12.14	0.212
12	04/04/2023	79.6	48.1	4.83	10.26	0.316
13	07/04/2023	81.2	49.3	5.24	9.54	0.429
14	11/04/2023	80.9	50.1	6.12	8.26	0.234
15	14/04/2023	78.6	48.6	4.32	9.12	0.391
16	18/04/2023	76.2	49.1	5.15	11.34	0.294
17	21/04/2023	82.5	50.3	5.34	8.65	0.321
18	25/04/2023	73.5	43.6	5.68	11.61	0.396
19	28/04/2023	80.4	46.5	5.29	9.34	0.357
20	03/05/2023	82.3	47.6	4.34	8.12	0.331
21.	06/05/2023	84.9	50.3	5.46	9.38	- 0.369
22	10/05/2023	78.2	49.4	3.94	8.76	0.261
23	13/05/2023	76.4	52.6	5.23	8.27	0.382
24	17/05/2023	81.3	48.9	4.81	7.64	0.246
25	20/05/2023	76.2	45.1	3.56	8.37	0.383
26	24/05/2023	74.1	46.3	3.13	9.42	0.216
27	27/05/2023	79.6	52.1	4.21	8.61	0.463
28	31/05/2023	80.1	47.4	4.56	9.05	
Minim	The second secon	73.40	43.60	3.13	7.15	0.392
Maxin		84.90	52.60	6.12	12.14	0.51
Avera	Miletal Access property and the control of the cont	78.76	47.79	4.49	9.10	0.34
	ercentile	84.20	52.33	5.88	11.85	0.50
	ercentile	83.25	51.47	5.60	11.52	0.48
stands	ard Deviation	3.27	2.16	0.74	1.19	0.09

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 3**3**320038//**2024**//REGIBN PALWAL

Location	on: AAQ-02 (Village:-Dev	ali)	S	ampling Duratio	n: 24 hrs perio	
	Date of	Parameter	8				
S. No.	Sampling	PM 10 μg/m ³	PM 2.5 μg/m ³	SO ₂ μg/m3	NO ₂ μg/m ³	CO μg/m³	
Standa	rds	100 max	60 max	80 max	80 max .	2000 max	
1.0	01/03/2023	73.1	44.3	5.21	11.32	0.365	
2,0	04/03/2023	70.5	42.5	4.63	9.24	0.416	
3.0	07/03/2023	73.6	39.6	5.21	12.61	0.524	
4.0	10/03/2023	78.1	41.8	4.98	8.24	0.395	
5.0	14/03/2023	65.4	40.5	4.34	8.11	0.416	
6.0	17/03/2023	70.9	42.9	5.13	9.64	0.525	
7.0	21/03/2023	72.6	41.4	4.86	8.23	0.421	
8.0	24/03/2023	74.4	43.3	3.98	7.55	0.298	
9.0	27/03/2023	72.9	41.9	4.63	11.22	0.468	
10	30/03/2023	71.5	40.2	4.51	10.29	0.391	
11	02/04/2023	70.3	42.9	5.24	13.12	0.526	
12	04/04/2023	73.4	40.5	5.86	11.85	0.345	
13	07/04/2023	72.5	41.8	6.12	13.54	0.505	
14	11/04/2023	73.9	43.4	4.35	9.12	0.391	
15	14/04/2023	71.7	45.1	5.68	10.35	0.284	
16	18/04/2023	72,4	41.3	4.62	9.86	0.261	
17	21/04/2023	71.5	43.1	5.36	8.64	0.253	
18	25/04/2023	72.8	41.6	4.69	8.12	0.412	
19	28/04/2023	73.1	44.8	5.24	9.64	0.401	
20	03/05/2023	71.9	41.4	4.96	11.26	0.536	
21	06/05/2023	73.4	40.3	5.02	12.84	0.494	
22	10/05/2023	71.2	43,4	5.64	13.41	0.612	
23	13/05/2023	70.9	46.5	5.02	10.52	0.536	
24	17/05/2023	72.4	40.0	4.64	9.81	0.498	
2.5	20/05/2023	74.6	42.9	5.34	8.64	0.491	
26	24/05/2023	71.9	46.1	5.26	8.91	0.312	
7	27/05/2023	82.4	44.3	4.61	10.24	0.364	
8	31/05/2023	70.3	41.5	4.23	8.75	0.472	
1inimu	m	65.40	39.60	3.98	7.55	0.25	
Iaximu	ım	82.40	46.50	6.12	13.54	0.61	
verage		72.38	42.38	4.94	10.09	0.42	
8th Per	centile	80.08	46.28	5.98	13.47	0.57	
5th Per		76.88	45.75	5.80	13.31	0.54	
andar	d Deviation	2.83	1.83	0.51	1.76	0.09	

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 3&320038/2024/底底18N PALWAL

Location: AAQ-03 (Village:-Asawati)	Sampling Duration:	24 hrs period
-------------------------------------	--------------------	---------------

Desir		Parameters							
S. No.	Date of Sampling	PM ₁₀ μg/m ³	PM 2.5 μg/m ³	SO ₂ µg/m3	NO ₂ μg/m ³	CO μg/m³			
Standa	rds	100 max	60 max	80 max	80 max	2000 max			
1.0	01/03/2023	77.3	42.3	4.12	10.24	0.512			
2.0	04/03/2023	68.5	39.6	5.24	9.83	0.493			
3.0	07/03/2023	71.1	40.4	5.31	11.34	0.624			
4.0	10/03/2023	70.9	43.4	4.26	10.21	0.581			
5.0	14/03/2023	67.3	41.1	5.25	9.83	0.387			
6.0	17/03/2023	69.4	39.4	5.31	9.13	0.468			
7.0	21/03/2023	72.6	40.3	5.36	8.98	0.491			
8.0	24/03/2023	70.4	44.5	4.38	9.84	0.364			
9.0	27/03/2023	73.6	41.1	5.12	8.55	0.251			
10	30/03/2023	68.1	40.9	5.29	12.16	0.493			
11	02/04/2023	69.3	42.2	4.27	11.24	0.361			
12	04/04/2023	72.4	44.9	5.21	9.31	0.287			
13	07/04/2023	70.9	41.6	4.98	8.54	0.246			
14	11/04/2023	71.5	43.3	5.81	11.25	0.548			
15	14/04/2023	68.8	42.4	5.42	9.44	0.313			
16	18/04/2023	70.4	41.1	4.36	8.36	0.425			
17	21/04/2023	72.1	43.9	5.21	9.54	0.301			
18	25/04/2023	76.4	41.7	5.16	9.86	0.298			
19	28/04/2023	67.2	44.5	4.38	8.12	0.345			
20	03/05/2023	69.5	42.4	4.05	8.01	0.361			
21	06/05/2023	71.4	46.9	5.81	10.54	0.425			
22.	10/05/2023	70.8	44.1	4.34	8.61	. 0.298			
23	13/05/2023	67.6	43.2	5.38	9.12	0.325			
24	17/05/2023	68.1	42.9	4.21	8.38	0.241			
25	20/05/2023	72.9	45.6	3.98	8.12	0.364			
26	24/05/2023	66.5	41.7	4.02	9.34	0.386			
27	27/05/2023	64.2	40.8	5.13	9.87	0.354			
28	31/05/2023	68.8	42.6	5.38	10.24	0.426			
Minimu		64.20	39.40	3.98	8.01	0.24			
Maximu	1100	77.30	46.90	5.81	12.16	0.62			
Average		70.08	42.35	4.85	9.52	0.39			
)8 th Per)5 th Per		76.81	46.20	5.81	11.72	0.60			
	d Deviation	75.42 2.84	45.36	5.67	11.31	0.57			
standard Deviation		4.04	1.83	0.58	1.08	0.10			

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 3**4**3**2**00**78/2024/REGGIB**N PALWAL

Location: AAQ-04 (Village:-Pyala)	Sampling Duration:	24 hrs period
		m. r. merce fear notes

	Detrof	Parameters						
S. No.	Date of Sampling	PM 10 μg/m ³	PM 2.5 μg/m ³	SO ₂ µg/m3	NO ₂ μg/m ³	CO μg/m³		
Standa	rds	100 max	60 max	80 max	80 max	2000 max		
1.0	01/03/2023	68.4	45.4	3.36	7.24	0.512		
2.0	04/03/2023	70.2	42.6	4.12	11.12	0.463		
3.0	07/03/2023	72.6	38.5	4.36	9.36	0.425		
4.0	10/03/2023	71.9	41.3	5.12	12.54	0.642		
5.0	14/03/2023	69.2	40.2	4.21	10.38	0.585		
6.0	17/03/2023	70.5	42.6	5.36	12.86	0.469		
7.0	21/03/2023	72.3	46.1	5.94	12.34	0.394		
8.0	24/03/2023	68.2	42.9	4.25	10.61	0.642		
9.0	27/03/2023	71.8	45.8	5.41	12.89	0.598		
10	30/03/2023	74.9	41.4	4.63	8.61	0.461		
11	02/04/2023	70.1	40.9	3.94	13.45	0.546		
12	04/04/2023	73.4	43.7	5.61	11.75	0.471		
13	07/04/2023	76.8	41.2	4.96	12.69	0.502		
14	11/04/2023	72.2	43.8	4.34	11.36	0.493		
15	14/04/2023	69.4	42.2	5.42	12.75	0.501		
16	18/04/2023	64.2	40.1	5.21	13.94	0.498		
17	21/04/2023	69.1	38.6	6.63	10.28	0.521		
18	25/04/2023	70.3	39.4	4.51	9.67	0.468		
19	28/04/2023	68.1	40.8	6.86	14.58	0.647		
20	03/05/2023	70.6	42.5	5.75	13.69	0.593		
21	06/05/2023	72.4	41.1	5.36	12.45	0.521		
22	10/05/2023	69.1	43.6	6.24	10.58	0.497		
23	13/05/2023	68.8	40.5	5.46	9.83	0.526		
24	17/05/2023	70.3	43.3	4.86	10.81	0.496		
25	20/05/2023	72.4	41.0	5.62	12.24	0.249		
26	24/05/2023	68.9	43.6	5.89	13.68	0.516		
27	27/05/2023	64.5	42.9	6.42	11.29	0.646		
28	31/05/2023	69.1	41.6	6.35	14.37	0.529		
Minimu		64.20	38.50	3.36	7.24	0.25		
Maximu		76.80	46.10	6.86	14.58	0.65		
Average 98 th Per		70.13	41.93	5.16	11.54	0.51		
98 Per 95 th Per		75.77 74.38	45.94	6.74	14.47	0.65		
	d Deviation	2.68	45.66 1.96	6.56	14.22	0.64		
standard Deviation		2.00	1.50	0.88	1.81	0.08		

Location: AAQ-05 (Village:-Dundsa) Sampling Duration: 24 hrs period

	Date	Parameters	telle elle.			
S. No.	Date of Sampling	РМ ₁₀ µg/m ³	PM 2.5 μg/m ³	SO ₂ μg/m3	NO ₂ μg/m ³	CO µg/m³
Standa	rds	100 max	60 max	80 max	80 max	2000 max
1	01/03/2023	72.4	47.3	6.15	12.18	0.475
2	04/03/2023	73.5	42.1	7.61	15.06	0.587
3	07/03/2023	70.9	40.6	6.58	13.03	0.508
4	10/03/2023	72.4	43.9	5.09	12.07	0.471
5	14/03/2023	69.8	41.1	5.51	10.90	0.425
6	17/03/2023	72.1	39.7	5.98	11.83	0.461
7	21/03/2023	70.5	40.0	6.55	12.97	0.506
8	24/03/2023	72.0	43.5	5.69	11.27	0.440
9	27/03/2023	72.4	41.7	10.5	13.5	0.298
10	30/03/2023	70.8	40.2	11.3	14.5	0.305
11	02/04/2023	73.2	42.8	8.9	10.4	0.246
12	04/04/2023	76.1	45.5	15.4	18.1	0.485
13	07/04/2023	73.8	44.9	10.1	15.3	0.326
14	11/04/2023	76.4	45.1	13.2	16.0	0.418
15	14/04/2023	75.1	44.6	10.4	13.3	0.308
16	18/04/2023	78.5	46.2	9.9	12.1	0.267
17	21/04/2023	68.3	39.5	4.94	7.51	0.323
18	25/04/2023	70.2	41.1	5.52	8.40	0.361
19	28/04/2023	73.4	45.7	5.87	8.92	0.384
20	03/05/2023	69.8	40.5	7.15	10.87	0.467
21	06/05/2023	74.5	45.2	6.21	9.45	0.406
22	10/05/2023	72.1	42.8	5.49	8.34	0.359
23	13/05/2023	75.3	46.9	4.52	6.88	0.296
24	17/05/2023	72.9	41.2	5.44	8.26	0.355
25	20/05/2023	69.2	40.6	5.12	8.12	0.294
26	24/05/2023	67,3	42.3	4.94	7.34	0.345
27	27/05/2023	70.4	40.1	6.16	10.36	0.469
28	31/05/2023	73.6	39.5	5.21	10.15	0.516
Minimu		67.30	39.50	4.52	6.88	0.25
Maximu		78.50	47.30	15.40	18.10	0.59
Average		72.21	42.56	7.27	11.17	0.39
98 th Per		77.37	47.08	14.21	16.97	0.55
95 th Per	Carried and the Carried State of the Carried State	76.30	46.65	12.54	15.76	0.51
standar	d Deviation	2.57	2.45	2.77	2.88	0.09

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 3&320038/2024/底底18N PALWAL

Location: AAQ-06 (Village:-Gadpuri) Sampling Duration: 24 hrs period

	Dataset	Parameters				
S. No.	Date of Sampling	PM 10 μg/m ³	PM 2.5 μg/m ³	SO ₂ μg/m3	NO ₂ μg/m ³	CO μg/m³
Standa	rds	100 max	60 max	80 max	80 max	2000 max
1.0	68.2	39.4	4.12	7.35	0.315	68.2
2.0	70.4	41.6	4.98	8.61	0.426	70.4
3.0	72.8	43.5	5.12	8.94	0.328	72.8
4.0	68.4	67.4	4.32	7.25	0.297	68.4
5.0	70.7	42.8	5.44	11.46	0.561	70.7
6.0	68.3	38.6	6.24	12.83	0.628	68.3
7.0	71.2	39.7	4.37	10.51	0.469	71.2
8.0	70.6	38.1	4.12	8.64	0.438	70.6
9.0	68.8	39.9	3.94	7.52	0.391	68.8
10	69.7	41.1	5.47	9.94	0.458	69.7
11	72.5	43.4	4.81	12.21	0.612	72.5
12	70.7	41.1	5.46	11.64	0.402	70.7
13	68.2	38.8	4.34	9.24	0.391	68.2
14	71.6	39.1	5.82	13.12	0.467	71.6
15	73.4	42.2	5.86	12.81	0.628	73.4
16	70.9	41.1	4.34	10.67	0.475	70.9
17	68.7	38.7	5.98	9.83	0.334	68.7
18	71.1	39.8	7.24	10.45	0.429	71.1
19	73.5	42.2	5.12	12.12	0.581	73.5
20	71.9	43.4	4.68	9.82	0.374	71.9
21	68.3	38.7	3.82	8.34	0.252	68.3
22	66.4	35.1	3.15	7.61	0.245	66.4
23	69.2	40.4	5.28	9.27	0.452	69.2
24	72.4	43.2	6.45	12.54	0.516	72.4
25,	70.9	41.7	5.42	11.21	0.641	70.9
26	71.6	43.5	4.91	10.34	0.589	71.6
27	73.4	40.7	4.25	9.81	0.458	73.4
28	70.0	38.2	3.97	8.22	0.397	70.0
Minimu	m	66.40	35.10	3.15	7.25	0.25
Maximu		73.50	67.40	7.24	13.12	0.64
Average		70.35	41.33	4.90	9.98	0.44
98 th Per		73.45	54.49	6.81	12.96	0.63
95 th Per		73.40	43.50	6.38	12.82	0.63
Standard Deviation		1.87	5.47	0.92	1.80	0.11

Location: AAQ-07 (Village:-Pirthala) Sampling Duration: 24 hrs period

	December	Parameters				
S. No.	Date of Sampling	PM ₁₀ μg/m ³	PM _{2.5} μg/m ³	SO ₂ μg/m3	NO ₂ μg/m ³	CO μg/m³
Standa	rds	100 max	60 max	80 max	80 max.	2000 may
1	72.5	43.4	8.12	10.61	0.594	72.5
2	67.9	38,6	5.36	11.36	0.461	67.9
3	69.1	40.2	7.24	10.88	0.392	69.1
4	71.6	43.5	8.31	12.95	0.463	71.6
5	70.9	39.7	6.45	10.25	0.291	70.9
6	68.3	37.4	5.94	14.23	0.378	68.3
7	71.2	38.1	6.45	9.89	0.468	71.2
8	69.7	41.2	6.23	11.15	0.428	69.7
9	68.1	39.4	5.46	12.12	0.394	68.1
10	72.5	42.5	6.05	10.64	0.326	72.5
I.I.	72.9	41.9	7.13	14.18	0.412	72.9
12	70.1	43.4	8.29	11.20	0.326	70.1
13	68.0	37.1	5.46	10.09	0.284	68.0
14	67.7	36.5	6.86	14.58	0.455	67.7
15	68.2	39.4	7.12	9.81	0.307	68.2
16	71.5	42.1	9.36	13.60	0.319	71.5
17	68.7	37.5	7.24	13.84	0.581	68.7
18	67.1	38.4	8.12	9.30	0.391	67.1
19	70.9	41.3	9.28	8.57	0.360	70.9
20	68.2	37.2	8.67	9.29	0.390	68.2
21	70.4	42.5	10.61	8.24	0.346	70.4
22	71.5	40.1	9.52	10.18	0.427	71.5
23	73.4	42.4	7.24	10.95	0.460	73.4
24	72.1	39.6	8.25	9.24	0.388	72.1
25	69.4	40.2	7.26	10.12	0.451	69.4
26	66.5	35.9	8.64	13.45	0.397	66.5
27	74.1	39.5	9.37	10.98	0.512	74.1
28	73.5	42.1	10.68	14.78	0.394	73.5
Minimu	m	66.50	35.90	5.36	8.24	0.28
Maximu	ım .	74.10	43.50	10.68	14.78	0.59
Average		70.09	39.90	7.59	11.20	0.40
98 th Per	centile	73.78	43.45	10.64	14.67	0.59
95th Per	A period of the latest contract to the latest	73.47	43.40	10.23	14.46	0.56
standar	d Deviation	2.15	2.25	1.50	1.92	0.08

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 3&320038/2024/底底1BN PALWAL

Location: AAQ-08 (Village:-Baghaula) Sampling Duration: 24 hrs period

	Detect	Parameters				
S. No.	Date of Sampling	PM ₁₀ μg/m ³	PM _{2.5} µg/m ³	SO ₂ μg/m3	NO ₂ μg/m ³	CO µg/m³
Standa	rds	100 max	60 max	80 max	80 max	2000 max
1	72.0	41.4	6.19	9.90	0.495	72.0
2	71.2	41.9	6.78	10.85	0.542	71.2
3	76.8	47.2	5.42	9.78	0.215	76.8
4	72.1	43.4	8.12	10.46	0.301	72.1
5	70.6	41.7	10.29	15.58	0.465	70.6
6	72.4	41.1	13.40	16.45	0.310	72.4
7.	73.9	44.9	9.17	12.54	0.296	73.9
8	71.0	42.1	8.51	10.78	0.322	71.0
9	71.6	42.8	10.23	15.56	0.501	71.6
10	73.4	44.5	11.49	13.34	0.467	73.4
11	69.7	39.2	5.50	8.20	0.377	69.7
12	73.8	42.1	6.51	9.70	0.446	73.8
13	75.2	46.7	8.71	12.98	0.597	75.2
14	74.1	42.9	7.69	11.45	0.527	74.1
15	76.0	45.3	6.06	9.03	0.415	76.0
16	72.5	42.8	7.21	8.24	0.461	72.5
17	76.8	43.9	6.45	9.37	0.394	76.8
18	70.2	38.9	5.94	10.12	0.584	70.2
19	68.9	37.2	8.12	11.37	0.618	68.9
20	64.1	36.5	6.83	13.94	0.594	64.1
21	73.4	42.8	5.91	14.57	0.378	73.4
22	71.8	40.1	8.45	12.59	0.491	71.8
23	70.9	38.1	6.21	11.38	0.612	70.9
24	73.4	42.5	5.34	14.97	0.537	73.4
25	68.5	39.7	7.83	12.46	0.591	68.5
26	70.3	42.2	8.91	13.59	0.468	70.3
27	72.8	43.9	9.24	14.51	0.397	72.8
28	74.6	41.7	7.31	12.16	0.502	74.6
Minimu	m	64.10	36.50	5.34	8.20	0.22
Maximu	ım	76.80	47.20	13.40	16.45	0.62
Average		71.93	41.86	7.70	11.86	0.45
98th Per		76.80	46.93	12.37	15.98	0.61
)5 th Per	The sales of the State of Stat	76.52	46.21	11.07	15.57	0.61
Standard Deviation		2.70	2.60	1.95	2.32	0.11

Observations:

 PM_{10} : The maximum value for PM_{10} observed at $Dungri~198.3~\mu g/m^3$ and minimum value for PM_{10} observed at $Banas~Railway~Station~60.0~\mu g/m^3$. The 24 hours applicable limit for industrial, Residential Rural and Other Areas is $100~\mu g/m^3$.

PM_{2.5}: The maximum value for PM_{2.5} observed at Dungri 105.1 μg/m³ and minimum value for PM_{2.5} observed at Village- Dungri 34.1 μg/m³. The 24 hours applicable limit for industrial, Residential Rural and Other Areas is 60 μg/m³.

SO₂: The maximum value for SO₂ observed at Dungri 13.4 μg/m³ and minimum value for SO₂ observed at Village- Kamboi 3.6 μg/m³. The 24 hours applicable limit for industrial, Residential Rural and Other Areas is 80 μg/m³.

NO₂: The maximum value for NO₂ observed at Dungri 19.9 μg/m³ and minimum value for NO₂ observed at Village- Kamboi 5.5 μg/m³. The 24 hours applicable limit for industrial, Residential Rural and Other Areas is 80 μg/m³.

CO: The maximum value for CO observed at Dungri 920 µg/m³ and minimum value for CO observed at Village- Banas Railway Station 150 µg/m³. The 8 hours applicable limit for Industrial, Residential Rural and other areas is 2000 µg/m³.

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 33320038/2024/底底18N PALWAL

NOISE MONITORING

The statistical analysis is done for measured noise levels at Eight locations in the study area. The parameters are analyzed for Leq Day, Leq Nnight and Leq Day-Night. The statistical analysis results are given below:

AMBIENT NOISE LEVELS IN THE STUDY AREA

Sample	Location Name	Noise Monitoring
Code No.		Date
N-1	Plant Site	28/03/2023
N-2	Villeage:-Devali	28/03/2023
N-3	Village:-Asawati	28/03/2023
N-4	Village:-Pyala	28/03/2023
N-5	Village:-Dundsa	30/03/2023
N-6	Village:-Gadpuri	30/03/2023
N-7	Village:-Pirthala	30/03/2023
N-8	Village:-Baghaula	30/03/2023

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 3&320038/2024/底底18N PALWAL

Time	N-1	N-2	N-3	N-4	N-5	N-6
Day time			RESULT	The state of the s		1110
6.00	51.4	50.1	46.7	50.1	46.8	50.9
7.00	50.2	52.3	50.1	49.9	49.9	51.4
8.00	53.4	51.4	52.3	51.1	50.1	50.6
9.00	55.9	53.0	50.7	50.3	52.3	51.1
10.00	52.3	51.5	51.9	49.7	50.4	49.9
11.00	56.4	49.8	50.8	50.0	51.8	51.8
12 Noon	53.2	50.1	49.9	51.7	49.6	50.1
13.00	50.1	52.6	51.7	49.6	50.1	49.6
14.00	49.5	51.4	50.3	50.2	48.7	51.3
15.00	50.6	50.9	49.8	47.3	51.3	50.2
16.00	53.2	51.9	52.0	50.1	50.2	47.3
17.00	48.7	53.1	50.4	49.9	49.8	49.9
18.00	52.3	50.1	49.6	48.5	46.3	50.1
_ 19.00	49.6	47.6	50.1	47.2	49,7	48.8
20.00	48.5	45.6	48.7	45.1	47.3	47.5
21.00	47.6	46.9	46.5	43.2	46.1	46.5
Night time		The state of the s	ULTS dB (A		40.1	40.5
22.00	46.3	48.5	44.2	41.0	45.2	44.1
23.00	44.2	43.1	42.1	39.9	43.3	42.0
24.00	42.1	41.6	40.9	37.5	41.2	40.1
1.00	39.8	40.7	37.8	40.1	39.8	40.7
2.00	41.5	42.3	39.5	42.2	41.1	42.5
3.00	43.6	44.5	41.1	44.5	42.5	44.5
4.00	45.1	46.9	43.2	46.7	43.6	46.6
5.00	49.8	48.8	45.0	48.1	45.1	48.1
Leq Day	52.3	51.9	50.7	51.0	51.4	52.8
Leq Night	42.6	41.5	40.6	40.8	41.3	42.9
Leq Day & Night	53.9	52.6	51.9	52.9	53.0	53.3

Category of Zones	Leq	in dB(A)
	Day	Night
Industrial	75	70
Commercial	65	55
Residential	55	45
Silence	50	40

^{1.} Day time if from 6.00am to 10 pm

19

^{2.} Night time if from 10.00 pm to 6 am

^{3.} Silence zone is an area comprising not less than 100 meters around hospitals, educational institutions, courts, religious places or any other area which is declared as such by the competent authority.

4. Mixed categories of areas may be declared as one of the four above mentioned categories by the competent authority.

Time	N-7	N-8
Day time	RESUI	LTS dB (A)
6.00	52.2	50.1
7.00	50.1	52.4
. 8.00	53.3	50.6.
9.00	50.1	49.9
10.00	52.8	50.1
11,00	50.1	51.7
12 Noon	49.6	53.2
13.00	48.5	50.1
14.00	50.1	49.8
15.00	51.3	50.7
16.00	49.6	49.6
17.00	50.2	50.2
18.00	48.7	48.7
19.00	50.1	47.3
20.00	47.3	45.6
21.00	45.5	44.5
Night time	RESULTS	
22.00	43.2	43.2
23.00	40.1	41.2
24.00	39.5	38.9
1.00	41.5	42.5
2.00	43.9	43.3
3.00	45.0	45.1
4.00	47.8	46.8
5.00	50.1	48.9
Leq Day	50.0	51.1
Leq Night	41.9	42.3
Leq Day & Night	51.8	52.9

Category of Zones	Leq	in dB(A)
STATE OF THE PARTY	Day	Night
Industrial	75	70
Commercial	65	55
Residential	55	45
Silence	50	40
Silence	50	40

^{1.} Day time if from 6.00am to 10 pm

20

^{2.} Night time if from 10.00 pm to 6 am

^{3.} Silence zone is an area comprising not less than 100 meters around hospitals, educational institutions, courts, religious places or any other area which is declared as such by the competent authority.

^{4.} Mixed categories of areas may be declared as one of the four above mentioned categories by the competent authority

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 3**3**320038/**2024**/ÆEtGIBN PALWAL

Observations

a) Day Time Noise Levels (Leq_{day})

The daytime (Leq_{day}) noise levels are observed in **Plant Site** to be in the range of 52.3 dB(A) which are within the prescribed limit of 75 dB(A) and in residential areas to be in the range of 50.0 - 52.8 dB(A) which are within the prescribed limit of 55 dB(A).

b) Night time Noise Levels (Leqnight)

The nighttime (Leq_{night}) noise levels are observed in Silva to be in the range of 42.9 dB(A) which are within the prescribed limit of 70 dB(A) and in residential areas to be in the range of 40.6 – 42.9 dB(A) which are within the prescribed limit of 45 dB(A).

GROUND WATER QUALITY

Eight Ground water samples and one surface water sample around the project Area were collected and analyzed. The analytical results are given below.

Sample code No	Location Name	Source	Date of sampling
GW-1	Plant Site	Plant Site	28/03/2023
GW-2	Villeage:-Devali	Villeage:-Devali	28/03/2023
GW-3	Village:-Pahladpur	Village:-Asawati	28/03/2023
GW-4	Village:-Pyala	Village:-Pyala	28/03/2023
GW-5	Village:-Dundsa	Village:-Dundsa	30/03/2023
GW-6	Village:-Gadpuri	Village:-Gadpuri	30/03/2023
GW-7	Village:-Pirthala	Village:-Pirthala	30/03/2023
GW-8	Village:-Baghaula	Village;-Baghaula	30/03/2023
SW-1	Pahladpur Distributary	Pahladpur Distributary	28/03/2023
SW-2	Agra Canal	Agra Canal	28/03/2023
SW-3	Village:-Pirthala Pond	Village:-Pirthala Pond	30/03/2023

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 3&320038/2024/底底18N PALWAL

GROUND WATER ANALYSIS RESULTS AS PER IS: 10500-2012

S.No	Parameter	Test Method	Units	GWI	GW2	Acceptable Limit	Permissible Limit
1	Color	APHA(23rdEdition)2120B	Hazen	<1	<1	5	15
2	pH	APHA(23rdEdition)4500H	-	7.02	7.28	6.5-8.5	No Relaxation
3	Turbidity	APHA(23rdEdition)2130	NTU	0.14	0.18	1	5
4	Total Dissolved Solids	APHA(23rdEdition)2540C	mg/L	423	461	500	2000
5	Electrical Conductivity	APHA(23rdEdition)2510B	μS/cm	651	700		-
6	Aluminum as Al	APHA(23rdEdition)3111D	mg/l	<0.01	<0.01	0.03	0.2
7	Ammonia (astotalammonia-N)	1S3025(Part34)	mg/l	<0.2	<0.2	0.5	No Relaxation
8	Anionic Detergents as MBAS	APHA(23rdEdition)5540C	mg/I	<0.1	<0.1	0.2	1.0
9	Barium as Ba	APHA(23rdEdition)3500Ba	mg/l	<0.1	<0.1	0.7	No Relaxation
10	Boron as II	APHA(23rdEdition)4500B-B	mg/l	<0.1	<0.1	0.5	1.0
11	Calcium us Ca	APHA(23rdEdition)3500CaB	mg/l	31.10	36.93	75	200
12.	Chloramines	183025(Part26)	mg/l	<1.0	<1.0	4.0	No Relaxation
13	Chloride as Cl	APHA(23rdEdition)4500CI-B	mg/l	102.25	126.25	250	1000
14	Copperis Cu	APHA(23rdEdition)3111B	mg/I	10.0>	<0.01	0.05	1.5
15	Fluorideas F	APHA(23rdEdition)4580FD	mg/l	0.25	0.29	1.0	13
16	Free Residual Chlorine	APHA(23rdEdition)4500CIB	mg/I	<0.1	<0.1	0.2	10
17	Iron as Fe	APHA(23rdEdition)3111B	mg/t	0.06	0.08	0.3	No Relaxation
18.	Magnesium as Mg	APHA(23rdEdition)3500MgB	mg/l	14.19	14.85	30	100
19	Manganese as Mn	APHA(23rdEdition)3111B	mg/l	< 0.01	< 0.01	- 0.1	0.3
20	Nitrate as NO)	APHA(23rdEdition)4500B	mg/l	4.32	5.15	45	No Relaxation
21	Phenolic Compounds as CaHsOH	APRA(23rdEdition)5530C	mg/l	<0.001	<0.001	100.0	9.002
22	Selenium as Se	APHA(23rdEdition)3114B&C	mg/I	< 0.01	<0.01	0.01	No Relaxation
23	Sulphate as SO ₄	APHA(23rdEdition)4500E	mg/l	17.00	19.85	200	400
24	Total Alkalinity as CoCO ₃	APHA(23rdEdition)2320	mg/I	123	136	200	600
25	Total Hardness as CaCO:	APHA(23rdEdition)2340C	mg/l	136	153.26	200	600
26	Zinc as //n	APHA(23rdEdition)3111B	mg/l	< 0.01	<0.01	5.0	15
27	Cadmium as Cd	APHA(23rdEdition)3111B	mg/l	< 0.003	<0.003	0.003	No Relaxation
28	Lead as Pb	APHA(23rdEdition)3111B	mg/l	<0.01	<0.01	0.003	224.00000000000000000000000000000000000
29	Mercury as Hg	APHA(23rdEdition)31128	mg/l	<0.001	< 0.001	0.001	No Relaxation
30	Total Arsenic as As	APHA(23rdEdition)3114B	mg/l	< 0.005	< 0.001		No Relaxation
31	Total Chromium us Cr	APHA(23rdEdition)3111B	mg/L	<0.01	<0.01	0.01	0.05
32	Sulphide as S	APHA(23rdEdition)4500F			2000	0.05	No Relaxation
33	Nickel as Ni	APHA(23rdEdition)3111B	mg/l	<0.05	< 0.05	0.05	No Relaxation

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 3**3**320038//**2024**//REGIBN PALWAL

S.No	Parameter	Test Method	Units	GW3	GW4	Acceptable Limit	Permissible Limit
1	Color	APHA(23rdEdition)2120B	Hazen	<1	<1	5	15
2	pH	APHA(23rdEdition)4500H	-	7.19	726	6.5-8.5	No Relaxation
3	Turbidity	APHA(23rdEdition)2130	NTU	0.16	0.15	1	5
4	Total Dissolved Solids	APHA(23rdEdition)2540C	mg/l	502	528	500	2000
5	Electrical Conductivity	APHA(23rdEdition)2510B	µS/cm	772	813	-	250000
6	Aluminum as Al	APHA(23rdEdition)3111D	mg/t	<8.01	<0.01	0.03	0.2
7	Ammonia (astotalammonia-N)	1S3025(Part34)	mg/l	<0.2	< 0.2	0.5	No Relaxation
8	Anionic Detergents as MBAS	APHA(23rdEdition)5540C	mg/l	<0.1	<0.1	0.2	LO
9	Barium as Ba	APHA(23rdEdition)3500Ba	mgd	<0.1	<0.1	0.7	No Relaxation
19	Boron as 8	APHA(23rdEdition)4500B-B	mg/l	<0.1	<0.1	+ 0.5	1.0
11	Calcium as Ca	APHA(23rdEdition)3500CaB	mg/l	38.88	36.93	75	200
12	Chloramines	183025(Part26)	mg/l	<1.0	<1.0	4.0	No Relaxation
13	Chloride as Cl	APHA(23rdEdition)4500CLB	mg/l	135.79	147.82	250	1000
14	Copper as Cu	APHA(23rdEdition)3111B	mg/l	<0.01	<0.01	0.05	1.5
15	Fluoride as F	APHA(23rdEdition)4590FD	mg/l	0.33	0.36	1.0	1.5
16	Free Residual Chlorine	APHA(23rdEdition)4500C1B	mg/l	<0.1	<0.1	0.2	1.0
17	Iron as Fe	APHA(23rdEdition)3111B	mg/	0.10	0.11	0.3	No Relaxation
18	Magnesium as Mg	APHA(23rdEdition)3500MgB	mg/l	12.39	1736	36	100
19	Manganese as Mn	APHA(23rdEdition)3111B	mg/l	<0.01	<0.01	0.1	0.3
20	Nitrate as NO ₅	APHA(23rdEdition)4500B	mg/l	5.44	5.69	45	No Relaxation
21	Phenolic Compounds as CaHsOH		mg/l	<0.001	< 0.001	0.001	0.002
22	Selenium as Se	APHA(23rdEdition)31148&C	mg/l	<0.01	<0.01	0.01	02000
23	Sulphate as SO ₄	APHA(23rdEdition)4500E	mg/l	20:63	20.82	200	No Relaxation
24	Total Alkalimity as CaCO ₃	APHA(23rdEdition)2320	mg/l	145	166	200	400
25	Total Hardness as CaCOs	APHA(23rdEdition)2340C	mg/l	148	163.59	200	600
26	Zinc as Zn	APBA(23rdEdition)3111B	mg/l	<0.01	<0.01	5	
27	Cadmium as Cd	APHA(23rdEdition)3111B	mg/l	<0.003	< 0.003	0.003	15
28	Lead as Pb	APHA(23rdEdition)3111B	mg/l	<0.01	<0.003	225000	No Relaxation
29	Mercury as Hg	APHA(23rdEdition)3112B	mg/l	<0.001	< 0.001	0.1	No Relaxation
30	Total Arsenic as As	APHA(23rdEdition)3114B		<0.005	< 0.005	100.0	No Relaxation
31	Total Chromium as Cr	APHA(23rdEdition)3111B	mg/l	10000	77,555	0.01	0.65
32	Sulphide as 5	APHA(23rdEdition)/4500F	mg/l	<0.01	=0.01	0.05	No Relaxation
33	Military March		mg/l	<0.05	<0.05	0.05	No Relaxation
23	Nickel as Ni	APHA(23rdEdition)3111B	Egm	<0.01	<0.01	0.02	No Relaxation

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 3**3**320038//**2024**/ÆEttiBn PALWAL

S.No	Parameter	Test Method	Units	GW5	GW6	Acceptable Limit	Permissible Limit
1	Color	APHA(23rdEdition)2120B	Hazen	<1	<1.	5	15
2	pH	APHA(23rdEdition)4500H		7.22	7,60	6.5-8.5	No Relaxation
3	Turbidity	APHA(23rdEdition)2130	NTU.	0.12	0.13	1	5
4	Total Dissolved Solids	APHA(23rdEdition)2540C	mg/l	488	421	500	2000
5	Electrical Conductivity	APHA(23rdEdition)2510B	µS/cm	750	648	2	2000
6	Aluminum as Al	APHA(23rdEdition)31111)	mg/l	<0.01	<0.01	0.03	0.2
7	Ammonia (ustotalammonia-N)	1S3025(Part34)	mg/l	< 0.2	<0.2	0.5	No Relaxation
8	Anionic Detergers as MBAS	APHA(23rdEdition)5540C	mg/l	<0.1	<0.1	0.2	1.0
9	Banum as Ba	APHA(23rdEdition)3500Ba	mg/l	<0.1	<0.1	0.7	No Relaxation
10	Boron as II	APHA(23rdEdition)4500B-B	mg/t	<0.1	<0.1	0.5	1.0
11	Culcium as Ca	APHA(23rdEdition)3500CaB	mg/l	31.10	28.64	75	200
12	Chloramines	IS3025(Part26)	mg/l	<1.0	<1.0	4.0	No Relaxation
13	Chloride as Cl	APHA(23rdEdition)4560CI-B	mg/l	149.94	123.95	250	1000
14	Copper as Cu	APHA(23rdEdition)3111B	mg/I	<0.61	< 0.01	0.05	1.5
15	Fluoride as F	APHA(23rdEdition)4500FD	mg/l	0.33	0.27	1.0	1.5
16	Free Residual Chlorine	APHA(23rdEdition)4580C1B	mg/l	<0.1	<0.1	0.2	1.0
17	Iron as Fe	APHA(23rdEdition)3111B	mg/l	0.12	0.16	0.3	No Relaxation
18	Magnesium as Mg	APHA(23rdEdition)3500MgB	mg/l	19.93	14.78	30	100
19	Manganese as Mn	APHA(23rdEdition)3111B	mg/l	<0.01	< 0.01	0.1	0.3
20	Nitrate as NO ₁	APHA(23rdEdition)4560B	mg/l	4.73	3.82	45	No Relaxation
21	Phenolic Compounds as CoHrOH	APHA(23rdEdition)5530C	mg/l	< 0.001	< 0.001	0.001	0.002
22	Selenium as Se	APHA(23rdEdition)3114B&C	mg/l	< 0.01	<0.01	0.01	No Relaxation
23	Sulphate as SO ₄	APHA(23rdEdition)4500E	mg/I	10.60	15.72	200	400
24	Total Alkalimity as CaCOs	APHA(23rdEdition)2320	mg/l	140.22	128.40	200	600
25	Total Hardness as CaCOs	APHA(23rdEdition)2340C	mg/I	159.64	132.28	200	600
26	Zinc as Zn	APHA(23rdEdition)3111B	mg/l	<0.01	< 0.01	5	15
27	Cadmium as Cd	APHA(23rdEdition)3111B	mg/l	< 0.00.7	< 0.003	0.063	No Relaxation
28	Lead as Pb	APHA(23rdEdition)3111B	mg/I	< 0.01	< 0.01	0.1	No Relaxation
29	Mercury as Hg	APHA(23rdEdition)3112B	mg/l	< 0.001	< 0.001	0.001	No Relaxation
30	Total Arsenic as As	APHA(23rdEdition)3114B	mg/l	< 0.005	<0.005	0.01	0.05
31	Total Chromium as Cr	APHA(23rdEdition)3111B	mg/I	-0.01	< 0.01	0.05	No Relaxation
32	Sulphide as 8	APHA(23rdEdition)4500F	mg/I	<0.05	<0.05	0.05	No Relaxation
33	Nickel as Ni	APHA(23rdEdition)3111B	mg/l	< 0.01	<0.01	0.02	No Relaxation

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 3**3**320038//**2024**//REGIBN PALWAL

S.No	Parameter	Test Method	Units	GW7	GW8	Acceptable Limit	Permissible Limit
1	Color	APHA(23rdEdition)2120B	Hazen	<1	<1	5	15
2	pH	APHA(23rdEdition)4500H	-	6.92	6.98	6.5-8.5	No Relaxation
3	Turbidity	APHA(23rdEdition)2130	NTU	0.16	0.17	1	5
4	Total Dissolved Solids	APHA(23rdEdition)2540C	mg/l	589	546	500	2000
5	Electrical Conductivity	APHA(23rdEdition)2510B	µS/cm	906	840	-	20070
6	Aluminum as Al	APHA(23rdEdition)3111D	mg/l	<0.01	<0.01	0.03	0.2
7	Ammonia (astotalammonia-N)	1S3025(Part34)	mg/I	<0.2	<0.2	- 0.5	No Relaxation
8	Anionic Detergents as MBAS.	APHA(23rdEdition)5540C	mg/l	<0.1	<0.1	0.2	1.0
9	Barium as Ba	APHA(23rdEdition)3500Ba	mg/l	<0.1	<0.1	0.7	No Relaxation
10	Boron as B	APHA(23rdEdition)4500B-B	ngA	<0.1	<0.1	0.5	1.0
13	Calcium as Ca	APHA(23rdEdition)3500CaB	mgd	29.16	23.33	75	200
12	Chloramines	1S3025(Part26)	mg/l	<1.0	<1.0	4.0	No Relaxation
13	Chloride as Cl	APHA(23rdEdition)4500C1-B	mg/l	210.29	192.94	250	1000
14	Copper us Cu	APHA(23rdEdition)3111B	mg/l	< 0.01	<0.01	0.05	1.5
15	Fluoride as F	APHA(23rdEdition)4500FD	mg/l	0.77	0.84	1.0	1.8
16	Free Residual Chlorine	APHA(23rdEdition)4500CIB	mg/l	<0.1	<0.1	0.2	1.0
17	Iron as Fe	APHA(23rdEdition)3111B	mg/l	0.15	0.11	0.3	No Relaxation
18	Magnesium as Mg	APHA(23rdEdition)3500MgB	mg/l	26.06	22.85	30	100
19	Manganese as Mn	APHA(23rdEdition)3111B	mg/l	<0.01	< 0.01	0.1	0.3
20:	Nitrate as NO ₃	APHA(23rdEdition)4500B	mg/l	8.17	7.45	45	No Relaxation
21	Phenolic Compounds as CallsOff	APHA(23rdEdition)5530C	mg/l	<0.001	<0.001	.0.001	0.002
22	Selenium as Se	APHA(23rdEdition)3114B&C	mg/l	< 0.01	< 0.0.1	0.01	No Relaxation
23	Sulphate as SOs	APHA(23rdEdition)4500E	mg/l	22.63	20.18	200	400
24.	Total Alkalinity as CaCOs	APHA(23rdEdition)2320	mg/l	149	134,58	200	600
25	Total Hardness as CaCO ₃	APHA(23rdEdition)2349C	mg/l	180.28	152.24	200	600
26	Zinc as Zn	APHA(23rdEdition)3111B	mg/l	<0.01	<0.01	5	15
27	Codmiumas Cd	APHA(23rdEdition)3111B	mg/I	< 0.003	< 0.003	0.003	No Relaxation
28	Load as Pb	APHA(23rdEdition)3111B	:mg/l	<0.01	< 0.01	0.1	No Relaxation
29	Mercury as Hg	APHA(23rdEdition)3112B	mg/l	< 0.001	<0.001	0.001	No Relaxation
36	Total Arsenie as As	APHA(23rdEdition)3114B	mg/l	< 0.005	< 0.005	0.01	0.05
31	Total Chromiumas Cr	APHA(23rdEdition)31118	mg/l	< 0.01	< 0.01	0.05	No Relaxation
32	Sulphide as S	APHA(23rdEdition)4500F	mg/l	< 0.05	< 0.05	0.05	No Relaxation
33:	Nickel as Ni	APHA(23rdEdition)3111B	mg/l	<0.01	< 0.01	0.02	No Relaxation

SURFACE WATER ANALYSIS RESULTS

5.No.	Parameters	Unit	Test Method	SW-1	SW-2
1	pН		APHA(23rdEdition)4500H	8.05	7.16
2	Turbidity	NTU	APHA(23rdEdition)2130	0.36	0.44
3	Total Hardness as CaCO ₂	mg/l	APHA(23rdEdition)2340C	280	262
4	Total Alkalinity as CaCO ₂	mg/l	APHA(23rdEdition)2320	210	192
5	Chlorides as Cl	mg/I	APHA(23rdEdition)4500Cl'B	227.53	218,90
0	Sulphate as SO ₄	mg/l	APHA(23rdEdition)4500E	64	52.47
7	Nitrate as NO ₁	mg/l	APHA(23rdEdition)4500NO ₃ B	18.70	16.03
8	Fluoride as F	mg/I	APHA(23rdEdition)4500FD	0.51	0.43
9	BOD _{3Dayan} tre	mg/t	IS3025(Part44)	15	8.2
10	COD	mg/l	APHA(23rdEdition)5220B	60	39,28
11	Phenolic Compounds as C ₆ H ₅ OH	mg/I	APHA(23rdEdition)5530C	<0.001	< 0.001
12	Lead as Pb	mg/l	APHA(23rdEdition)3111B	< 0.01	< 0.01
13	Iron as Fe	mg/I	APHA(23rdEdition)3111B	0.03	< 0.01
14	Arsenic as As	mg/I	APHA(23rdEdition)3114B	< 0.005	< 0.005
15	Cadmium as Cd	mg/l	APHA(23rdEdition)3111B	<0.003	< 0.003
16	Total Chromium as Cr	mg/I	APHA(23rdEdition)3111B	< 0.01	< 0.01
17	Mercury as Hg	mg/l	APHA(23rdEdition)3112B	<0.001	<0.001
18	Copper as Cu	mg/l	APHA(23rdEdition)3111B	< 0.01	< 0.01
19	Zinc as Zn	mg/l	APHA(23rdEdition)3111B	< 0.01	< 0.01
20	Selenium as Se	mg/f	APHA(23rdEdition)3114B&C	<0.01	<0.01
21	Oil & grease	mg/l	APHA(23rdEdition)5520B	3.26	1.06
22	Colour	Hazen	APHA(23rdEdition)2120B	<1.0	<1.0
23	Total Dissolved Solids	mg/l	APHA(23rdEdition)2540C	928	832
24	Residual Free Chlorine	mg/l	APHA(23rdEdition)4500ClB	< 0.2	<0.2
25	Boron as B	mg/l	APHA(23rdEdition)4500B-B	< 0.10	<01.0≎
26	Calcium as Ca	mg/l	APHA(23rdEdition)3500CaB	54.20	49.80
27	Magnesium as Mg	mg/l	APHA(23rdEdition)3500MgB	35.18	34.00
28	Dissolved Oxygen	mg/l	APHA(23rdEdition)4500DOC	5.2	5.5
29	Total Coliform	CFU /100ml	1813185	>1500	>1500
30	E.Coli	/100ml	1515185	Absent	Absent

SURFACE WATER ANALYSIS RESULTS

S.No.	Parameters	Unit	Test Method	SW-3
E	pH	2	APHA(23rdEdition)4500H	7.55
2	Turbidity	NTU	APHA(23rdEdition)2130	0.36
3	Total Hardness as CaCO ₁	mg/I	APHA(23rdEdition)2340C	228
4	Total Alkalinity as CaCO ₃	mg/l	APHA(23rdEdition)2320	263.2
5	Chlorides as Cl	mg/L	APHA(23rdEdition)4500CFB	187,07
0	Sulphate as SO ₄	mg/l	APHA(23rdEdition)4500E	48.36
7	Nitrate as NO ₃	mg/l	APHA(23rdEdition)4500NO ₃ B	12.98
8	Fluoride as F	mg/l	APHA(23rdEdition)4500FD	0.76
9	BOD3Ditysut27%	mg/l	IS3025(Part44)	22.71
10	COD	mg/l	APHA(23rdEdition)5220B	120
11	Phenolic Compounds as C ₆ H ₉ OH	mg/l	APHA(23rdEdition)5530C	< 0.001
12	Lead as Ph	mg/l	APHA(23rdEdition)3111B	<0.01
13	Iron as Fe	mg/l	APHA(23rdEdition)3111B	0.11
14	Arsenic as As	mg/l	APHA(23rdEdition)3114B	< 0.005
15	Cadmium as Cd	mg/l	APHA(23rdEdition)3111B	< 0.003
16	Total Chromium as Cr	mg/l	APHA(23rdEdition)3111B	<0.01
17	Mercury as Hg	mg/l	APHA(23rdEdition)3112B	< 0.001
18	Copper as Cu	mg/l	APHA(23rdEdition)3111B	< 0.01
19	Zinc as Zn	mg/l	APHA(23rdEdition)3111B	< 0.01
20	Selenium as Se	mg/l	APHA(23rdEdition)3114B&C	<0.01
21	Oil & grease	mg/I	APHA(23rdEdition)5520B	5.29
22	Colour	Hazen	APHA(23rdEdition)2120B	<1.0
23	Total Dissolved Solids	mg/l	APHA(23rdEdition)2540C	853
24	Residual Free Chlorine	mg/I	APHA(23rdEdition)4500CIB	<0.2
25	Boron as B	mg/l	APHA(23rdEdition)4500B-B	< 0.10
26	Calcium as Ca	mg/l	APHA(23rdEdition)3500CaB	50.29
27	Magnesium as Mg	mg/l	APHA(23rdEdition)3500MgB	24.91
28	Dissolved Oxygen	mg/I	APHA(23rdEdition)4500DOC	4,7
29	Total Coliform	CFU /100ml	IS15185	>1500
30	E.Coli	CFU /100ml	IS15185	Absent

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 33320038/2024/底底1BN PALWAL

SOIL QUALITY

Eight soil samples around the project area were collected and analyzed. The analytical results are given in below.

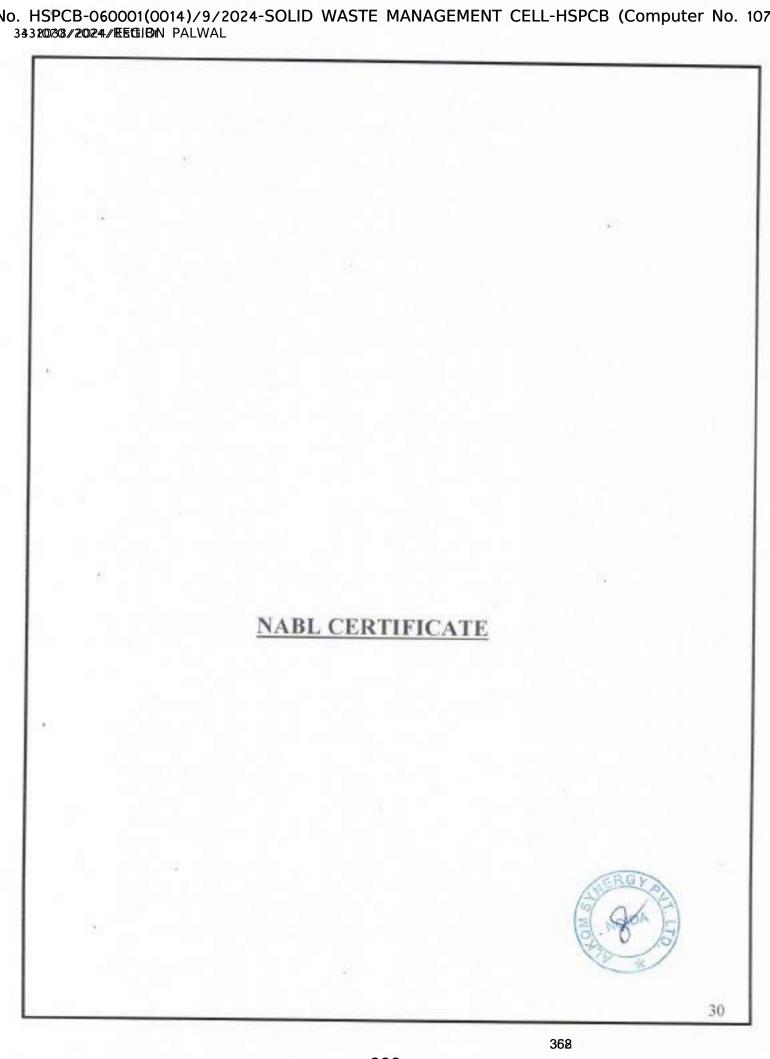
SOIL SAMPING LOCATIONS

Soil Sample Code No.	Location Name	Date of sampling
S-1	Plant Site	28/03/2023
S-2	Villeage:-Devali	28/03/2023
S-3	Village:-Asawati	28/03/2023
S-4	Village:-Pyala	28/03/2023
S-5	Village:-Dundsa	30/03/2023
S-6	Village:-Gadpuri	30/03/2023
S-7	Village:-Pirthala	30/03/2023
S-8	Village:-Baghaula	30/03/2023

SOIL ANALYSIS

S.No.	Paramete	ers	Unit	S-1	S-2	S-3	S-4
1	Colour		-	Brown	Brown	Brown	Brown
2	Texture		-	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam
3	Particle Size	Sand	%	42	38	39	45
	Distributions	Silt	%	26	28	25	21
		Clay	%	32	34	36	34
4	pH(1:5Solu			7.78	8.10	8.23.	7.71
5	Electrical Cond	uctivity	μS/cm.	250	289	243	210
6	Bulk Dens	ity	gm/cm3	1.45	1.40	1.53	1.43
7	Porosity		%v/v	29	25	26	27
8	Organic Car	rbon	%	0.35	0.38	0.33	0.29
9	Sodium(N		mg/100gm	24.0	26.0	32.0	29.1
10	Potassium	(K)	mg/100gm	40.0	35.0	45.0	36.4
.11	Moisture Co	ntent	%	6.5	-7.1	7.9	7.7
12	Total Nitro		mg/100gm	30.0	33.0	22.0	21.0
13	Available Phos	phorous	kg/hectare	15.4	16,2	13.28	10,34
14	Organic Ma		%	0.61	0.65	0.57	0.51
15	Total Soluble C		mg/kg	180	210	242	219
16	Total Soluble S		%	0.031	0.042	0.035	0.033
17	Water Holding (%	31	36	40	38

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 34320088/2024/ÆEGIBN PALWAL


SOIL ANALYSIS

S.No.	Paramete	ers	Unit	S-5	8-6	S-7	S-8
1	Colour		-	Brown	Brown	Brown	Brown
2	Texture		-		Sandy Clay		Annual real state of the last
3	Particle size	Sand	%	39	42	43	46
	Distributions	Silt	%	27	26	22	24
	-100000 1100000000000000000000000000000	Clay	%	34	32	35	30
4	pH(1:5Solution)			7.96	8.25	7.90	7.80
5	Electrical Cond		μS/cm.	203	277	228	193
6	Bulk Dens	ity	gm/cm3	1.39	1.46	1.52	1.41
7	Porosity		%v/v	31	28	26	32
8	Organic Carbon		%	0.25	0.36	0.28	0.23
9	Sodium(Na)		mg/100gm	28.0	24.0	19.0	25.0
10	Potassium(K)		mg/100gm	34.58	32.0	33.0	30.0
11	Moisture Co	ntent	%	7.9	6.8	8.2	6.4
12	Total Nitro	gen	mg/100gm	20.0	30.0	19.0	20.0
13	Available Phos	ohorous	kg/hectare	9.27	12.8	8.7	7.4
14	Available Phosphorous Organic Matter		%	0.44	0.63	0.49	0.39
15	Total Soluble C	hloride	mg/kg	202.52	189	175	150
16	Total Soluble Sulphate		%	0.03	0.045	0.028	0.029
17	Water Holding Capacity		%	38	39	31.2	43

Results & Conclusions

The soil analysis results are presented in Table. The result obtained is compared with the standard soil classification given Agriculture Soil Limits. It has been observed that the soils are Sandy Clay in texture and neutral in nature. The nutrient and organic matter contents are medium and the soil is normally fertile.

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 107 34320088/2024/ÆEGIBN PALWAL

National Accreditation Board for Testing and Calibration Laboratories

MABL

CERTIFICATE OF ACCREDITATION

ALKOM SYNERGY PVT. LTD.

has been assessed and accredited in accordance with the standard

ISO/IEC 17025:2017

"General Requirements for the Competence of Testing & Calibration Laboratories"

for its facilities at

C-212, 2ND FLOOR SECTOR-10, NOIDA, UTTAR PRADESH, INDIA

in the field of

TESTING

Certificate Number:

TC-9580

Issue Date:

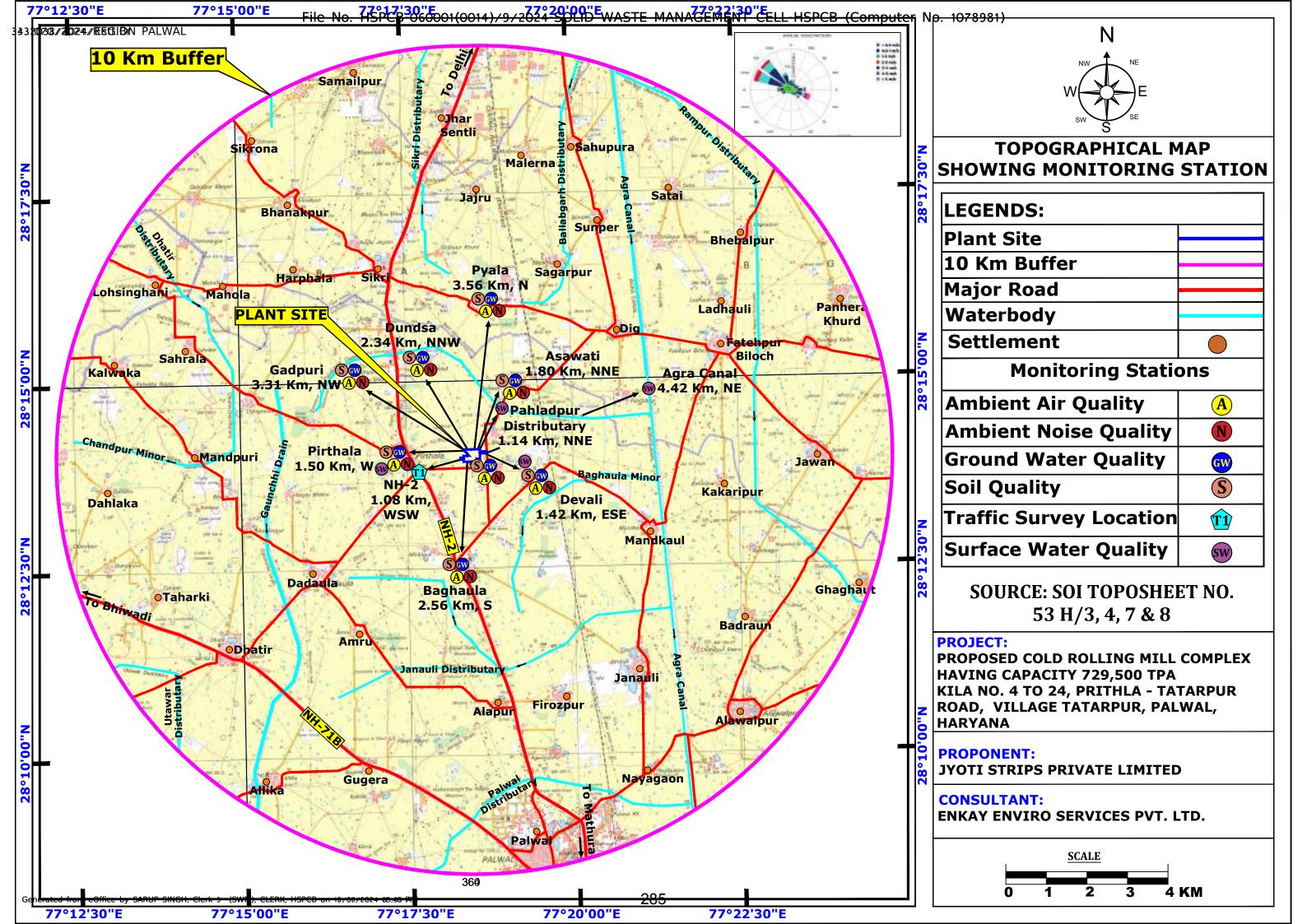
08/06/2023

Valid Until:

07/06/2025

This certificate remains valid for the Scope of Accreditation as specified in the annexure subject to continued satisfactory compliance to the above standard & the relevant requirements of NABL.

(To see the scope of accreditation of this laboratory, you may also visit NABL website www.mbb-inda.org)


Name of Legal Entity: ALKOM SYNERGY PVT. LTD.

Signed for and on behalf of NABL

N. Venkateswaran Chief Executive Officer

JYOTI STRIPS PRIVATE LIMITED

EHS POLICY

We at Jyoti Strips Private Limited are committed to the protection of the Environment & provision of Safe working place by prevention of Pollution, Conservation of resources, Prevention of injuries and Ill Health situations.

This we shall achieve by:

- Understanding and meeting all legal & other obligations.
- Sustaining continual improvement in our EHS performance ensuring consultation and participation of all interested parties.
- Learning and implementing innovative techniques for eliminating hazards & reducing OH&S risks.

Place: Faridabad

Date:

Revision No: 00

General Manager-HR & Admin

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078

ज्योति स्ट्रिप्स प्राइवेट लिमिटेड

पर्यायवरण स्वास्थय सुरक्षा नीति

हम ज्योति स्ट्रिप्स प्राइवेट लिमिटेड में प्रदूषण की रोकथाम, संसाधनों के संरक्षण, चोटों और खराब स्वास्थ्य स्थितियों की रोकथाम के द्वारा पर्यावरण की सुरक्षा और सुरक्षित कार्यस्थल के प्रावधान के लिए प्रतिबद्ध हैं।

इस उद्देश्य की पूर्ती के लिए :

- सभी कानूनी एवं अन्य दायित्वों को समझना एवं अनुपालन करना।
- सभी इच्छुक पक्षों के परामर्श और भागीदारी को सुनिश्चित करते हुए हमारे ईएचएस प्रदर्शन में निरंतर सुधार करना ।
- खतरों को खत्म करने और ओएच एंड एस जोखिमों को कम करने के लिए नवीन तकनीकों को सीखना और लागू करना।

स्थान: फ़रीदाबाद

दिनाँक :

संशोधन क्रमांक: 00

महाप्रबंधक-मानव संसाधन एवं प्रशासन

e No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 10789) 33320038/2024/胜时间的 PALWAL

JYOTI STRIPS PRIVATE LIMITED

Works: Kila No. 4 to 24, Prithia Road, Village Tatarpur, Palwal 121102, Haryana, India Phone: 0129-4323650 Email: md@iyotistrips.com

Date: 10.10.2023

AUTHORITY LETTER

In pursuant to the work order No. JSPL/100/2022-2023/2351 dated 18.01.2023 place Jaipur, I, Sanjay Batra, Chief executive head of Jyoti Strips Pvt. Ltd. do hereby authorize to M/s Enkay Enviro Services Pvt. Ltd. with its registered office at 92, Heera Nagar- A, Near Shalimar Bagh, Ajmer Road, Jaipur - 302021, for preparing the application for obtaining Terms of Reference (TOR) & Environmental Clearance (EC), and its related queries reply to SEAC, follow up to expedite our project on regular basis at SEAC and/or its Regional Office for all requisite regulatory approvals on behalf of our Company/Organization for our project "Proposed Cold Rolling Mill Complex with Galvanizing and colour coating line having total Capacity of Various products 7,80,000 MTPA" located at # Kila No. 4 to 24, Prithla - Tatarpur Road, Village Tatarpur, Palwal, Haryana."

Thanking you.

For Jyoti Strips Pvt. Ltd.

Sanjay Batra

(Chief Executive Head)

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 34320038/2024/医氏识的 PALWAL

JYOTI STRIPS PRIVATE LIMITED

Corporate Office & Vatika Mindscapes, Block-B, 3rd Floor, 12/3 Mathura Road, NH-2, Sector-27D, Feridabad, Haryana-121003

Phone: 0129-4323650 Email: md@jyotistrips.com

Jyoti Strips Private Limited List of Directors as on Date: 04-02-2023

S. No.	Name	Father Name	Address	DIN	PAN
1	MR. NARESH KUMAR	SH. HARPRASAD	House No. 212, Sector-15A, Faridabad- 121007, Haryana	00647504	AAWPK7999Q
2	MRS. SHALINI GARG	W/O Naresh Garg	House No. 212, Sector-15A, Faridabad- 121007, Haryana	06424511	AAUPG7496E
3	MR. AMAN GARG	SH. Naresh Garg	House No. 212, Sector-15A, Faridabad- 121007, Haryana	08052633	BPJPG3325K

Jyoti Strips Private Limited

Shareholding Pattern As on Date: 04-02-2023

S. No.	Name of Shareholder	Address	Pan No.	No. of Share	Share Holding
1	Mr. Naresh Kumar	House No. 212, Sector-15A, Faridabad-121007, Haryana	AAWPK7999Q	285000	57%
2	Mrs. Shalini Garg	House No. 212, Sector-15A, Faridabad-121007, Haryana	AAUPG7496E	65000	13%
3	M/s Ajit Sheets India Private Limited	Plot No. 50, Sector 59, Faridabad, Haryana	AAGCA2027E	150000	30%
	Total			500000	100%

For Jyoti Strips Pv. Ltd.

Abthorised Signatory

Plant : Plot No. 100-106, Sector-59, Huda Phase-II, Ballabgarh, Faridabad - 121004, Haryana, India Registered Office : 103 - B, Sindhu Farm Road, Mithapur Extension, Badarpur, New Delhi 110 044 India

CIN: U51101DL2007PTC158112 Website: www. jyotistrips.com

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 34312078/2024/医時的 PALWAL

JYOTI STRIPS PRIVATE LIMITED

Corporate Office A Vatika Mindscapes, Block-B, 3rd Floor, 12/3 Mathura Road, NH-2, Sector-27D, Faridabad, Haryana-121003 Phone: 0129-4323650

Email: md@jyotistrips.com

Board Resolution

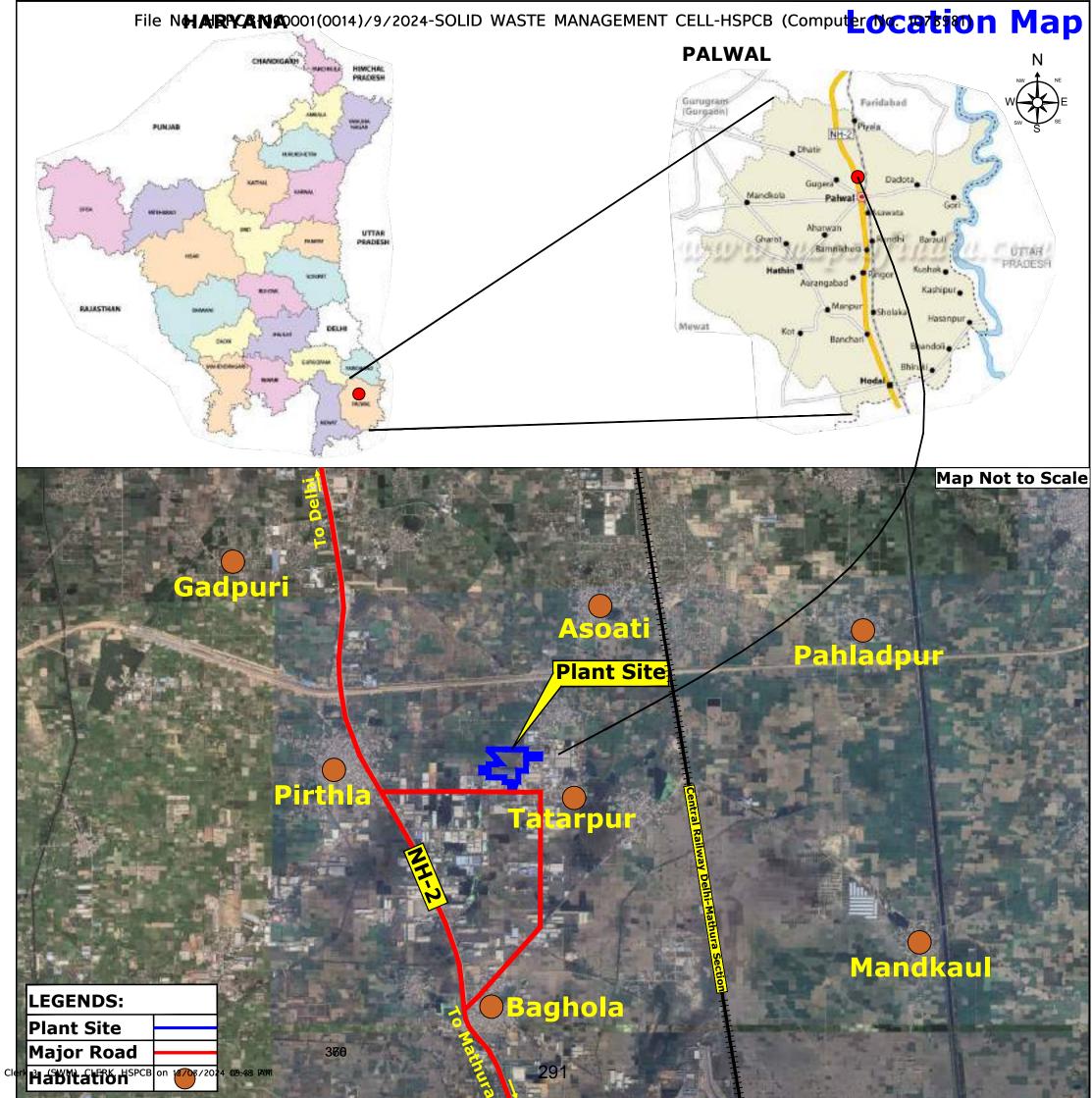
CERTIFIED TRUE COPY OF THE RESOLUTION PASSED AT THE MEETING OF THE BOARD OF DIRECTORS OF JYOTI STRIPS PRIVATE LIMITED HELD ON 04.02.2023 AT ITS REGISTERED OFFICE 103-B, SINDHU FARM ROAD, MITHAPUR ROAD EXTENSION, BADARPUR, NEW DELHI-110044

RESOLVED THAT the company has decided to authorize, Mr. Naresh Kumar, Director, (UID No: 976499838029) Mr. Aman Garg, Director, (UID No: 663817828728) Mr. Sanjay Batra Chief Executive Head, (UID No: 579931954417) and Mr. Ravinder Gupta Sr. Consultant, (UID No: 500316482864) of the company to authorized to sign the necessary applications, documents and papers to be submitted on behalf of the company with the Central and State Government Authorities related to MOEF & CC New Delhi, SEIAA, Haryana, The EAC and SEAC, Haryana State Pollution Control Board (HSPCB) & Central Ground Water Authority (CGWA), HVPNL Factor and Boiler department, HSIIDC and to present himself in relation to the project of establishing the Industrial Unit undertaken by the Company.

RESOLVED FURTHER THAT Mr. Naresh Kumar, Director, Mr. Aman Garg, Director, Mr. Sanjay Batra Chief Executive Head and Mr. Ravinder Gupta Sr. Consultant is also authorized to do all the other necessary acts, deeds or things for execution of aforesaid project work on behalf of the company.

RESOLVED FURTHER THAT Directors of the company are hereby, authorized to submit certified true copy of the resolution to concern authorities.

Certified True Copy


For Jyoti Strips Private Limited

Naresh Kumar Director

Date: 04.02.2023

Pfant : Plot No. 100-106, Sector-59, Huda Phase-II, Ballabgarh, Faridabad - 121004, Haryana, India Registered Office : 103 - B, Sindhu Farm Road, Mithapur Extension, Badarpur, New Delhi 110 044 India CIN : U51101DL2007PTC158112 Website : www. jyotistrips.com 369

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 34320038/2024/底底间的 PALWAL

National Accreditation Board for Education and Training

QCI/NABET/ENV/ACO/24/3164

March 06, 2024

Enkay Enviro Services Pvt. Ltd., Jaipur 92, Heera Nagar-A, Near Shalimar Bagh, Ajmer Road, Jaipur – 302021

Sub.: Extension of Validity of Accreditation till June 04, 2024 – regarding

Ref., 1. Certificate no NABET/EIA/2023/SA 0200

2. Request mail March 05, 2024

Dear Sir/Madam

This has reference to the accreditation of your organization under QCI-NABET EIA Scheme, the validity **Enkay Enviro Services Pvt. Ltd.** is hereby extended till June 04, 2024 or completion of the assessment process, whichever is earlier.

The above extension is subject to the submitted documents/required information with respect to your application and timely submission and closure of NC/Obs during the process of assessment.

You are requested not to use this letter after the expiry of the above-stated date.

With best regards.

(A K Jha)

Sr. Director, NABET

REGD.

FORM BR-VII (See Code 4.11 (2), (4) and (5)) Form of Occupation Certificate

From

Director,

Town & Country Planning Department,

Haryana, Nagar Yojna Bhawan, Block-A, Plot No.-3, Sector-18A, Madya Marg, Chandigarh.

Tele-Fax: 0172-2548475; Tel.: 0172-2549851,

E-mail: tcpharyana7@gmail.com Website www.tcpharyana.gov.in

To

Jyoti Strips Pvt. Ltd., Regd. Off. 103-B. Sindhu Farm Road Mithabpur Extension, Badarpur Road, New Delhi-110044.

Memo No. PL-1443-8/AD (NK)/2021/ 14036 Dated 16-06-2021

Whereas Jyoti Strips Pvt. Ltd. has applied for the issue of an occupation certificate in respect of the building described below:

DESCRIPTION OF BUILDING

District-Palwal.

Industrial Unit (Steel Strips) Purpose

- Total area of CLU permission area measuring 72389.39 Sqm. in the Revenue Estate of village Prithla & Jatola, Sector-11, Palwal.
- · Indicating description of building, covered area, block, nature of building etc.

Building Block	Floor	FAR Sanctioned	FAR Achieved Area in Sqm.	
Boltonia Diocis	3.50	Area in Sgm.		
Shed-1	G.F	10390.65	10390.65	
and the later to t	G, F		139.00	
Toilet Block	G. F	16.52	16.75	
Total FAR	137111111111111111111111111111111111111	10407.17	10546.40	

I hereby grant permission for the occupation of the said buildings, after considering NOC from fire safety issued by Director General, Fire Services Haryana Panchkula bearing memo no. FS/2021/52 dated 20.05,2021 Structure Stability Certificate given by Ravati Raman Singh (Structure Engineer) and Public Health Internal Service functional reports received from S.E. (HQ), HSVP, Panchkula issued vide memo. No. 63447 dated 08.04.2021 and after charging the composition charges amounting to Rs. 1.21,666/- for the variations vis-à-vis approved building plans with following conditions:-

The building shall be used for the purposes for which the Occupation Certificate is being granted. Any violations of this condition shall render this Occupation Certificate null and void.

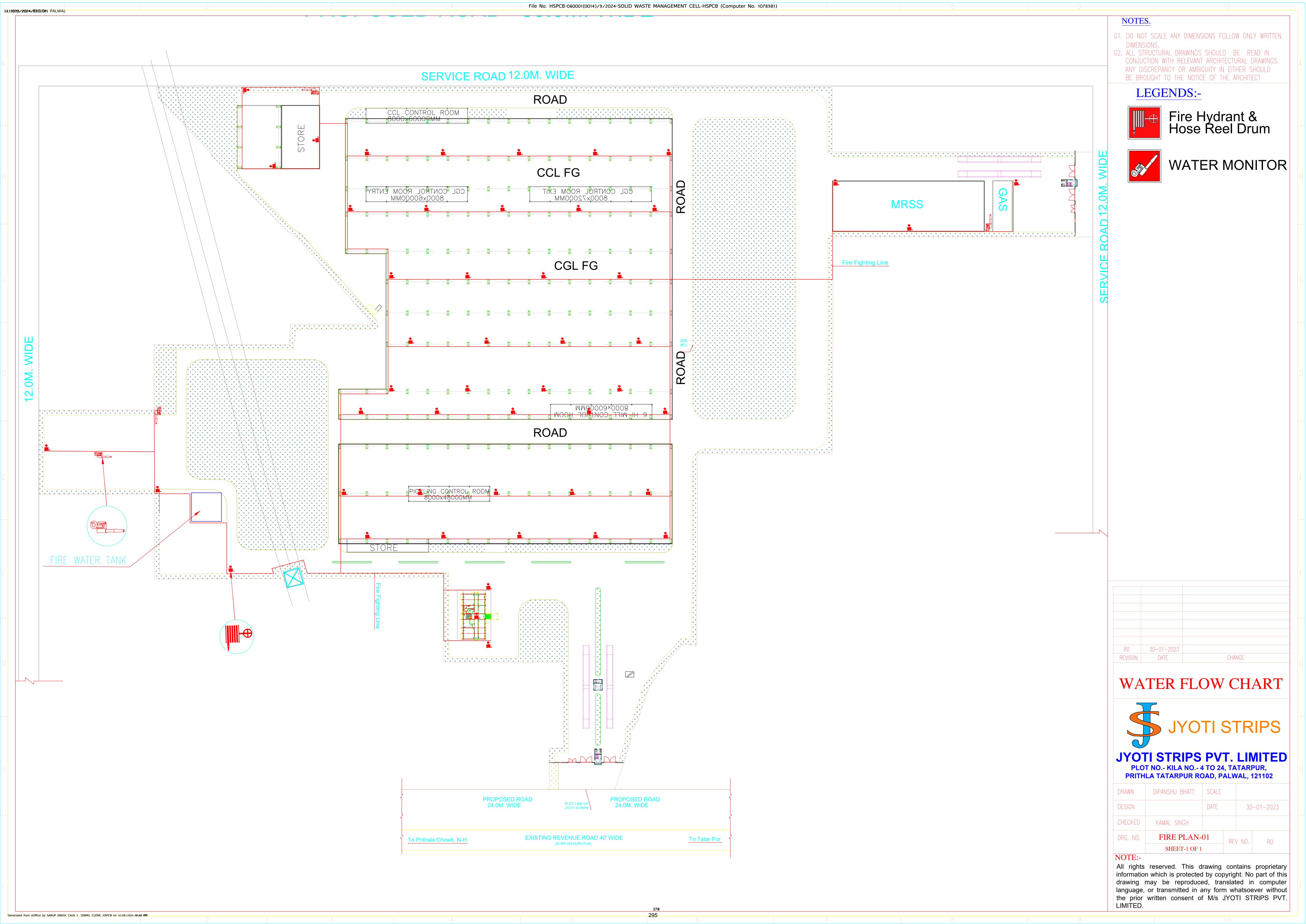
- 1. That you shall be fully responsible for supply of water as per norms,
- That you shall obtain the connection for disposal of sewerage and drainage from HSVP after laying the services to the point of external services on payment of prescribed fee and charges including the cost of such connection. You shall also maintain the internal services to the satisfaction of the Director.

- That you shall be solely responsible for disposal of sewerage and storm water
 of building till such times these services are made available by HSVP/State
 Government as per their scheme.
- That in case some additional structures are required to be constructed as decided by HSVP at later stage, the same will be binding upon you.
- That you shall maintain roof top rain water harvesting system properly and keep it operational all the time.
- That the outer façade of the building shall not be used for purposes of advertisement and placement of hoardings.
- That you shall neither erect nor allow the erection of any Communication and Transmission Tower on top of the buildings blocks.
- 8. That you shall use Light-Emitting Diode lamps (LED) for its campus as well as building.
- That provision of parking shall be made within the site earmarked/designated for parking and no vehicle shall be allowed to park outside the premises of the
- 10. That you shall comply with all the conditions laid down in the memo no. FS/2021/52 dated 20.05.2021 of Director General, Fire Services Haryana Panchkula with regard to fire safety measures and you shall be fully responsible for fire safety measures.

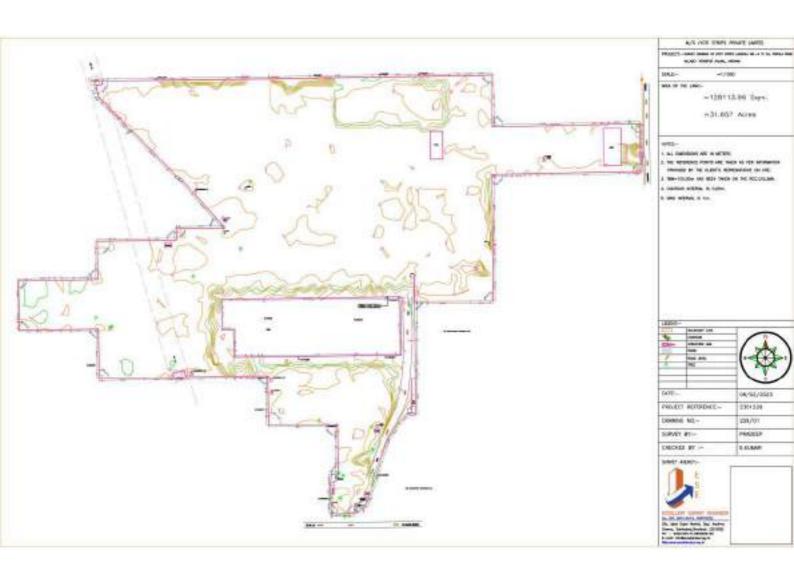
11. That you shall submit the certificate from HAREDA with regard to solar plant capacity at site.

(K. Makrand Pandurang, IAS)
Director, Town and Country Planning.

@Haryana, Chandigarh.


- The Director General, Fire Services Haryana Panchkula w.r.t your office memo no. F5/2021/52 dated 20.05.2021 Director General, Fire Service, Haryana Panchkula.
- Superintendent Engineer (HQ), HSVP, Panchkula w.r.t your office memo no. 63447 dated 08.04,2020
- Senior Town Planner, Faridabad w.r.t your office memo no. 829 dated 02.04.2021.
- 4. District Town Planner, Palwal w.r.t your office endst no. 867 dated
- Nodal Officer, Website Updation with a request to host the same on website of the Department.

(Sunena)


District Town Planner (HQ),

For: - Director, Town and Country Planning,

Haryana, Chandigarh.

No. HSPCB-060001(0014)/9/2024-SOLID WASTE MANAGEMENT CELL-HSPCB (Computer No. 1078 3 3 3 20038 / 20024 / 底底は BN PALWAL

PHOTOGRAPHS OF PROJECT SITE

